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We report our atomic-scale computations for the static depinning threshold
of dislocations in Al(Mg) solid solutions. The interaction between the
dislocations and the isolated obstacles is studied for different types of
obstacle, i.e. single solute atoms situated at different positions, and solute
dimers with different bond directions. Part of this work is used to apply
different standard analytical theories for solid solution hardening, the
predictions of which are finally compared with our direct atomic-scale
simulations (AS) for dislocation depinning in random Al(Mg) solid
solutions. According to our comparisons, the dislocation statistics in our
AS is qualitatively well described by the Mott–Nabarro–Labusch theory. In
agreement with earlier results about a different system, namely Ni(Al), the
depinning thresholds are similar for the edge and for the screw dislocations.

Keywords: dislocation; hardness; aluminium alloys; simulation; statistical
mechanics

1. Introduction

The origin of the macroscopic yield stress in metals is mainly ascribed to the pinning
of dislocations by other extended defects, such as dislocations and grain boundaries
and other point-like defects. Substitutional alloying elements are among such defects
and lead to the well-known phenomenon of solid solution hardening (SSH).
Avoiding the introduction of large inhomogeneities and thence material embrittle-
ment, SSH is a standard process of metallurgy which, in spite of its relative
importance in commercial alloy design and a number of experimental studies [1], is
still difficult to predict accurately. One of the main challenges of the theory is to
predict quantitatively the critical resolved shear stress (CRSS) as a function of the
nature and the concentration of impurities. To take up this challenge, it is necessary
to determine the relevant parameters associated with the SSH and to understand the
role played by the different types of glissile dislocation.

The statistics of a dislocation impinging on a random distribution of obstacles
was shown to depend on the details of the dislocation–obstacle interaction [2–9].
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A dislocation gliding in a solid solution experiences both long-range and short-range

interactions. The former stems from the Coulomb type stress field of the dislocation,

while the latter results from the dislocation core crossing with solute atoms situated

in the vicinity of the glide plane. Although the long-range interaction can be

described remarkably well through linear elastic theory [10,11], near the dislocation

core such a linear theory is not applicable because of the nonlinearity of the atomic

interactions. The problem of the short-range interaction can, however, be addressed

using three-dimensional atomic-scale simulations (AS) based on the Embedded

Atom Method (EAM) [12–17]. Recently [18], the use of EAM allowed us to examine

the dislocation pinning in a model Ni(Al) solid solution as a function of the

dislocation character. Here, we extend our study to another face centred cubic (fcc)

alloy, namely Al(Mg) for which the EAM [19] model has been employed in several

atomistic studies bearing on dislocation–solute interactions [20–23]. Interestingly, the

system Al(Mg) contrasts with Ni(Al) in several physical features related to SSH

theory, e.g. the size and modulus misfit of Mg atoms in Al, the stacking fault energy

and the order energy of the alloy. Thence it is possible to verify whether the

conclusions to which we came in Ni(Al) can be extended to another fcc solid

solution. In the present work, we examine the behaviour of the two glissile

dislocation types, i.e. edge and screw, in fcc crystals and we address the reliability of

different SSH statistical models.
Our study is divided into two steps. The AS are used primarily to examine

different features of the dislocation cores in the EAM model for pure Al. We
determine the dissociation width, the Shockley-partial core spreading and the Peierls
stress. Such quantities are compared with their conventional estimates from the

standard theory of dislocations [24]. The stiffness of the dislocations is then
calculated from AS in order to derive the effective line tension of the different types
of dislocation. The maximum pinning forces and the interaction ranges are
computed for different obstacle configurations such as the isolated Mg solute
atoms and the solute dimers. In the second step of our study, the static AS allow us
to compute the CRSS for an isolated dislocation in a fully random solid solution as a
function of the Mg content, cMg with 2 at.%5 cMg5 10 at.%. The main results of
the present work are:

(i) the elementary interactions between the dislocations and the obstacles are
found to be of the same order for the edge and the screw dislocations;

(ii) in agreement with (i), the increase in flow stress with Mg concentration is of

the same order for the edge and for the screw dislocation segments;
(iii) the CRSS is found to follow a fractional power law of the solute

concentration cMg, in reasonable agreement with the Mott–Nabarro–
Labusch theory.

The paper is organised as follows. In Section 2, the atomic-scale method and the
geometry of the simulation cell are described. The dislocation core geometry, the
Peierls stress and the line tension are computed for the edge and for the screw
dislocations in a pure Al crystal. In Section 3, we analyse the interaction between the
dislocations and the different pinning configurations of Mg solutes. In Section 4, the
predictions from the SSH analytical models are discussed with regard of our direct
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AS computations for the dislocation depinning threshold. The results are
summarised in Section 5.

2. Atomic-scale model for dislocations

2.1. Simulation techniques

The interatomic potentials for Al(Mg) were derived in different studies [19,25,26]. In
the context of the present work, it may be noted that this potential was derived from
the fitting procedure on electronic structure calculations (which is expected to provide
some portability) and on experimental results. Originally, Liu et al. built this potential
to study the anisotropic surface segregation of Mg atoms for alloy concentrations
running from 1 to 10 at.%. The calculated dependence of the lattice parameter as a
function of the solute concentration is close to the experimental value [27]. However,
it does not correctly describe the variation of elastic moduli withMg concentration. In
particular, we found that the decrease of the C44 elastic constant is overestimated
compared to experiments [28], and this is confirmed by electronic structure
calculations [29]. The molecular dynamics code used in our study was developed in
the Service de Recherches de Métallurgie Physique laboratory. It was implemented
originally by N.V. Doan [30], then adapted to the problemat of dislocations by
D. Rodney [31] and used specifically in the context of solid solution hardening by E.
Rodary [13] and L. Proville [32]. The current version of the code is called ADD,
standing for Atomic Dislocation Dynamics. The AS cell required to introduce a
dislocation in a nano-crystal has been adapted from the slab geometry introduced by
Rodney and Martin [31] and Osetsky and Bacon [33]. The dislocations glide through
the crystal with two free surfaces parallel to the glide plane (111) (see Figure 1). The
edge and screw dislocations have a b¼ 1/2[110] Burgers vector and are aligned with
the [112]- and [110]-direction, respectively. Periodic boundary conditions (PBC) are
imposed in the dislocation line, denoted as Y, and in the glide direction, denoted as X.
TheZ-direction is perpendicular to the glide plane. The atoms that compose the upper
and lower free surfaces of the slab are constrained to a two-dimensional (2D)
dynamics with a frozen motion in the Z-direction. The external shear stress, �xz (�yz),
for the edge (screw) dislocation is applied through additional constant forces on the
frozen atoms. Between the constrained free surfaces, the cell height is Lz¼ 15b. The
length along X is Lx¼ 40b and 70b, for the edge and screw dislocations, respectively.
The cell length along the Y-axis, denoted by Ly, will take different values depending
on which dislocation length has to be simulated.

Three different types of simulations will be described:

(i) In the rest of Section 2, the simulation cell is made of a pure Al nano-crystal
and the dislocation remains straight.

(ii) In Section 3, the simulation cell contains an obstacle made of either an
isolated Mg or a dimer with different configurations. In the latter case, the
PBC along Y forms a regular array of obstacles with a separation distance
between nearest obstacles which equals Ly. Varying Ly will allow us to
modify the critical stress required to liberate the dislocation and thence to
characterise the pinning force of each type of obstacle. The dislocation can
then form some bows.
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(iii) In Section 4, the simulation cell is made of a fully random Al(Mg) solid
solution. The Mg solute concentrations are imposed between cMg¼ 2 at.%
and 10 at.%. In order to capture the statistics of a dislocation impinging on
a random distribution of obstacles, the length along Y is chosen larger
than the Larkin length [34], i.e. Ly¼ 520b and 300b, for the edge and for the
screw dislocations, respectively. In each case, an over-damped
noiseless Langevin dynamics is used to minimise the total simulation cell
enthalpy [18].

2.2. Dislocation core

The dislocation core features are first studied in a pure crystal of Al. After
minimising the total energy of the simulation cell, i.e. with no applied stress, the
dislocation is straight and it dissociates into two Shockley partial dislocations,
separated by a stacking fault region, as expected in fcc metals [35,36]. For the slip
system studied here, it is also expected that the Peierls potential is rather flat and the
core of each partial is spread over a few atomic spacings. The Peierls–Nabarro (PN)
model [24,37,38] thus provides a convenient way to parameterise the dislocation
geometry. From AS, the dislocation displacement field is computed through the

L x

Lz

Ly

zxτ

zxτ
bt

[ 2 1 1 ]

Trailing partial

Leading partial

Z  [ 1 1 1 ]

X  [ 1 1 0 ]

Y  [ 1 1 2 ]

bl [ 1 2 1 ]

(a)

L x

Lz

zyτ

zyτ Ly

Y  [ 1 1 0 ]

bt
[ 2 1 1 ]

Trailing partial

X  [ 1 1 2 ]

[ 1 2 1 ]
bl Leading partial

Z  [ 1 1 1 ]
(b)

Figure 1. Schematic view of the simulation cell with a dissociated edge dislocation (a) and a
screw dislocation (b). The dislocations interact with Mg obstacles (squares) forming, with the
periodic images, a regularly spaced chain of obstacles.
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so-called disregistry function, i.e. the displacement difference DðxÞ ¼ uaboveðxÞ�

ubelowðxÞ along the glide direction across the (111) slip plane. The displacement fields

uaboveðxÞ and ubelowðxÞ correspond to the displacement of the atomic rows situated at

x in the planes contiguous to the glide plane above and below, respectively. The

continuous variation of such fields is obtained through the spline of the discrete

atomic row positions. In Figure 2, the disregistry function is plotted for the edge and

the screw dislocations. The PN model, accounting for the formation of partial

dislocations, reads as follows:

DðxÞ ¼
b

2�
arctan

x� d=2

�

� �
þ arctan

xþ d=2

�

� �� �
þ
b

2
, ð1Þ

where b is the Burgers vector of the whole dislocation, � the half-width over which

the partial dislocation core spreads and d is the dissociation distance between

partials. While b is fixed, � and d have been adjusted such that the model agrees

satisfactorily with the AS results. In the following, the subscripts ‘e’ and ‘s’ indicate

the parameter values associated with edge and screw dislocations, respectively.

We found for the separation distance between partials, de ¼ 5:57b, ds ¼ 2:76b, and
for the dislocation core widths, �e ¼ 1:2b and �s ¼ 0:69b. Note that although

the potential used in the present work is known to provide a reasonable

stacking-fault energy for aluminium, it has been shown recently by density

functional theory calculations [39] that it overestimates the dissociation distance

between the two Shockley partial dislocations. In order to minimise the finite

size effects of simulations, Lx and Lz were chosen large enough to obtain a

steady dislocation core geometry, i.e. with negligible variations on d and � when

Lx or Lz vary.
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Figure 2. Normalised disregistry function D (see text) for the dislocation cores projected on
the slip plane in the glide direction, X, for an edge (circle) and a screw (square) dislocation.
The symbols correspond to atomic calculations, while the lines are the results of the
adjustment of the Peierls–Nabarro equation (1).
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According to the elastic theory of dislocations [24], the dissociation distance d
should be 11.5 Å for the edge dislocation and 5 Å for the screw dislocation. Though
such predictions stringently underestimate the AS results, the ratio between de and ds
is qualitatively good. The PN model also predicts the ratio �e=�s ¼ 1=ð1� �Þ ¼ 1:47
where � is Poisson’s ratio1 and in AS, it is found that �e=�s ¼ 1:8. The extensions of
the PN model [36,40] could certainly allow us to improve the theoretical predictions
for d and � and to get them closer from AS data.

The adjustment of the disregistry function D(x) allows us to compute the position
of the partial dislocations. Doing this in a standard manner in AS consists of
analysing the first neighbour shell [13,18,31,32] of each atom and retaining only the
ensemble of atoms for which the first neighbour arrangement differs from the perfect
crystal. With the disregistry function, the locations of the leading and trailing partials
are recognised as the maximum of the first derivative of the D(x) function. This
method will also be applied to bowing dislocations after slicing the crystal
perpendicularly to the Y-axis and repeating the disregistry function adjustment in
each slice. The advantage of this method is to provide directly a smooth continuous
profile for the partial dislocations.

Within AS, the straight dislocation starts to move when the applied stress, �app,
reaches the Peierls stress, �p, which, for the edge dislocation, is found to be
�pe ¼ 1:98MPa, while for the screw dislocation �ps ¼ 18:43MPa.

2.3. Line tension of the model dislocations

The line tension is an important property of dislocations which characterises their
stiffness along the dislocation line. It enters amongst the input parameters in the SSH
analytical models. Through AS, it is not possible to compute directly the line tension.
Instead the AS can be used to analyse the dislocation shape when it is anchored to
some obstacles. Under a certain applied stress, the dislocation bows out, indicating
how stiff the dislocation is. To quantify the line tension, we shall analyse the
dislocation shape given by AS within a harmonic elastic string model, also dubbed
the line tension model [41]. The simplest configuration is to consider a dislocation
pinned by a regular array of obstacles, i.e. where the distance between nearest
obstacles is constant. In the AS, because of the PBC along Y, the introduction of a
single isolated obstacle allows us to construct such a regular array with a distance
between nearest obstacles fixed by Ly [32].

The anchored configurations of the different dislocations are computed for
different applied stresses. In order to cover a broad range of dislocation
configuration, i.e. from small to large values of Ly and �app, we introduce in AS
some unshearable obstacles by freezing the position of two first neighbour atoms
that cross the glide plane. Thence, the dislocation can form large bows (see Figure 4)
when Ly and �app are both large or it can be nearly straight when Ly or �app are small.
We assume that the partial dislocations are tightly bound and we analyse the mean
dislocation shape by averaging the position of the partial segments. This allows us to
consider a single isolated dislocation anchored as represented schematically in
Figure 3a. In the dislocation glide plane, the point O refers to the abscissa of the
dislocation apex and the bowing-out amplitude is h. The applied stress � yields a
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Peach–Koehler force, ð� � ~bÞ � ~�, giving the force per unit length exerted on the

dislocation segment for which the direction is fixed by the unitary vector ~�. The
Peach–Koehler force exerted in the glide direction X can be reduced to �b where �
corresponds to the resolved shear stress parallel to the Burgers vector. A segment of
length L reaches equilibrium when the stress field � is balanced by the tension �~�
at some point along the dislocation line. In order to determine the dislocation

equilibrium shape in the form x¼ f( y), we assume that the shear stress is constant,

discarding the self-stress field of the dislocation and those of periodic images. The

Peierls stress is also assumed to be negligible. Therefore, we can use the classical
result that a pinned dislocation with a constant line tension subjected to a constant
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Figure 3. (a) Schematic view of the forces acting on a bowed-out dislocation between pinning
centres. (b) Amplitude of bowing-out h for the pinned dislocation against the external applied
stress �app, for different dislocation lengths, Ly. The circle (square) symbols correspond to the
simulated edge (screw) dislocation while the lines are the adjustments of the line tension
relation given in Equation (3).
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stress takes a circular shape [4,42,43]. With the geometry shown in Figure 3 and

the boundary conditions xð�Ly=2Þ ¼ xðLy=2Þ ¼ 0, the dislocation shape is then

given by

xð yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðLy=2Þ

2
q

, ð2Þ

where R ¼ �=�appb is the radius of the arc. The maximum amplitude of the

dislocation bow is h¼ x(0), which reads

hð�app,LyÞ ¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðLy=2Þ

2
q

: ð3Þ

The effective line tension of the dislocation is determined by adjusting � in

Equation (3) to find the same amplitude h of the dislocation bending as in AS. The

adjustment of � has been carried out for several dislocation configurations, i.e.

for different applied stresses �app and lengths Ly. It proves to match for all

configurations tested, provided that �p remains small with respect to �app. For

different applied stress and for different types of dislocation, the dislocation bow

amplitudes were reported in Figure 3b as symbols for the AS computations and as

continuous lines for the analytical estimate of Equation (3) computed from the fit of

�. We point out that the variation of h with �app is better reproduced if, instead of

Ly in Equation (3), we substitute ðLy � b
ffiffiffi
3
p
Þ for the edge and ðLy � bÞ for the screw

dislocation. This substitution accounts for the obstacle width in the distance between

the dislocation pinning centres. In what follows, the line tension will be normalised

by its classical estimate given by Nabarro �0 ¼ 0:5�b2 [44]. After adjusting � as

proposed previously, the line tension predictions for the mean dislocation profile

derived from Equation (3) agree satisfactorily with AS, as shown in Figures 4a and b

for the two dislocation characters. Some small discrepancies can be noticed for the

screw dislocation in Figure 4b arising from the non-negligible screw Peierls stress.

The periodic potential landscape either pushes or retains locally the screw segments

along the dislocation line according to their positions. The line tension estimated

here has therefore to be considered as an average value over the explored

configurations. As expected from dislocation theory [24], the screw dislocation is

found to be stiffer than the edge dislocation. Numerically, we obtained �e ¼ 0:21�0

and �s ¼ 0:94�0. One should also note that for a large amplitude of dislocation

bows, the effective line tension must diverge from the current estimates since the

interactions between periodic images have been discarded in the present model.
Vijay et al. [45] computed the screw dislocation line tension in Al and they

account theoretically for the fixed boundary condition in a cylindrical cell whose

radius is comparable to the height, Lz, of our simulation cell. They found

�s ¼ 0:84�0 which, despite very different boundary conditions, is close to our value.
The standard analytical expression for the dislocation line tension is also derived

from elasticity theory [4,24,42]. It reads as a function of the angle 	 between the

Burgers vector and the tangent to the dislocation line:

�el ¼
�SBb

2

4�ð1� �SBÞ
ð1þ �SBÞ cos

2 	 ¼ ð1� 2�SBÞ sin
2 	

� �
ln

R

r0

� �
, ð4Þ
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where �SB and �SB are the elastic modulus following the Scattergood and Bacon
definition [46], which takes into account the crystal anisotropy.2 In the AS, the upper
cut-off length, denoted by R, corresponds to the distance to the free surfaces, i.e.
the half-height of the simulation box Lz=2. In order to obtain a line tension
approximation as accurate as possible, we calculate Equation (4) with a core radius
estimated from the dislocation core half-width �, as computed previously. Following
Hirth and Lothe [24], for the edge character roe ¼ 2�e= expð1þ 
Þ and for the screw
character ros ¼ 2�s=e, where 
 ¼ ð1� 2�Þ=ð4ð1� �ÞÞ. We obtain from Equation (4):
�e ¼ 0:17�0 and �s ¼ 0:84�0, which is found to be in fair agreement with the results
yielded through our previous adjustment procedure.
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Figure 4. Comparison of the bow-out obtained by atomic-scale calculation (symbols) and line
tension approximation (lines) given by Equation (3) for edge (a) and screw (b) dislocations.
Note that the scales are not the same in the abscissa and in the ordinate, so that the dislocation
position deviates from a circular shape.
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3. Dislocation–obstacle interaction

According to SSH theory [2–4,6–8], an obstacle can be characterised by a maximum
pinning force and a finite interaction range, here denoted by fm and w, respectively.
Following the method developed in [32], these parameters are determined for
different positions of an isolated Mg substitutional atom near the glide plane and for
Mg dimers with different orientations of the Mg–Mg bond. Atoms of Mg are
substituted for atoms of the pure Al crystal in the obstacle geometry that we want to
study. The PBC along the dislocation line yields a chain of regularly spaced
obstacles.

3.1. Maximum pinning forces

The Peach–Koehler force per unit length, �appb, applied to the dislocation pushes it
toward the Mg obstacle. The applied stress is incremented by 0.002MPa and for each
increment the minimisation of the crystal enthalpy is repeated until either it
converges to a required precision or the dislocation starts to glide. The critical
threshold of the applied stress, �c, depends on the distance between the nearest
obstacles, i.e. Ly owing to the PBC along the dislocation line. Actually a mere
balance sheet of forces leads to the relation �appbLy ¼ fm and therefore varying Ly

and computing the corresponding critical stress within AS allows us to determine the
obstacle pinning strength [32].

The previous considerations discard the pure crystal strength. Since in the
atomistic model used here for Al, the dislocation has a non-negligible Peierls stress
we must examine how the pure crystal strength combines with the obstacles. At the
critical threshold, the force total balance sheet yields

�cbLy ¼ fm þ �
eff
p bLy , ð5Þ

where, on the right-hand side, one recognises the pinning strength fm and the effect of
the Peierls potential which we introduce as an effective stress �effp which depends on
the critical profile of the dislocation and the Peierls landscape. In the limit of small
Ly, the dislocations are nearly straight, meaning that we can consider that the Peierls
potential exerts a constant stress along the dislocation line (see Appendix). To
compute the dislocation–obstacle interaction, we have thus used simulation cells with
small Ly, ranging from Ly ¼ 8b to 16b.

In Figure 5, the results of the critical stress computed from AS are shown for
different Ly for both dislocation types and both partial dislocations crossing an
isolated Mg solute. We note that the AS results for short Ly are correctly reproduced
by choosing �effp as constant in Equation (5). This allows us to determine fm in the
limit of small Ly. The pinning coefficient, � ¼ fm=�b

2, corresponds to the slop of the
linear interpolations of the stress threshold reported in Figures 5a and b for different
types of obstacle. Our results for the pinning strength associated with each partial
dislocation are listed in Table 1 with the same notation as in [18]. In Table 1, the
single obstacle denoted by (a) corresponds to an isolated Mg placed in the (111)
plane situated just above the glide plane, and (b) is for an Mg which participates in
the (111) plane just below the glide plane.
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From Table 1, we see that the pinning strength depends on the position above or
below the glide plane and which partial is concerned as well. Such a feature is
thought to stem from the nonlinearity of the atomic interactions. The anharmonicity
enhances the pinning strength in the compressive regions, in contrast to the tensile
regions where the pinning strength is smaller.

This trend has been noticed for both edge and screw dislocations. The pinning
strengths of edge dislocations are found to be larger for Mg situated above the glide
plane ((a) in Table 1), i.e. the compressive regions in our simulation cell, than those

0.05 0.06 0.07 0.08 0.09 0.1

b/Ly

b/Ly

2×10–4

4×10–4

6×10–4

8×10–4

1×10–3

τ c
/m

τ c
/m

Leading Mg above

Trailing Mg above

Leading Mg below

Trailing Mg below

a=0.0103

a=0.0086

a=0.0063

a=0.002

(a)

0.07 0.08 0.09 0.1 0.11 0.12

9.0×10–4

1.2×10–3

1.5×10–3

1.8×10–3 Trailing Mg above

Leading Mg below

Trailing Mg below
a=0.0102

a=0.0073

a=0.0027

(b)

Figure 5. The normalised critical stress, �c=�, versus the normalised inverse distance between
pinning centres along the dislocation line, b/Ly, for an Mg atom situated in the vicinity of the
glide plane, and for edge (a) and screw (b) dislocations. According to Equation (5), the linear
interpolations of the critical stress associated with the leading and trailing partials are
represented as continuous lines for the obstacle situated in the (111) plane just above the glide
plane, whereas the dashed lines correspond to Mg in the (111) plane just below the glide plane.
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below ((b) in Table 1). In agreement, for the screw type, in which the compressive
regions alternate for each partial according to the direction of the edge component of
the Shockley partial Burgers vector, the trailing (leading) partial for Mg situated
above (below) is anchored more strongly than the leading (trailing) partial for which
the pinning coefficient even vanishes.

So far we have studied the anchoring forces of isolated solute atoms; however, in
a solid solution of a few atomic percent, solutes are no longer isolated and often form
clusters. In their experimental work on copper alloys, Wille et al. [47] deduced the
density of the discrete glide barriers. They put forward arguments that mainly
doublets and triplets of solutes represent the effective glide barriers in the solid
solution. The existence of a distribution of barrier strengths was revealed. This seems
to be reasonable because not only single solute atoms but also pairs, triplets and
multiplets of solutes can behave as different obstacles. Anisotropic barriers for such
simple solute pairs will interact with dislocations with a strength depending on the
mutual orientation of both dislocation and obstacle. The question of whether small
clusters can play a role in SSH was addressed with AS in Ni(Al) [32] and Fe(Cu) [16].
It was shown that the strongest pairs which may be relevant to describe the SSH rate
differ from each alloy. In order to question again these features for the Al(Mg)
system, as well as to evolve toward a higher-scale model that will permit analysis of
the SSH at high Mg concentration, a systematic study of the dislocations/dimers
interaction was performed. The pinning strengths of the Mg dimers have been
calculated with distances between Mg atoms that correspond to first ((n-p) in
Table 1), second ((k-m) in Table 1) and some of the third neighbours ((i-j0) in
Table 1). Either the dislocation interacts with pre-existing Mg dimers, referred to as

Table 1. Summary of different pinning obstacles for both the leading (subscript ‘l’) and
trailing partials (subscript ‘t’) of the edge and screw dislocations, the bond orientation of the
pair, their pinning force � normalised by �b2, and their interaction range w.

Edge Screw

Nature
Text
Ref.

Pair
orientation �l and wl �t and wt �l and wl �t and wt

Single (a) 0.0103/5.11b 0.0086/2.16b 0.0/0.b 0.0102/1.81b
(b) 0.0020/0.24b 0.0064/3.69b 0.0073/2.96b 0.0028/2.38b

First neighbour (c) [011] 0.0170/4.72b 0.0159/2.65b 0.0/0.b 0.0228/1.74b
Non-crossing (d) [101] 0.0177/5.29b 0.0158/1.95b 0.0/0.b 0.0224/1.61b
pair (e) [110] 0.0128/5.31b 0.0129/2.15b 0.0/0.b 0.0228/1.54b

(f) [011] 0.0/0.b 0.0103/3.94b 0.0080/1.48b 0.0051/2.87b
(g) [101] 0.0/0.b 0.0122/3.66b 0.0081/1.63b 0.0060/2.83b
(h) [110] 0.0/0.b 0.0082/4.18b 0.0152/1.96b 0.0086/2.27b

Third neighbour (i) [721] 0.0062/0.74b 0.0139/2.83b 0.0138/0.69b 0.0026/1.21b
Crossing pair (j) [211] 0.0038/0.95b 0.0112/0.95b

(j0) [271] 0.0062/1.75b 0.0145/2.11b
Second neighbour (k) [212] 0.0100/1.06b 0.0099/2.96b 0.0045/0.68b 0.0110/0.60b
Crossing pair (l) [122] 0.0102/1.87b 0.0103/1.86b 0.0064/0.98b 0.0062/0.85b

(m) [221] 0.0064/0.98b 0.0025/1.83b
First neighbour (n) [411] 0.0067/2.18b 0.0120/2.59b 0.0043/1.06b 0.0119/0.61b
Crossing pair (o) [114] 0.0061/1.06b 0.0086/2.93b 0.0054/0.68b 0.0141/1.09b

(p) [141] 0.0065/1.15b 0.0106/1.83b 0.0032/0.84b 0.0033/0.94b
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(c-h) in Table 1, or else the dislocation passage modifies the Mg–Mg bond crossing
the glide plane (i-p) in Table 1. For the non-crossing pairs, the (c-e) and (f-h)
configurations correspond to the planar dimer situated above and below the glide
plane, respectively. The interaction parameters for Mg pairs reported in Table 1
show a wide scatter depending on the obstacle configuration and of the partial
dislocation considered. We will discuss in more detail their scaling relations in
Subsection 3.3.

3.2. Interaction range

To compute the interaction ranges the variation of the internal energy of the
nano-crystal is recorded during a simulation with a constant applied stress fixed to
the critical threshold that corresponds to the type of obstacle present in the
simulation cell. For both dislocation characters, this energy variation is shown in
Figures 6a and b for an isolated Mg situated in the nearest (111), either below or
above the glide plane. The internal energy is computed from the sum of the atomic
potential energy in the course of the enthalpy minimisation procedure. During the
interaction between a dislocation and a solute atom calculated via an over-damped
noiseless Langevin dynamics, the total energy of the system can be decomposed
into three parts: the elastic energy, the line energy and the energy of the
dislocation–solute interaction. As the applied stress is constant, the energy variation
shown in Figure 6 is due solely to the line and the interaction terms. The former is,
however, negligible for the short dislocation segment simulated here. Figure 6
represents the energy landscape felt by a dislocation during the crossing of an
obstacle. An important point of this procedure is to choose a friction in the atomic
equation of motion well above the work due to the applied stress so that it does
not cause heating.

In Figure 6a, for an Mg atom situated above the glide plane, the potential energy
shows two peaks that correspond to the successive passage of the two partials on the
obstacle. The same is also noticed for the screw dislocation and for different
positions of the solute atom. By contrast, for an Mg atom situated below the glide
plane, the interaction with the edge dislocation can no longer be separated into two
distinct contributions but the interaction spreads over the whole stacking fault
ribbon. It is worth noting that the interaction potential is not symmetric for an
obstacle ahead of and behind the partials, mainly because of the stacking fault
region.

Even though the shape of the interaction potential involves nonlinear atomic
interactions, the interaction can be qualitatively understood in terms of the linear
elastic theory of dislocations. As shown in Figure 6a, an isolated solute situated
above the glide plane repels an edge dislocation, whereas the same Mg atom below
acts as an attractive obstacle. Hence, it seems reasonable that the hydrostatic stress
field dominates the interaction since the Mg solute behaves as a dilatation centre in
the Al matrix. The same explanation holds for the screw dislocation in Figure 6b
where tensile and compressive regions alternate following the edge part of the
Shockley partial Burgers vectors. The internal energy is derived with respect to the
average position of the dislocation. In Figures 7a and b, this quantity, which
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corresponds to the internal force of the crystal, has been plotted against the mean
dislocation position. A negative value means that the dislocation is pushed forward,
while a positive one corresponds to a force that retains the dislocation. Many
different maxima appear along the same curve, indicating that for a given type of
obstacle different pinning configurations are possible and may contribute to
anchoring the dislocation in a complete solid solution. In Figures 7a and b, our
estimate of the extent of the interaction is exemplified. The range of interaction is
estimated from the distance which separates the maximum of the force and the
nearest position for which the force vanishes. Our results for the interaction ranges
are listed in Table 1 with the same notation as in [18].
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Figure 6. Internal energy of the simulation box versus the average position of the edge (a) and
the screw (b) dislocation core. The simulation box contains a single obstacle formed by one
isolated Mg solute atom situated either in the plane above the glide plane (full line) or in the
plane below the glide plane (dashed line).
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We obtain some interaction ranges larger, on average, for the edge dislocation
than for the screw dislocation. The extent of the interaction, computed for the non-
crossing pairs ((c-h) in Table 1), are roughly equal to the range of the isolated solutes,
while that of the crossing pairs is smaller ((i-p) in Table 1). We examine how to
connect these pair interaction ranges with some physical core features of dislocations
in the next subsection.

3.3. Scaling relations for the dimer interaction parameters

In order to identify the origin of the differences in SSH between Al(Mg) and Ni(Al)
alloys, it is of some interest to compare the dimer pinning strength in Al(Mg) with
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Figure 7. Internal force versus dislocation average position: the derivative of the internal
energy of Figure 6 for an edge (a) and a screw (b) dislocation. The full and dashed lines
correspond to obstacles formed by one isolated Mg solute atom situated in the plane above
(see w(a) in Table 1) and below (see w(b) in Table 1) the glide plane, respectively.
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that in Ni(Al) as the ordering energy of the latter is much higher and indicates the
possibility of an important chemical effect [48]. In fact, a dislocation shearing a
cluster by a Burgers vector shifts the solutes on either side of the slip plane, which
can lead solutes into a configuration less favourable energetically, increasing their
pinning strengths. This is the case of alloys with a significant short-range order.
In the Ni(Al) alloy and through solute pair interactions, this effect has been invoked
in [13,32] to tentatively explain the nearly linear CRSS against the solute
concentration. Comparison of the dislocation pinning strength of pairs could then
provide us with some hint on how such chemical effects could modify the hardening
mechanism in the different alloys. To perform this comparison we use the data
relative to the dimer–dislocation interactions in Ni(Al) from [18,32].

As in Ni(Al), the pinning strengths and the interaction ranges of Al(Mg) pairs
reported in Table 1 span a wide spectrum of values, making it difficult to identify
clearly some trends concerning the solute pair effect. To rationalise the behaviour of
dimers, we compare their pinning strengths with those of isolated solute atoms. We
compute the average pinning coefficient of solute pairs, ��pair, and the corresponding
linear combination of the isolated solute pinning coefficients,

P
�single. For instance,

the average pinning coefficient for first neighbour pairs situated above the slip plane
is compared with twice the pinning coefficient for a single solute situated above the
slip plane. For each partial dislocation in both alloys and for edge and screw
dislocations we thus compare:

��1st neighbour noncrossing pair above with 2�single above,

��1st neighbour noncrossing pair below with 2�single below,

��crossing pair with �single above þ �single below:

ð6Þ

The results of this comparison are shown in Figure 8a. In both model alloys and for
both dislocation characters, we observe a fairly good correlation between the average
pair coefficients and their description in terms of isolated solute linear combinations.
On average, the strongest pairs are merely formed by solutes that have the largest
pinning strengths, in agreement with [16]. The largest pinning strengths are found in
both alloys for the non-crossing pairs located in the compressive stress fields of
dislocations. This result reflects the effect previously described for isolated solute
atoms for which the differences in magnitude of the pinning strength can be mainly
attributed to anharmonic effects.

In Figure 8a, it is worth noting that there is no apparent difference between non-
crossing (open symbols) and crossing pairs (full symbols) even for the Ni(Al) alloy
where the chemical effect is expected to have some influence. Such a result points to
the lack of a clear chemical strengthening effect, at least if we reason in terms of the
maximum pinning strength of an obstacle, following analytical models.

A second essential parameter used in the formulation of SSH analytical models is
the interaction range of obstacles. For obstacles formed by dimers of solute atoms,
these ranges show a deviation from the classical estimate equal to b as shown in
Table 1. As for the pinning coefficients, we observe a broad range of w, distributed
around a typical value of 2b. We note that the interaction ranges associated
with the edge dislocations are, on average, greater than those for screw
dislocations. Similarly, for the same character of dislocation, they are larger
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in Ni(Al) than in Al(Mg). To understand these trends, we choose to think in terms of
average ranges, W. For each dislocation type in both alloys, we define the average
range as W ¼

Pn
i¼1 wi=n, where the sum is performed on all the n obstacle

configurations. As we study the interaction between dislocations and obstacles
located in the vicinity of the slip plane, we choose to compare W with the dislocation
core widths 2� computed in Section 2 since the variation of the internal energy is
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Figure 8. (a) Average pinning coefficient of solute dimers as a function of the linear
combination of the pinning strength of two isolated solutes for which the superimposition
corresponds to the dimer. The solute dimers that cross the slip plane are represented by full
symbols, while open symbols are used for those that do not cross the slip plane. (b)
Normalised interaction range averaged over all the obstacle geometries against the normalised
dislocation core widths for both edge and screw dislocation segments. The results for two
different fcc alloys are presented: Mg solutes in Al (present work) and Al solutes in Ni from
[18,32]. In each graph the straight dashed line represents equality between abscissa and
ordinate.
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expected to arise mainly from the dislocation core–solute interactions. A comparison
between these two quantities is plotted in Figure 8 and shows a satisfactory
correlation. The fact that this correlation is observed for the edge and screw
dislocations in both alloys seems to indicate that the dislocation core width is a
relevant physical parameter to describe a typical length-scale for the dislocation–
solute interactions in the dislocation glide plane.

Despite some scatter, the present work shows that there is no significant
difference between the solute pair interaction parameters in Ni(Al) and Al(Mg).
In both model solid solutions, the pinning forces and the interaction ranges of
dimers follow, on average, the same scaling relations. The dimer pinning forces are
found to arise, on average, from the linear superposition of the isolated solute force
and the dislocation pinning is found to have a short-range contribution related to the
extent of the Shockley partials. This result emphasises that the mere consideration of
the input parameters of SSH analytical models, even extended for the dimers, is not
sufficient to distinguish a priori the SSH rates in Ni(Al) and Al(Mg). We thus expect
that the CRSS of both alloys increases similarly with the solute concentration.

4. Solid solution hardening statistics

We now address directly the SSH by computing the CRSS of a dislocation in
the solid solutions with different concentrations. We perform some static AS for the
edge and the screw dislocation gliding in a Al(Mg) random solid solution and
we derive from the statistical study of such AS the CRSS as a function of Mg
contents. The AS allow us to test the predictions from the analytical SSH theories
in which the impurities are assumed to be randomly distributed in the glide plane.
For the two dislocation characters, we compare our results with those obtained
for Ni(Al) [18,32].

4.1. Molecular static computation of the solid solution pinning strength

In order to calculate the CRSS of a solid solution, we replicate the methodology
developed in [32] for the edge dislocation gliding in some random Ni(Al) solid
solutions. These static simulations are similar to those implemented for determining
the pinning force of a single obstacle. Once the dislocation is introduced into the
crystal, we substitute randomly the Al atoms of the matrix by Mg solute atoms to
achieve the desired concentration. The distribution of solute atoms is completely
random and, at the end of the substitution process, the probability of finding a solute
atom on an atomic site is equal to the Mg concentration, cMg. The lattice parameter
varies with the solute concentration following Vegard’s law. After an initial
relaxation of the potential energy of the system, we apply a stress to the crystal
surfaces in increments of 4MPa. After each stress increment, the enthalpy of the
system is relaxed until the dislocation encounters a stable position or glides in the
solid solution. The flow stress decreases with the length of the dislocation line. It
converges toward an asymptotic flow stress whose dispersion is much larger than its
variation with Ly. To reach this asymptotic behaviour we simulate extended
dislocation segments up to Ly ¼ 520b for the edge and Ly ¼ 300b for the

18 S. Patinet and L. Proville

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
S
P
C
I
]
 
A
t
:
 
1
6
:
5
8
 
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



screw dislocations. The dislocation crosses the simulation box several times owing to
the PBC in the glide direction. At each passage, the dislocation shears the crystal by
one Burgers vector creating a new configuration of solute atoms. We therefore
simulate the equivalent of a dislocation gliding in an extended solid solution with
random solute distribution.

For a certain stress level, the dislocation no longer encounters stable configu-
rations during its pseudo-dynamics, and moves freely in the alloy. This stress
corresponds to the calculation of the critical flow stress, �c. However its level depends
on the distance travelled by the dislocation. Indeed, the longer the dislocation travel,
the higher the probability of encountering a pinning configuration [49,50]. We
choose a glide distance at least equal to 1000 Å. The CRSS is then considered as the
stress required for the dislocation to glide over this distance, corresponding to the
order of magnitude of one-tenth of the average distance between dislocations in an
annealed polycristal. The applied stress increases sharply at the beginning of the glide
and quickly reaches a plateau near the CRSS. In practice, the stress does not increase
for a glide distance larger than 500 Å, equivalent to about five simulation box
lengths.

We study the variation of �c for the two types of dislocation as a function of the
solute concentration for an atomic concentration ranging from cMg ¼ 2 at.% to
10 at.%. The CRSS increases with cMg because of the increased density of obstacles.
Unlike the calculations for the interaction between a dislocation and an isolated
obstacle giving us �c deterministically, the SSH simulations require several
realisations. For each concentration �c is calculated from an average over a sampling
of five simulations. The CRSS of the Al(Mg) solid solution are shown for the edge
and screw dislocations in Figures 9a and b, respectively. The average flow stress as a
function of concentration is monotonic and smooth. This variation is greater than
the standard deviation of the flow stress (see the error bars in Figure 9) except for the
screw dislocation at the highest concentration. Using the Peierls stress �p calculated
in Section 2, the phenomenological equation �c ¼ �p þ AcrMg has been used to fit the
CRSS computed from AS. The exponent that provides the best fit is r’ 2/3 for the
edge dislocation and r ’ 4=5 for the screw dislocation. This result contrasts with that
obtained in [18,32] for the Ni(Al) alloy, which showed an almost linear dependence
on concentration with r close to unity for both dislocation types. However, as in
Ni(Al), the AS show that the pinning strength is of the same order for the screw
dislocations and for the edge dislocations, in agreement with the pinning strengths of
isolated obstacles computed in Section 3. Even though we subtract the Peierls stress
to keep only the hardening effect of solutes, the screw dislocation CRSS is at least
two times smaller than �c of the edge dislocation. This is a remarkable result because
it confirms that the screw dislocations undergo significant pinning in the solid
solution, as already found in Ni(Al) [18].

4.2. Comparison between analytical models and atomic-scale simulations

The previous AS for the random solid solution correspond to the theoretical
framework of the SSH analytical models (see Table 2). The latter actually assume a
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Figure 9. Variation of the critical resolved shear stress (CRSS), �c, for an edge dislocation (a)
and for a screw dislocation (b) against the Mg concentration, cMg, computed from atomic-
scale simulations (AS) with different Mg random distributions (symbols). The error bars
correspond to the standard deviation. The estimations made from the analytical models
(see Table 2) are also shown: Fleischer–Friedel [3] (dotted line), Mott–Nabarro–Labusch [51]
(dot-dashed line), Friedel–Mott–Suzuki [4] (full line) and Butt–Feltham [6] (dashed line).

Table 2. Summary of analytical models of solid solution hardening (SSH) reviewed in [18].
The critical resolved shear stress (CRSS), �c, is expressed as a function of the line tension, �,
the pinning strength, fm, the interaction range, w, the solute concentration, c, the Burgers
vector, b, and the atomic surface in the (111) dislocation slip planes, s.

Model:
Fleischer–
Friedel [3]

Mott–Nabarro–
Labusch [51]

Friedel–Mott–
Suzuki [4]

Butt–
Feltham [6]

�c :
f 3=2m

ffiffiffi
c
p

b
ffiffiffiffiffiffiffiffi
2s�
p

c22wf 4
m

b3s2�

� �1=3
fmwc

sb

4fmw
ffiffiffi
c
p

3b3
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perfectly random distribution of impurities at zero temperature which is also the case
in our simulations. The parameters of the different models, i.e. �, fm and w, have
been determined through AS in Sections 2 and 3.

Following our previous work [18], we adapt the analytical models to the fcc solid
solution where the dislocations are dissociated into two partial dislocations. As the
models apply to an undissociated dislocation, we assume that the partial dislocations
are tightly bound. Moreover, the different models usually derived for a square lattice
assume an atomic area in the slip plane equal to b2. In our system, this quantity is
changed to s ¼ b2

ffiffiffi
3
p
=2, i.e. the atomic surface in the (111) dislocation slip planes.

The effective obstacle concentration corresponds to 4cMg in order to take into
account all the interactions of both partial dislocations with the single solutes above
and below the slip plane. In the derivation of the Mott–Nabarro–Labusch model, the
solutes above and below the slip plane are already taken into account. In this
particular case we must replace cMg by 2cMg.

The analytical models consider a single type of obstacle, thought of as an average
obstacle which would lie in the glide plane, disregarding the long-range interactions
between the dislocation and the solute atoms. The manner in which the average
obstacle is computed from the different atomic configurations is not stipulated in the
SSH theories. We saw in Sections 2 and 3 that an important contribution to
the pinning strength stems from the obstacles situated in the (111) planes that
bound the glide plane. Only the latter are considered in our estimation for the
strength and the interaction range that characterise the average obstacle. As
previously mentioned, there are four possible interactions between a dislocation and
an isolated solute atom in accordance with its position and the partial dislocation
with which it interacts. To consistently compare the predictions of our AS with the
SSH models, the input parameters are determined from the average of the interaction
parameters of the isolated atoms (see obstacles (a) and (b) in Table 1). We get an
average pinning coefficient ��e ¼ 0:0068, ��s ¼ 0:005 and an average interaction range
�we ¼ 2:8b, �ws ¼ 1:8b for a single Mg solute atom situated in one (111) plane adjacent
to the slip plane.

From the equations in Table 2, we plot in Figure 9 the CRSS as a function of
the Mg concentration for the four SSH models. For both dislocation types the
Fleischer–Friedel (FF) model predicts the smallest flow stress. The predictions from
the Mott–Nabarro–Labusch (MNL) model are larger and those from the Mott–
Friedel–Suzuki (FMS) model and the Butt–Feltham (BF) model still larger. Figure 9
shows that the BF and the FMS theories overestimate the CRSS, whereas the MNL
and FF theories underestimate it. In the Al(Mg) model solid solution studied here, it
seems that the MNL theory gives the best agreement with respect to our AS for both
dislocation types. However, we observe that the agreement between the MNL theory
and the AS simulations is only qualitative. At high concentration, the CRSS of the
screw dislocation is particularly underestimated due to the concentration exponent,
r, being larger than that predicted in the MNL theory, equal to 2/3. Note that the
dispersion of flow stress is well below the differences between the predictions given
by the different models. This justifies our method to compare the evolution of flow
stress calculated from simulations and analytical theories.

The purpose of this study is not to predict what would be the solution hardening
of the real Al(Mg) alloy, though we can expect it to be close to our atomistic results,
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but rather to test the analytical models available. The atomistic simulations are

considered as a reference which the analytical model should reproduce to be relevant

for our typical system. If the MNL theory provides a fairly good description of SSH

in Al(Mg), this is not the case for Ni(Al) where the best theoretical description is

given by the FMS theory [18]. Comparison between the calculated CRSS in AS and

that computed from the analytical models with no adjustable parameters shows that

it is necessary to change the model as a function of the fcc alloy which is concerned.

As a consequence, we are in an unsatisfactory situation where we choose a posteriori

the appropriate model to describe the SSH, being unable to justify this choice. Such a

result points to the absence of a robust model able to quantitatively describe the SSH

in fcc metals with different physical properties. Furthermore, as previously shown in

the study bearing on dislocation–dimer interactions, the effect of chemical order can

hardly be invoked to explain alone the different SSH rates observed in Ni(Al) and

Al(Mg). It therefore seems necessary to enrich the analytical models and their input

parameters in order to achieve a quantitative description of SSH.

5. Summary and conclusions

The AS presented here show that in Al(Mg) solid solutions the edge and the

screw dislocations experience similar pinning strengths. This agrees with earlier work

on Ni(Al) solid solutions [18]. According to our informal discussions with

G. Saada and D. Rodney, this result would explain why the microstructures in fcc

solid solutions are isotropic, i.e. with an equivalent proportion of edge and screw

dislocations [52].
From the elementary interactions computed on the atomic scale, we have

determined the input parameters required in the analytical theories for SSH. We have

then compared the CRSS predictions from the different theories with the atomic-

scale simulations where a nano-crystal of random solid solution with different

concentrations is crossed by a single dislocation. In the Al(Mg) solid solutions

studied here, the MNL theory describes qualitatively the variation of the CRSS with

the Mg solute concentration. This result contrasts with our previous work on Ni(Al)

solid solutions for which the FMS model satisfactorily reproduced the AS. The two

models differ stringently on the CRSS rate against the solute concentration with an

effective CRSS concentration exponent r’ 2/3 in the former, while r’ 1 in the latter.

A comprehensive study of the pinning strength and of the interaction range

associated with the different types of obstacle shows that this difference between the

two systems is certainly not associated with the solute dimers alone, as was proposed

by one of us (LP) in [32]. Indeed, in the two systems, the pinning forces behave

roughly as a linear combination of the strengths of individual solutes. The present

study allows us to emphasise the absence of a robust analytical model, able to predict

quantitatively the SSH in fcc alloys. Alongside this analytical work, an extended

version of the line tension model has been proposed in order to account for the

dissociation of the dislocations and for the different types of obstacle [53]. The

principles of such a model have already been applied successfully to different

problems [41,54] in dislocation physics.
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Notes

1. The shear modulus is the one for (111) planes �¼ (C11�C12þC44)/3 while Poisson’s
ratio is computed from the Voigt average �¼ (C11þ 4C12� 2C44)/(2(2C11þ 3C12þC44)).
Within the EAM model for Al, �¼ 30.8GPa and �¼ 0.32.

2. Using the sextic theory presented in [24], we found �SB¼ 31.9GPa and �SB¼ 0.34 within
the EAM model for Al.
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Appendix A. Association of Peierls stress and obstacle forces for large Ly

In Figure 10 we consider the case of an Mg atom situated in the plane just above the
glide plane, interacting with a screw dislocation for large Ly. For a metal with negligible �p,
a linear relationship between �c=� and b=Ly would have been obtained. Here for the
screw dislocation in Figure 10 it is clearly not the case and, in the region of very large inter-
obstacle distance, the results of simulations deviate from the linear equation (5). Note however
that the AS results for short Ly are correctly reproduced by choosing a constant �effp close to
the lattice resistance �p. This allows us to determine fm in the limit of small Ly via Equation (5)
as we did in Section 3.1. In this appendix, we propose to take into account the dislocation
shape and the Peierls stress in Equation (5) in order to render more accurate the model in the
range of large Ly.

For large Ly, �
eff
p depends on the critical profile of the dislocation and on the Peierls stress.

For a dislocation which crosses a few Peierls valleys, the critical configuration may have a
larger segment on the ascent (descent) of the Peierls hills, thereby increasing (decreasing) �c in
Equation (5). One can expect 05 �effp 5 �p where the two bounds correspond to the two
limiting cases, i.e. the depinning of a dislocation crossing several Peierls valleys or a straight
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dislocation retained by the maximum Peierls stress. We assume that the Peierls barrier can be
roughly approximated by a mere cosine function as

VðxÞ ¼ ��pba
0 cos

2�

a 0
½xþ ��

� �
=2� ,

where � is a phase shift and a 0 is the repeat distance in the slip plane in the direction normal to
the dislocation. In the present case, a 0e ¼ b=2 for the edge dislocation and a 0s ¼

ffiffiffi
3
p

b=2 for the
screw dislocation. The physical reason for introducing a phase shift is that the minimum of the
interaction potential between the dislocation and the solute atom does not necessarily
correspond to a Peierls trough. In Equation (5), �effp results from the sum of the crystal
resistance along the curved dislocation:

�effp ¼

Z Ly=2

�Ly=2

�pb sin
2�

a 0
½xð y, �Þ þ ��

� �
dy, ð7Þ

where the mean profile x( y, �) of the dislocation is determined by Equation (2). The
computation of the integral (7) is evaluated numerically. � is adjusted so that Equation (5)
reproduces �c for the shortest Ly in the case of a straight dislocation, i.e. with x( y)¼ 0. The
phase shift is then kept constant to calculate �c for other values of Ly. The critical threshold is
determined as a function of Ly by finding the maximum �c that balances the equilibrium
equation (5). In Figure 10, the computation of �c is shown, following three different
approximations depending on the critical shape of the dislocation: a straight line with x( y)¼ 0
(model A), a large bending given by xð y, �cÞ (model B), and a small bending given by
xð y, �c � �

eff
p Þ (model C).

Model A: As discussed above, for large Ly, the AS results deviate from a linear relationship.
The assumption of a straight dislocation leading to a linear relationship and to a constant �effp
slightly overestimates �c calculated from AS.

0 0.02 0.04 0.06 0.08 0.1 0.12
b/Ly

8.0×10–4

1.2×10–3

1.6×10–3

t c
/m

A: tc=fm/bLy+ tp
eff(x=0)

B: tc=fm/bLy+ tp
eff(x{y,tc})

C: tc=fm/bLy+ tp
eff(x{y,tc-tp

eff})
Simulations

tp
eff(x=0)/m

a =fm /mb2

A

B

C

Figure 10. Normalised critical stress (square), �c=�, that needs a screw dislocation to
overcome an isolated Mg solute atom situated in the (111) plane just above the glide plane (see
�(a) in Table 1) versus the normalised inverse distance between pinning centres along the
dislocation line, b/Ly. The critical stresses are computed under various assumptions regarding
dislocation pinned shapes given by Equation (2). A: flat dislocation (dashed line); B: large
bending (dot-dashed line); and C: small bending (continuous line) accounting for the effective
Peierls stress.
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Model B: For large Ly and for �c comparable to �p, the solution xð y, �cÞ overestimates the
dislocation bending since the effect of �p on the dislocation shape have been disregarded in
Equation (2). Notably, this function gives dislocation shapes which go fully into the next
Peierls valleys. According to the comparison with AS computations in Figure 10, this model
seems irrelevant since a dislocation crossing several Peierls valleys yields �c ! 0 as Ly !1.

Model C: The effect of �p on the dislocation shape is tentatively taken into account by
subtracting �effp from �c in Equation (2). Despite this crude assumption of a constant effective
Peierls stress along the dislocation, it is clear from Figure 10 that the computation of �c
through Model C provides a satisfactory estimate in comparison with the AS results. We
emphasise that no adjustable parameters are introduced in the final form of �c since �p, � and
fm have been computed from independent simulations.

The importance of this correction increases as the crystal Peierls stress. It thus remains
small for the edge dislocation. On the other hand, the same approach could be of interest in
body-centred cubic alloys for which the screw Peierls stress can be much larger than in fcc
alloys.
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