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The propagation of an adhesive crack through an anisotropic heterogeneous interface is considered.

Tuning the local toughness distribution function and spatial correlation is numerically shown to induce a

transition between weak to strong pinning conditions. While the macroscopic effective toughness is given

by the mean local toughness in the case of weak pinning, a systematic toughness enhancement is observed

for strong pinning (the critical point of the depinning transition). A self-consistent approximation is shown

to account very accurately for this evolution, without any free parameter.
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While physicists studied the scaling properties of a crack
[1,2] and developed an analogy between crack front propa-
gation and the dynamical phase transition associated with
the pinning or depinning of an elastic line driven through
a random potential [3–12], a parallel (and independent)
effort was made by mechanical engineers studying crack
trapping by tough particles [13–15] or the effect of crack
front deflection on the stress intensity factors (see, e.g.,
[16] for a recent review).

Although the intimate link between the surface energy
of a material and the resisting ‘‘force,’’ or toughness,
opposing interfacial crack propagation has been elucidated
in the ideal cleavage case, the same concept remains to be
better understood in more common situations where solids
are heterogeneous. Generally, dissipative processes in the
bulk of the solid (yet in the vicinity of the crack surface)
contribute to (or even dominate over) the thermodynamic
surface energy. This effect has been highlighted in recent
studies [17,18] showing how periodic modulations of
elastic or interface properties affect crack propagation
and considerably enhance the effective toughness of a
given interface. Until recently [19–21], however, the com-
putation of such an effective macroscopic toughness for
random media has remained mostly unexplored despite its
great theoretical (critical point of the depinning transition)
and practical importance (optimized bonding).

When a crack propagates in a random solid, heterogene-
ities may also trigger different dissipative phenomena,
resulting in a toughness which cannot be reduced to the
bare surface energy. Depending on the relative strength of
the random potential and elasticity of the crack front, one
usually distinguishes two generic situations [22] (see Fig. 1).

(i) In weak disorder conditions, the depinning front is
only slightly perturbed and smoothly advances as a whole,
with modest velocity fluctuations. Viscous dissipation can

indeed be turned to arbitrary low values in quasistatic
conditions, and hence only the bare average surface energy
will be relevant for the macroscopic toughness. Disorder
plays only a very minor role (e.g., for the geometry of the
crack front).
(ii) In strong pinning conditions, the front advances

intermittently, by a series of localized microinstabilities,
and the front roughness exhibits a nontrivial scale free
behavior. In contrast with the previous case, the local
motion during a microinstability is no longer under the
control of the experimentalist. The unbalance of elastic
forces is compensated by local viscous friction until a new
equilibrium configuration is reached. The external driving
force does not interfere much with this local resolution
of the disequilibrium. Yet, at a macroscopic scale, the
accumulation of these microinstabilities will contribute to
a total energy dissipation that dresses the surface energy.
A similar mechanism has long been proposed for solid
friction [23–25], or plasticity [26,27].
It is therefore crucial to quantify the onset of strong

pinning and to evaluate effective toughness in a quantita-
tive fashion. Such is the purpose of the present study. First
a numerical model is introduced to account for the crack
front of an adhesive crack propagating in a random field
of local toughness. This anisotropy-induced weak-to-strong
pinning transition is shown to severely affect the value of the
depinning threshold, or macroscopic toughness. Our results
are shown to confirm early prediction about the effect of
anisotropy of toughness [19,20]. The velocity fluctuations
along the front, through the participation ratio computation,
are also shown to characterize the weak or strong pinning
regimes.
Numerical model.—We consider here an interfacial

crack front propagating in the (z, x) plane in the x direction.
The location of the crack front at time t is denoted hðz; tÞ.
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In the framework of brittle fracture, propagation is ruled
locally by the Griffith criterion that compares a driving
force, the stress intensity factor (SIF) K, that depends on
the geometry and the external loading with a threshold
value Kc, the toughness, a material property. The hetero-
geneity of the microscopic toughness is represented by a
random landscape Kcðz; xÞ of mean Kc and standard de-
viation Sc. It is assumed to be short range correlated, and
its correlation lengths are denoted �x and �z in the direc-
tion of propagation and orthogonal to it, respectively.

The microscopic toughness disorder induces a rough-
ening of the crack front, which in turn modifies the local
value of the SIF along the front via a long-range elastic
restoration force [13]. Neglecting inertial effects, we con-
sider in the following an overdamped dynamics. The local
(forward) velocity is here given by the positive part of the
difference between the local values of the SIF and the
microscopic toughness [12]: �@th ¼ RðK � KcÞ, where
� stands for an effective viscosity and R denotes the
positive part. We study the behavior of the crack front at
the verge of propagation from above, i.e., at a vanishing
velocity forK � Kc. This justifies a first-order perturbative
expansion around Kc. The equation of evolution of the
crack front is thus written [7,11,13]

@thðz; tÞ ¼ R½k0ðtÞ þ kelðz; hðz; tÞÞ� kcðz; hðz; tÞÞ�: (1)

Here kc ¼ Kc=Kc is the reduced microscopic toughness
landscape of unit mean, of standard deviation � ¼ Sc=Kc,
and of correlation lengths �x and �z.

The driving force k0ðtÞ ¼ K0ðtÞ=Kc is the reduced aver-
age SIF along the crack front. To account for the stiffness
of the system (specimen and loading device), the boundary
condition is described by a slow and steady loading rate
such that on average the crack front velocity is set to v0.
A stiffness e is introduced such that k0ðtÞ ¼ e½v0t� �hðtÞ�,
where �hðtÞ is the average position of the front at time t [28].
The expression of the spatial modulation of the reduced

SIF kel as a function of the crack front geometry has been
obtained to first order in perturbation [29] and is written

kelðz; hðzÞÞ ¼ 1

2�
⨏ hðz0Þ � hðzÞ

ðz� z0Þ2 dz0; (2)

where ⨏ stands for the principal value of the integral.

Note that in Eq. (1) the time scale has been set so that the
viscosity is scaled to unity. Two parameters thus remain
that characterize the driving dynamics: the (reduced) stiff-
ness e and the (reduced) velocity v0. In the following, only
the quasistatic limit v0 ! 0þ is considered.
In the following, random toughness fields of sizeLz � Lx

are considered with a unit lateral correlation length �z ¼ 1
(the discretization length scale in the lateral direction) and
a tunable correlation length �x in the direction of propaga-
tion. Three different types of randomfieldswere considered:
uniform-squared exponential (U-SE), Gaussian-squared
exponential (G-SE), and Gaussian-exponential (G-E),
where the first term refers to the probability distribution
function of kc and the second one qualifies its autocorrela-
tion function Cð�xÞ in the x direction. The U-SE and G-SE
disorders consist of grids of Nzð¼ Lz=�zÞ � Nxð¼ Lx=�xÞ
random numbers from uniform and Gaussian distributions,
respectively. The spacing between grids points in the x

direction follows a uniform distribution such that Cð�xÞ ¼
e�ð�x=�xÞ2 . The G-E landscape consists of realizations of an

exponentially correlated Gaussian noise Cð�xÞ ¼ e�ð�x=�xÞ
computed according to the first-order scheme [30] with
an integration step�x ¼ �x=50. In all cases, the continuous
toughness landscape kcðz; xÞ is interpolated linearly bet-
ween two grid points in the x direction.
The standard deviation� is varied in the range [0.125–1]

and the correlation length �x in the range [0.006–800]
while the reduced stiffness is set to e ¼ 1. The chosen
reduced velocity v0 ¼ �=20 was verified to be small
enough not to significantly influence the results. Periodic
boundary conditions along z are considered. Integration of
Eq. (1) is performed according to an explicit midpoint
scheme. The time step �t is chosen so that the maximum
front increment is less than one-tenth of the noise discre-
tization length. Starting from a flat configuration, the crack
front was first propagated over �xðLz=�zÞ0:5 in order to
reach a statistical steady state.
In the spirit of a homogenization approach, the effective

toughness is defined as the one which would be measured
at a macroscopic scale. The (reduced) effective toughness
keff is thus measured as the time (and ensemble) average of
the (reduced) stress intensity factor k0ðtÞ along propagation
for a vanishing velocity: keff ¼ hk0ðtÞi. In practice, keff is
computed as the mean value of the driving force minus the
driving velocity k0 � v0 along a propagation length equal
to Lx ¼ 1024�x. This value is finally averaged again over
ten simulations (different statistical samples).
Numerical results.—The weak-to-strong pinning transi-

tion induced by the shortening of the toughness correlation

(a) (b)

z

x

FIG. 1 (color online). Snapshots of crack fronts for different
toughness landscapes illustrating the transition from weak (a)
to strong (b) pinning regimes—same distribution (� ¼ 0:125),
different correlation lengths: �x¼50 (a) and �x ¼ 0:1 (b). Two
fronts separated by a small time lag are represented. In weak
pinning conditions, the distance between successive fronts is
nearly constant, indicating weak fluctuations of the local veloc-
ity. In strong pinning conditions, motion is concentrated over
small parts of the front, indicating a jerky dynamics.
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length goes together with a spectacular increase of the
effective toughness (the depinning threshold). Figure 2(a)
shows the dependence of keff on different types of disorder.
For large values of the correlation length �x, we obtain
keff ¼ 1; i.e., the effective toughness equals the mean of
the microscopic disorder hkci. However, for low values of
�x, keff departs from hkci ¼ 1 and reaches significantly
higher values that clearly depend on the type of distribution
and correlation of the microscopic disorder. Indeed, the
effective toughness is interpreted here as the threshold of
a (dynamic) phase transition and as such is expected to
depend on the microscopic details. We also note a slight
but clear dependence on the system size: The larger the
system, the larger keff . This enhancement is also reflected
by changes in the toughness distribution (weighted by
time) visited by the crack front as illustrated in Fig. 2.
This distribution is clearly biased towards higher toughness
values as �x decreases.

Interpretation: A self-consistent approach.—This evolu-
tion can be rationalized in the framework of a self-
consistent approximation proposed in Ref. [19] and never
checked quantitatively. The top panel of Fig. 3 shows a
toughness landscape consisting of a unique band of
fluctuating toughness kcðxÞ in an otherwise homogeneous
medium of toughness k0. Because of the elastic coupling,
the crack front undergoes a deflection �h ¼ �h� hð0Þ
proportional to the toughness contrast �k ¼ kc � k0. The
associated line stiffness S ¼ �k=�h can be analytically
computed from the Rice formula [19,31] and is shown
to scale as S / 1=�z logðLz=�zÞ. An effective medium
approximation, in the spirit of the self-consistent approxi-
mation, consists in evaluating keff as equal to the value of
k0 such that the average deflection of the front taken
over the ensemble of successive stable positions of the
front is zero.

From weak to strong pinning.—The simplicity of the
one-dimensional picture of Fig. 3 allows one to define a
criterion that determines the pinning regime. In absence
of driving force, an equilibrium configuration of the front

at position hðz ¼ 0; tÞ ¼ x in the band is obtained when the
elastic restoring force �kelðxÞ ¼ S�hðxÞ balances the
toughness contrast �kcðxÞ. Depending on the respective
amplitude of the line stiffness and the local toughness
gradient, one can obtain for this implicit equation either
a unique solution or multiple solutions for the front
position x. A simple criterion for the transition from
weak to strong pinning can thus be drawn from the onset
of multistability. Under these conditions, strong pinning is
obtained when

�

S�x

> 1: (3)

As schematically shown in Fig. 3(b), different sets of stable
positions along the band are generated as a function of the
line stiffness. For large S�x=� the stable trajectory closely
follows the toughness of the band as expected from the
weak pinning regime. Conversely, for lower S�x=� the
crack front will visit only a subset of high toughness values
that characterize the strong pinning regime. As a conse-
quence, the distribution of toughness at stable positions is
skewed toward higher values.
Direct numerical integrations of the effective medium

model have been performed. S is first determined numeri-
cally to account for the discreteness of the simulated
crack front. The reduced toughness distributions and their
means are then generated from one-dimensional trajecto-
ries as exemplified in Figs. 3(a) and 3(b). The comparison
between the self-consistent approximation and the crack
front simulations reported in Fig. 2 and in Fig. 4 shows a
remarkable agreement. keff is very accurately reproduced
as a function of �x, Lz, �, and the different disorder types.
Note that the model not only accounts for the effective
toughness variations but also for the visited toughness
distributions without any free parameter.

(a) (b)

FIG. 2 (color online). (a) Effective toughness keff (for � ¼
0:125) vs correlation length �x for different disorders types and
system widths Lz. The continuous and dotted arrows indicate the
weak and strong pinning regimes reported in Figs. 1(a) and 1(b),
respectively. (b) Toughness distribution along the crack front that
propagates in an exponentially correlated Gaussian landscape of
width Lz ¼ 64 for different �xð� ¼ 0:125Þ. Symbols indicate
simulation data and lines theoretical predictions.

(a) (b)

(c)

FIG. 3 (color online). (a) A band of random toughness in a
homogeneous landscape traps the crack front; the lower the line
stiffness, the larger the front deflection. (b),(c) Graphical solu-
tions of the implicit equation �kelðxÞ ¼ �kcðxÞ which deter-
mines the equilibrium position of the crack front for the same
disorder parameters reported in Figs. 1(a) and 1(b). The stable
positions in the band are highlighted in red and blue, respec-
tively. For large correlation length (b), the trajectory almost
follows the toughness in the band (weak pinning). For small
correlation length (c), the equilibrium positions are skewed
toward higher toughness (strong pinning). The slope of the
fine lines between the stable portions corresponds to the stiffness
S of the crack front.
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Scaling analysis.—One can show that only a combina-
tion of scaled parameters really contributes to the observed
results. If the toughness k and distance x along the propa-
gation direction are transformed into k ! ðk� hkciÞ=�
and x ! x=�x, then the elasticity of the crack front line
becomes S�x=�. Figure 4(a) shows the centered and
reduced effective toughness against the depinning control
parameter �=S�x. All numerical results collapse onto a
single master curve that captures the transition. For small
values of the control parameter �=S�x, the weak pinning
regime holds, keff ¼ 1, whereas, for large values �=S�x,
keff significantly increases (strong pinning). Note that the
system size dependence is here captured in the line stiff-
ness parameter which decreases as the logarithm of the
crack front length. This has no effect in the weak-pinning
regime but justifies a rather counterintuitive result in the
framework of brittle fracture: The larger the system, the
smaller the line stiffness and hence the larger the effective
toughness.

Details of the local disorder have a dramatic effect on the
pinning conditions. A crack front can encounter weak or

strong pinning depending on its propagation direction.
In the same spirit, if the toughness landscape is nonsym-
metrical, the effective toughness in a given direction
will not be the same as in the reverse one. Our approach
thus offers a natural interpretation to the recent results
presented in Ref. [18].
Crack front dynamics.—As mentioned above, the weak-

to-strong pinning transition is also characterized by the
emergence of intermittence and localization of the propa-
gation. To quantify the localization degree along the front,
the participation ratio [22] is computed

� ¼
*½PNz

i¼1 �hðziÞ2�2
Nz

PNz

i¼1 �hðziÞ4
+
; (4)

where �hðziÞ is the local velocity of the ith site and Nz the
total number of site along the crack front. The angle
brackets denote time average. This scalar parameter mea-
sures the relative number of sites involved during motion.
In the weak pinning case where all sites move, � ¼ 1.
In the strong pinning limit where only one site moves,
� ¼ 1=Nz is expected. The numerical results reported in
Fig. 4(b) are fully consistent with this picture: The lower
the correlation length �x and/or the larger the standard
deviation � of the toughness disorder, the lower the par-
ticipation ratio, i.e., the wider the velocity distribution.
As shown in Fig. 4(b), the participation ratio data collapse
onto a master curve describing the transition from weak to
strong pinning for different disorder strengths and correla-
tion lengths, validating again the relevance of the scaling
parameter.
Conclusion.—The depinning of a crack front has been

shown to be strongly dependent on the spatial correlation
of the disordered landscape through which it propagates.
The transition between weak and strong pinning is well
captured by a simple criterion built on the toughness
gradient in the direction of propagation and the line stiff-
ness. A simple self-consistent approximation very accu-
rately describes the progressive departure of the depinning
threshold from its weak pinning value (the mean value
of the disorder) to the higher values measured for strong
pinning. This scheme accurately captures the dependence
of the depinning threshold to the finer microscopic details
(statistical distribution of toughness and spatial correla-
tion function). Let us emphasize that such a result may not
have been expected from the fact that strong pinning
involves microinstabilities and collective phenomena
(avalanches, etc.) due to the underlying dynamical phase
transition.
Bearing in mind that the enhancement of the effective

toughness does not originate from the initial landscape
toughness distribution only but also from its spatial corre-
lation, our results open a promising route to design aniso-
tropic and tough interfaces.
S. P. acknowledges the support of ANR project

MePhyStaR.

(a)

(b)

〈  
 〉

FIG. 4 (color online). (a) Effective toughness keff as a function
of the correlation length �x for different landscape toughness
standard deviations � and system widths Lz. The larger � and/or
the shorter �x, the larger keff . Symbols and lines correspond
to simulation data and theoretical predictions, respectively.
(b) Participation ratio � along a crack front of width Lz¼256.
The larger � and/or the shorter �x, the lower �. In both figures,
the disorder type is GE. Original simulation data are reported
in the insets, while the main panels correspond to the rescaled
quantities following Eq. (3). The continuous and dotted
arrows indicate the weak and strong pinning regimes reported
in Figs. 1(a) and 1(b), respectively.
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