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ABSTRACT: This mixed-methods sequential explanatory design investigates disciplinary learning gains when

engaging in modeling and simulation processes following a programming or a configuring approach. It also

investigates the affordances and challenges that students encountered when engaged in these two approaches to

modeling and simulation. � 2017 Wiley Periodicals, Inc. Comput Appl Eng Educ; View this article online at
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INTRODUCTION

In the context of problem-solving in science and engineering, the
manipulation and creation of computing artifacts is an increas-
ingly crucial step for understanding and designing systems [1].
Facility with computational modeling, simulation, and domain-
specific software has become a new form of literacy in science and
engineering domains. Thus, undergraduate students need to
effectively combine modeling and simulation skills with
engineering science knowledge for effectively designing solu-
tions [2]. Specifically in engineering domains, to effectively use
conceptual knowledge to solve problems, individuals need to be
able to abstract physical phenomena into some form of
representational model (e.g., mental, mathematical, computa-
tional) and be able to connect them and effectively adapt them
during problem solving episodes [3–5].

However, science and engineering education may approach
modeling and simulation fundamentally differently.While science
education, specifically at the K-12 level, may approach modeling
and simulation using pedagogical methods and instructional
simulation tools, engineering education may approach modeling
and simulation in an expert-like approach using practitioners’
modeling and simulation tools [6]. Effective modeling and
simulation in engineering also requires (1) knowing when, why
and how computational tools and methods work, and (2) applying
or configuring existing tools or methodologies to successfully
solve problems or design solutions [7]. Thus, we aimed to identify
how engineering students experience the use of different
affordances of computational tools when they engage in modeling
and simulation practices, and how that impacts their conceptual
learning.

An initial step toward the realization of the effective use of
technology integration for learning purposes is the identification
of their benefits and challenges; that is their affordances.
Gibson [8,9], described “affordance” as the functional properties
that define how such things could potentially be used or
manipulated. Therefore, identifying the affordances of different
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computational tools for engaging students in modeling and
simulation practices is a critical process for their proper
integration as learning tools. The implications for this study
relate to the investigation of the effects of different computational
tools on helping students to (1) externalize their thinking by
visualizing, testing, and refining the components of their
engineering designs, (2) identify and internalize the governing
fundamental physical principles or behaviors of phenomena, and
(3) develop creative ways in which systems can be created or
altered to design new devices, materials and other artifacts.

The guiding research questions are:QUAN:What are student
disciplinary learning gains when engaging in modeling and
simulation processes following a programming or a configuring
approach? QUAL: How undergraduate engineering students
experience modeling and simulation processes when following a
programming or a configuring approach? MIXED: What are
affordances and challenges that students encounter when
engaging in modeling and simulation processes following a
programming or a configuring approach?

To this end, we explore two different computational
approaches for supporting modeling and simulation practices: A
programming approach and a configuring approach. The major
difference between these practices resides in the level of
transparency of the underlying mechanism and the way learners
interacted with the computational tool. To start with, we explore
the literature onmodeling and simulation in science education.We
describe how these practices take place in the field of engineering
and provide an overview of educational research studies that have
focused on understanding the distinct way modeling and
simulation arise in engineering education. We then proceed
with the methods and results, and discuss our findings identifying
the implications for teaching and learning.

MODELING AND SIMULATION IN EDUCATION

This section briefly describes an overview of the role of modeling
and simulation in mathematics, science, and engineering educa-
tion. We believe that there is an important distinction between the
context and goals of educational research in modeling and
simulation in mathematics and science education vis-a-vis
engineering education. Without loss of generality, while most
educational research in modeling and simulation in mathematics
and science education centers on practices and tools that have been
specifically designed for learning purposes. In contrast in
engineering education, these practices and tools are imported
from professional and research contexts and adapted for
educational deployment. As a result instructor practices, student
perceptions and the relevant educational questions are not quite
commensurate in these closely related domains.

Modeling and Simulation in Mathematics and Science
Education

Computer modeling [10] and computer simulation [11] have been
widely studied in science education contexts, and their benefits in
student learning and engagement have been thoroughly docu-
mented. One of the primary uses of computer modeling and
simulation in science education has been to perform scientific
experimentation so individuals connect observed phenomena with
their underlying causal processes [12]. In this context, science
educators have made a broad distinction between “building”

simulations and “using” simulations [12,13]. Learners “build”
simulations when they interact with the simulation and also build a
model and program it through the user interface [14]. When
learners build simulations they are able to modify the attributes of
variables, change the agents that are part of the system, design
different subsystems and design different functionalities of that
subsystem [13]. Learners “use” simulations to explore and
develop an understanding of the underlying models [13]. Model
exploration is conducted when learners test an input–output
relationship [15].

Although this differentiation between building and using
simulations has been broadly defined, learning with simulations
can actually support different forms of inquiry learning. For
instance, building or using simulations can support exploration
and observation of natural and man-made systems, testing of
theories to explain or validate design decisions, supporting
problem-solving tasks, building devices based on desired
specifications, calibrating instruments, collecting experimental
data, and constructing mathematical models [16].

Modeling and Simulation in Engineering and
Engineering Education

In engineering domains, modeling and simulation refer to a
combination of processes in which a system’s behavior is
predicted by a reductive computational representation. Modeling
consists of producing a model to represent the inner workings of a
system. Simulation refers to the operation of a model that can be
reconfigured and explored [17]. In the engineering context, these
two processes are often undertaken so as to be combined in a series
of steps that allow a system under study to be altered for a specific
purpose. These series of steps, as shown in Figure 1, can be
summarized as “model development, experiment design, output
analysis, conclusion formulation, andmaking decisions to alter the
system under study” [17]. According to the figure, modeling and
simulation are often deployed in an iterative cycle, where
conclusions derived from each simulation experiment can feed
back into the system under study until it results in the desired
altered system.

Research studies investigating the use of computer simu-
lations for learning concepts in engineering have identified the

Figure 1 Modeling and simulation processes (adapted from Ref. [17]).
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value of these tools for conceptual understanding [18–21],
representational fluency [22,23], laboratory experiments and
inquiry learning [24–26], and problem solving and de-
sign [4,27,28]. In addition, engineering educators have started
to identify the breadth and depth of modeling and simulation skills
needed by current STEM workforce [29]. Specifically, a study
conducted with diverse industry engineering sectors revealed that
employers consider of high importance students’ abilities, “to
understand engineering principles and computational principles
that allow them to use computational tools to solve engineering
problems bymoving between physical systems and abstractions in
software” [30]. Responding to industry shifts, engineering
professors who use computational simulations for research have
started to integrate those as learning tools. For instance, Magana
and colleagues [6] conducted open-ended interviews with 14
instructors teaching undergraduate and graduate courses in
science and engineering who integrated expert-grade computa-
tional tools in their undergraduate and graduate courses. Their
phenomenographic analysis revealed an outcome space consisting
of eight qualitatively different categories that detailed ways in
which instructors conceptualized the incorporation of simulation
tools as learning activities into courses they were then teaching.
These eight categories are summarized into two major learning
goals: (1) using simulations to identify and describe the governing
fundamental physical principles or behaviors of devices, materials
and other artifacts, and (2) building simulations to apply modeling
and computational techniques to approach engineering design
tasks. The eight categories identified in this previous study were
also aligned with several of the learning objectives for engineering
instructional laboratories presented by Feisel and Rosa [31].

Educational researchers have also started to identify the
benefits and challenges of expert computational tools into
undergraduate classrooms [32,33]. For example, a study in the
materials engineering domain identified that students who were
exposed to a research-grade molecular dynamics simulation
enhanced their abilities to predict how an unfamiliar material
would behave at the molecular level, suggesting they understood
the atomic processes governing the plastic deformation of
materials [34]. In another study, Magana and colleagues also
conducted studies that investigated student perceptions and
experienceswith computation and computational simulations [35].
The quantitative and qualitative analyses showed that graduate
and undergraduate students reported overall positive experiences
with computational simulation tools and their use. Differences
were observed in the way undergraduate students reacted to the
computational simulations as compared with graduate students;
undergraduate students showed a moderately positive attitude
toward their ability to interpret the outputs of the simulation tools.
To gain deeper insight into student experiences, the same authors
conducted qualitative research studies aiming to identify the
potential aspects that may inhibit student learning processes with
computation and computational simulation tools [36]. A major
theme that emerged from these studies was related to students’
need to have more access to the underlying mechanism. This
access included aspects related to the underlying equations, the
assumptions of the model, the numerical method, and so forth. A
second theme related to students’ struggles when they were given
access to the underlyingmodel. Students, when given access to the
underlying model, experienced severe difficulties in conducting
mappings between the physical model, the mathematical
representation and the computational representations [35,36].
This dichotomy was referred to as the transparency paradox [37].

The studies described above highlight the benefits for using
expert computational tools to support researchers in their
discovery and innovation processes. Other studies conducted in
educational settings also highlight the benefits of pedagogical
tools in supporting students’ development of conceptual learning.
However, only a handful of studies have evaluated the
effectiveness of expert computational tools for educational
purposes and they have reported mixed results. We therefore
considered it valuable to conduct in-depth investigation into the
effect of different levels of transparency of computational tools
and into the affordances and challenges for supporting modeling
and simulation practices.

LEARNING DESIGN, MATERIALS, AND CONTEXT

Our own preliminary work has explored the effect of different
levels of transparency, and the way learners interacted with a
certain computational tool, on students’ conceptual learning
(authors, 2016). Our previous work identified that when students
interacted with computational tools by just modifying the input
parameters, the average gains (i.e., the average increment from
pretest to posttest) in their conceptual learning were of 14.11%
with a standard deviation of 27.96%. On the other hand, when
students interacted with the computational tools by having
access to the underlying model and actually having the
capability to alter it, the average gain was 8.8% with a standard
deviation of 23.61% (authors, 2016). These findings prompted
us to investigate further these differences and the effect of
different computational tools in affording or hindering the
integration of modeling and simulation practices. In this section,
we describe the instructional tools that afforded modeling and
simulation practices within specific disciplinary contexts.
Specifically, we explored affordances and challenges students
encountered when using MATLAB in a programming approach,
and affordances and challenges students encountered when
using COMSOL in a configuring approach. We provide details
of the computational tools and the way students interacted with
them in the following paragraphs.

The study is contextualized within a curricular innovation
aimed at introducing modeling and simulation practices and the
use of computational tools across the core courses of an
undergraduate materials science and engineering program
(authors, 2013). The curricular innovation consists of a new
discipline-based computing course entitled “Computation and
Programming for Materials Scientists and Engineers” (CPMSE),
coupled with the integration of computational learning modules
(i.e., one-week long modules) in the major’s six core courses
offered in the following academic year (three courses per
semester). The modules were designed to reinforce computational
materials science and engineering skills and to support the
acquisition of foundational disciplinary conceptual understanding.
For each of the six core courses students were exposed from one to
three different computational modules depending on the course.
Twelve modules in total were introduced throughout the six
courses. This study describes students’ experiences with four
learning modules implemented in four different courses:
“Structure of Materials” and “Physical Chemistry of Materials
I: Thermodynamics” delivered in the Fall of 2012 and “Physical
Chemistry of Materials II: Kinetics and Phase Transformations”
and “Mechanical Properties” delivered in the Spring of 2013
(see Table 1 for details of the modules).

AFFORDANCES AND CHALLENGES OF COMPUTATIONAL TOOLS 3



Learning Materials and Computational Tools

Learning modules were designed to: (1) give students extended
exposure to computational tools that can help them solve
disciplinary problems, (2) provide them with modeling and
simulation skills, and (3) reinforce conceptual understanding of
disciplinary foundational concepts. Table 1 provides details of
how disciplinary learning goals from the materials science and
engineering discipline were coupled with modeling and simula-
tion goals for each of the four areas of application. Two domain
specific software tools, MATLAB1 and COMSOL1, were used
as part of this study. MATLAB1 is a high-level language for
numerical computation using built-in mathematical functions, a
data analysis and visualization tool to create models, and a
programming and algorithm development tool to develop
applications [38]. COMSOL Multiphysics1, herein called
COMSOL1, is a general-purpose software platform for modeling
and simulating physics-based problems. COMSOL1 is based on
advanced numerical methods for the analysis and design of
coupled or multiphysics phenomena in electrical, mechanical,
fluid flow, and chemical applications [39]. These two tools are
similar insofar as they provide learners with analytic and
visualization tools that integrate numerical computation.

There are two important ways in which these tools are distinct
from the student learning perspective. MATLAB1 is a general
purpose computing environment well suited for numerical analysis.
Consequently while MATLAB1 is of potential utility in an almost
unlimited range of application areas, for most applications (and all
those instantiated inMATLAB1 here) algorithmsmust be coded in
theMATLAB1 language and deployed. In contrast, COMSOL1 is
a special purpose tool for undertaking the solution of coupled
ordinary and partial differential equations. These can be time-
dependent or time-independent and may be posed as initial value

and/or boundary value problems. For most applications (and all
those instantiated in COMSOL1 here) the finite element analysis
algorithms for solving these equations are already instantiated in the
software and the inner workings are opaque to the end user. The
other way these two environments differ is in the way the user
interacts with the tool, that is, the user interface provided to the user
(seeFig. 2).AlthoughMATLAB1 can beused to produce graphical
user interfaces, in this studyMATLAB1 is operated through a high-
level programming language that includes mathematical functions
that provide execution of vector and matrix calculations as well as
graphical representation of numerical data. COMSOL1 is operated
through a graphical user interface (GUI), a series of menus and
forms through which the user configures the model and visually
represents and analyzes the results by manipulating input
parameters.

The process of designing and validating the learningmodules
consisted of having a disciplinary and computational expert,
Author 2, develop modules in consultation with each of the
instructors of the four courses. During the first one-on-onemeeting
between Author 2 and the professor of the course, they jointly
identified a topic which could serve as a good candidate for
teaching with a computational module. Author 2 also communi-
cated with the course instructors to create an implementation
schedule. Author 2 then independently created a first version of the
learning module and an accompanying four question multiple
choice conceptual pre/post assessment that was shared with the
course instructor for further feedback. Details of the validity of
the assessment are discussed in the methods section below.

The basic structure of the modules differed significantly
between theMATLAB1-based modules and the COMSOL-based
modules, particularly in how they required students to engage and
build their models. Building on previous work on “building”
simulations and “using” simulations [12,13], we made a similar

Table 1 Description Learning Modules and Objectives for Each of the Four Areas of Application

Module Learning goals Description

Structures: Monte Carlo simulation of alloys and compounds (MATLAB1
—required programming)

Disciplinary goal Identify the role of order parameters in relation to phase transitions
Modeling and
simulation goal

Apply basic Monte Carlo algorithm, calculate order parameter in simple
simulated system, compare to theoretical prediction

Thermodynamics: Statistical mechanics of magnetic response (Ising model) (MATLAB1
—required programming)

Disciplinary goal Understanding the Ising model and how statistical mechanics can be
used to perform thermodynamic averages

Modeling and
simulation goal

Apply basic Monte Carlo algorithm, calculate order parameter in simple
simulated system, compare to theoretical prediction

Kinetics and phase transformations: Diffusion in 1D and 3D (COMSOL1
—no programming required)

Disciplinary goal Understand mass transport in 1D and 3D, effects of boundary conditions
Modeling and
simulation goal

Parameterize and set boundary conditions for a finite element model, analyze,
and interpret results, be aware of numerical error and the potential for
inaccuracies in numerical results

Mechanical properties: Necking in bars (COMSOL1
—no programming required)

Disciplinary goal Observe the difference between elastic and plastic deformation, understand
conditions for formation of a neck, analyze stress and strain in 3D

Modeling and
simulation goal

Parameterize and set boundary conditions for a finite element model, analyze,
and interpret results
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distinction for this work. This distinction is highlighted by
referring to (1) learning experiences with programming and
executing models in MATLAB1, and (2) learning experiences
configuring and running simulations with COMSOL1.

Both MATLAB1-based modules involved providing stu-
dents with the main elements of a Monte Carlo (MC) simulation,

an algorithm used to calculate thermodynamic averages for
equilibrium systems. Students then had to read the code,
understand it in the context of the algorithm for MC and alter
the code to correctly implement the MC algorithm. Once a correct
code was generated students used the code to investigate the
system in question. Here the systems in question were a simple

Figure 2 Interfaces for MATLAB1 and COMSOL1. (a) MATLAB command prompt and sample of output,
(b) COMSOL menus, inputs and sample of output.
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two-dimensional lattice model of a binary alloy in Structures and a
similar model of a magnetic material known as the Ising model in
Thermodynamics. AnMC algorithm in these contexts is a series of
steps in which random transformations are proposed for a system.
The energetic change to the system that would be caused by each
transformation is computed and the transformation is accepted or
rejected depending on the energy change and the temperature of
interest. Running averages are collected over many such trans-
formations to produce “expectation values” for measurable
quantities thereby computing approximations of their thermody-
namic equilibrium values. These simulations can be carried out
under multiple conditions at different temperatures, concentra-
tions, applied fields, etc., depending on the system.

In the COMSOL1 modules, students were provided with a
description of a set of steps to carry out in order to build a
representation of a series of boundary value problems. In the
case of mechanical properties, these involved rate-independent
solution of a plasticity problem. In the case of kinetics, these
involved time-dependent diffusion and reaction-diffusion equa-
tions describing a phase field model. Instructions guided students
through selecting the appropriate physics to implement, creating
the geometry, setting boundary conditions, and specifying the
constitutive equations for the model. COMSOL1was then able to
solve the model and students again used the COMSOL1 interface
to specify plots and other graphical representations of the solution
for analysis. In this sense, the COMSOL1 exercises represent
more of a “cookbook” approach in which students were not privy
to the internal workings of the solution procedure unlike the
MATLAB1 exercises where students were explicitly required to
read, analyze, and alter the code to produce a result.

Classroom Context and Delivery

All modules were introduced in a similar fashion implemented in a
two-class session format during the course of one week. The day
the module was introduced, class started with a brief introduction
of the guest instructors (Author 2 and 4) followed by an
introduction to the computational module (Author 6 undertook
classroom observations). The computational module was briefly
introduced in a four-step procedure that typically took no more
than 10min: (1) the guest instructor and the course instructor
introduced the context of the module to the class, (2) the
instructors explained how themodule related to course content and
to specific concepts previously taught, (3) the instructors briefly
explained the underlying mathematical and computational
representations. Students were then provided with the computa-
tional module document that introduced in detail the computation
or algorithmic aspects of the module in MATLAB1, or how to
operate the graphical user interface of COMSOL1. The rest of
class time was used for students to work on the modules.
Instructors helped students individually as they worked on the
modules during this class, clarifying confusing aspects as needed.
Author 2 and 4 held office hours during that week so students
could receive additional, personalized assistance during the
assignment. During the second class of the same week, students
continued working on module solutions during class time. In this
second class period, students asked questions to the instructors
discussed their questions and problem-solving approaches with
their peers. Teaching assistants from each class also responded to
questions from students. These typically involved clarifying the
instructions, answering questions about the structure of the code
(MATLAB1), providing guidance regarding interaction with the

user interface (COMSOL1), verifying that steps were properly
configured and executed, and discussing the computational results
in light of the engineering problem being addressed. Each
assignment was typically due 1 week after the class in which it was
introduced. Students could work on all exercises outside of class
using on-campus computer laboratories or using their personal
computers. When students opted to use their personal computers,
they could install the software via a campus-wide educational
licensing agreement or run the software via remote desktop
software.

Besides the different software employed for the modules, the
only difference between each implementation was the level of
engagement of the course instructor, which we believe was due to
their varying level of comfort with computation. While some
instructors participated more actively during the delivery of the
modules, others chose to only participate at the very beginning
introducing the guest instructors, the module and the relationship
between the module and the course topics. However, and as
mentioned earlier, all professors were fully engaged in the
conceptual design of the modules and pretest and posttest
assessments.

METHODS

A mixed-methods sequential explanatory design [40] was
employed to plan, analyze, and report the findings of this
investigation. Accordingly, the design started with collecting and
analyzing quantitative and then qualitative data in two consecutive
phases. The quantitative phase identified the effect of integrating
modeling and simulation practices to increase students’ under-
standing of the subject matter. Then, qualitative data was collected
and analyzed from a structured interview to help explain,
differences in students’ learning gains (i.e., to explain the
quantitative results from the first phase) [41]. Priority was given
to the qualitative data based on the purpose of the study and our
research questions. Specifically, in the second phase our goal was:
(1) to characterize how students engaged with different
computational tools, (2) to identify benefits and challenges that
students encountered when engaging in modeling and simulation
processes, and (3) to identify how such affordances and challenges
may have contributed to differences in conceptual learning gains
when students engaged in modeling and simulation processes
following a programming or a configuring approach. Figure 3
provides an overview of our research design.

The quantitative component of our research aimed to
identify: What are student disciplinary learning gains when
engaging in modeling and simulation processes following a
programming or a configuring approach? To measure learning
gains we conducted pretest and posttest assessments aimed to
measure student conceptual understanding. The pretest assess-
ment measured what students learned from the lecture and the
posttest assessment measured what students learned by solving
the computational challenge. The conceptual assessments were
directly aligned with the learning objectives of the lesson (see
Table 4 for details). The qualitative portion of our study aimed to
identify: How undergraduate engineering students experience
modeling and simulation processes when following a program-
ming or a configuring approach? To perform the qualitative
analysis, we implemented a case study approach. Combining case
study with mixed-methods was originally proposed by Ivankova,
Creswell, and Stick (2006). We chose the same approach because
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doing so would help us explain how students’ ways of interacting
with the computational tools, tested in the first phase, resulted in
significant or not significant learning gains. For this, we identified
a subset of six students from each course. To capture as much
variation as possible from students’ experiences, a combination of
high and low performers, according to their grade on the module,
were invited to participate in the think aloud. We then performed
within case analysis for each of the cases where we aimed at
identifying how students engaged in different stages of the
modeling and simulation process while solving the computational
challenge. Finally, the integration of the quantitative and
qualitative portions of our study were guided by the research
question: What are affordances and challenges that students
encounter when engaging in modeling and simulation processes
following a programming or a configuring approach? This
integration was performed in the cross case analysis of the two
case studies. This last portion of the analysis is reported along with
the discussion section.

Participants and Procedures

The participants for this study were 82 undergraduate students
from four different Materials Science and Engineering courses at a
Mid-Atlantic University. The courses were Structure of Materials
(N¼ 23) and Physical Chemistry of Materials I: Thermodynamics
(N¼ 27) offered in the Fall of 2012; and Physical Chemistry of
Materials II: Kinetics and Phase Transitions (N¼ 16) and
Mechanical Properties of Materials (N¼ 16) offered in the Spring
of 2013. From the 82 students, 71 completed the procedures for at
least one of the courses. Because of the naturalistic nature of this
study, there was some overlap between participants and courses.
Four students were simultaneously enrolled in all four courses;
one student participated in the Thermodynamics, Structures of
Materials and Kinetics courses; eight students were enrolled in the
Kinetics and Thermodynamics courses; six students were enrolled
in the Structure of Materials and Mechanical Properties courses;

and three students were enrolled in the Thermodynamics and
Structures of Materials courses. Table 2 describes the number of
participants enrolled in each of the courses. Some of the students
who were absent the day of data collection, only presented the
pretest or the posttest, therefore both values are provided.

The procedures for data collection consisted of having
students engage with the computational modules at different times
in the semester. Before implementing each of the computational
modules a pretest assessment was applied to identify students’
current understanding of disciplinary concepts in the selected area
of application. Students then worked on the computational
modules during class time and for a one week-long period.
During that week, students were able to seek assistance from the
professor or the teaching assistant during specific office hours.
Students completed the posttest assessment during the class in
which they submitted the module.

Results from the quantitative strand were used to identify the
cases for the qualitative strand. Thus, a purposeful subsample of six
students from each of the four courses was drawn to conduct in-
depth structured interviews to characterize students’ processes for
solving the projects and to identify possible benefits and challenges
of the computational tools following a programming or a
configuring approach. The three highest and three lowest perform-
ing students, based on the module grade, were then asked to
participate in a structured interview at the end of the corresponding
semester. Since the module grades focused on student ability to use

Figure 3 Alignment between the research questions and data analysis procedures.

Table 2 Number of Participants Per Course

Number of participants

Area of application Pre and post test Pretest Posttest

Structure of materials 19 23 19
Thermodynamics 23 27 23
Kinetics 16 16 16
Mechanical properties 13 16 13

AFFORDANCES AND CHALLENGES OF COMPUTATIONAL TOOLS 7



expert computational tools for modeling and simulation, we argue
that these scores are comparable across the different courses. This
purposeful sampling was done as one way to characterize how
students engaged in meaning making based on the computational
tools the used. The goal was also to explore the affordances and
challenges students encountered when engaged in modeling and
simulation processes following a programming or a configuring
approach. Students were not told that they were recruited based on
their module grade. Whenever students declined to participate
because of scheduling conflicts, the next student in the ranking was
recruited into the study (this happened twice). The subsample of
students who participated in the structured interview, their
pseudonym, the semester they participated, and the area of
application they were exposed to, are described in Table 3.

All participating students in the Spring semester interviews,
but (L)River_M, were exposed at least to one computational
module the previous semester. Five of these students participated
in the structured interviews in both semesters. These participants
are identifiedwith an asterisk on Table 3 and the pseudonymswere
kept the same. For instance, (L)Justice_S, who participated on the
interview for Structures of Materials during Fall 2012, is the same
(L)Justice_K, and participated on the interview forKinetics during
Spring 2013. That is, students who were exposed to computational
modules in the Fall and Spring semesters were exposed to the same
practices, but within different disciplinary contexts, tools, and
even computational approaches. Interviews were designed to last
about one hour, but students were given unlimited time. These
interviews lasted between 40 and 80min.

Data Collection Method

The data collection methods consisted of multiple-choice
conceptual assessments (quantitative measures and an interview
protocol (qualitative measures).

Conceptual Assessments. In order to obtain a quantitative
measure of student learning gains in their conceptual under-
standing over the course of the computational modules, a unique
four-question multiple choice assessment was designed for each
module and were scored either correct or incorrect (1 or 0).
Each question on the assessment was tied to a learning objective
common to the class and the computational module (see
Table 4).

The questions were chosen to test common misunderstand-
ings that students have related to the foundational disciplinary
learning goals in these four classes. In order to describe how these
learning objectives were transformed into test questions, consider
specific objective 2 within the subject area of Thermodynamics.
Because it is typically impossible to enumerate all states in most
systems of practical interest, Monte Carlo methods compute an
approximation of the equilibrium average by visiting states in the
system with the same probability that they would occur in
equilibrium. (This is known as “importance sampling”). Though
not all states are visited, the computed value will be a good
approximation of the equilibrium expectation value because
the states sampled are representative of the equilibrium system.
The question posed to the students was to properly complete the
sentence: “When computing an expectation value it is most
important that____.” Several confounding answers were
presented: “every state is included in the calculation”; “the
lowest energy states are included in the calculation”; “the states
with the highest multiplicity are included in the calculation,”
and “a representative sample of states was included in the
calculation.” Students needed to find the correct answer, which
was that “a representative sample of states was included in the
calculation.”

Interview Protocol. Four interview protocols were designed by
two computational materials science and engineering experts,
Author 2 and 4. The interview protocols were purposefully
designed to be closely related based on their computational
approach (i.e., programming or configuring), and each focused on
concepts and skills already introduced as part of the course
disciplinary modules. Appendix B describes how the interview
protocols were structured and provides sample probing questions.
The computational modules on the application of structures and
thermodynamics focused on inferring macroscopic response from
microscopic behavior. To this end, statistical mechanics was
applied to discrete systems.

The interview protocols following a programming approach
for both the structure of materials and thermodynamics area of
application were focused on the consequences of interactions
between magnetic domains on a nanotube structure at different
temperatures. The only difference between these two interview
protocolswas that Structures’ studentswere asked questions related
to the “order parameter,” the concept introduced in the Structures’

Table 3 Participant Pseudonyms Per Semester and Area of Application

Area of application
Experiences programming models with

MATLAB1 software (Fall 2012) Area of application
Experiences configuring simulations with GUI-based

COMSOL1 software (Spring 2013)

Structure of materials (H)Dakota_S Kinetics (H)Charlie_K�

(H)Sidney_S (H)Phoenix_K�

(H)Jaylin_S (H)Peyton_K
(L)Justice_S (L)Justice_K�

(L)Jessie_S (L)Heyden_K
(L)Landry_S (L)Tatum_K

Thermodynamics (H)Charlie_T Mechanical properties (H)Sidney_M�

(H)Skyler_T (H)Emerson_M�

(H)Casey_T (H)Rowan_M
(L)Emory_T (L)Finley_M
(L)Phoenix_T (L)River_M
(L)Emerson_T (L)Parker_M

Bold values represent the students from the Spring semester who were exposed to computational modules the previous semester.
�Students who participated in the interviews in both semesters.
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module, while Thermodynamics’ students were asked about the
“magnetization,” the concept introduced in the Thermodynamics’
module. Table 5 describes the design similarities of each of the
interview protocols highlighting the modeling and simulation goal,
the mathematical model represented and the computational
technique used to approach a specific disciplinary problem. The
interview protocols following a configuring approach on the

application of kinetics and mechanical properties focused on
relating continuum constitutive behavior to system behavior. For
this purpose, partial differential equation (PDE) models were
applied to a continuum system with appropriate boundary
conditions to model systems under specific conditions. These
problems are generically denoted as boundary value problems. The
interview protocol for themechanical properties area of application

Table 4 Learning Modules and Assessments of Conceptual Understanding

Learning modules Assessment of conceptual understanding

Structures: Monte Carlo simulation of alloys and compounds (MATLAB1
—programming)

1 In a system with a positive enthalpy of mixing phase separation will occur below a
critical temperature. This results in coexistence of two solid solutions of different
compositions that become more pure as the temperature decreases. A prediction of
these compositions can be obtained using a regular solution model

2 In a system that forms an ordered compound the extent of ordering can be described
by the long-range order parameter

3 In some systems with a negative enthalpy of mixing ordered compounds emerge
below a critical temperature. This results in increased ordering of atoms on distinct
sublattices with the degree of order increasing as temperature decreases. A
prediction of this increase in ordering can be obtained using a Bragg–Williams
model

4 The nature of the bonding influences whether a material will exhibit phase separation
or ordering; a propensity for bonds between like atoms favors phase separation,
while a propensity for unlike bonds favors ordered compounds

Thermodynamics: Statistical mechanics of magnetic response (Ising model) (MATLAB1
—programming)

1 Statistical mechanics of the canonical (NVT) system allows us to calculate
equilibrium properties by taking an average over all the microstates in the system
weighted by the probability that each microstate occurs at that temperature

2 Because it is impossible to enumerate all states in most systems Monte Carlo provides
an approximation by visiting states in the system with the same probability that
they would occur in equilibrium. Though not all states are visited, the average
value will be a good approximation of the equilibrium expectation value if states
are representative of the equilibrium system

3 Paramagnets do not have strong interactions between spins and therefore exhibit
magnetization that is proportional to the applied field at low field strength. At high
field strength the magnetization saturates

4 In a ferromagnet spins align in the same direction, and this causes the system to have
a magnetization at zero applied field at low temperature. Above a critical
temperature this spontaneous magnetization disappears

5 In an anti-ferromagnet spins align in opposite directions, and this causes the system to
have very low magnetization at low temperature even under an applied magnetic
field. Above a critical temperature anti-ferromagnets behave like paramagnets

Kinetics and phase transformations: Diffusion in 1D and 3D (COMSOL1
—configuring)

1 A well-posed mass transport problem requires specifying the diffusivity of the
species, the initial value of the concentrations of the species and the boundary
conditions

2 Mass conservation requires that the time rate of change of a species in the absence of
local sources and sinks is given by the difference between the flux into the region
and the flux out of the region

3 The geometry of a mass transport problem has an influence on the way one expresses
the gradient in the problem. This has an effect on the rate of mass transport

Mechanical properties: Necking in bars (COMSOL1
—configuring)

1 Elasticity problems can be solved using Hooke’s law making sure to impose the
correct boundary conditions using the known elastic constants, in this case the
Young’s Modulus and Poisson’s ratio

2 Plasticity is, in general, volume conserving and this can be used to estimate
contractions during uniform extension or compression

3 Many structural materials exhibit hardening whereby the yield stress increases with
plastic strain

4 Under large tensile deformation materials can undergo an instability called necking.
Necking arises because the rise in the yield stress due to hardening is insufficient to
counteract the increase in stress due to the contraction of the cross-section of the
member due to volume conservation

AFFORDANCES AND CHALLENGES OF COMPUTATIONAL TOOLS 9



consisted of evaluating a structural system for necking and stability,
while the protocol for the kinetics area of application consisted of
characterizing the mass transport in a drug delivery system.

Each of the interview questions of the protocol corresponded
to some specific steps of themodeling and simulation cycle. Table 6
describes an approximate alignment with the steps associated with
modeling and simulation processes as proposed by Maria [17] and
how those are aligned with the two interview protocols. As
described byMaria [17], not all the stepsmay be required ormay be
possible to perform. More steps may be needed as well as multiple
iterations between sub-steps. Thus, the steps followed in each of the
protocols do not map neatly. Within the programming protocols
withMATLAB1, wehaveplaced anemphasis onproblem framing;
model formulation and implementation along with the correspond-
ing documentation; selection of experimental design; and interpre-
tation and presentation of results. Within the configuring protocols
with COMSOL1, additional steps were implemented including:
problem identification; selection experimental conditions for runs;
executing the simulation runs; and recommending future course of
action. These additional steps were possible to be implemented due
to the affordances of the COMSOL software.

Data Analysis Methods

Quantitative Data Analysis. Each of the questions for the pre and
posttest assessments was scored with either 0 or 1 and the sum of
the correct responses was normalized in a score that ranged from 0
to 100%. Descriptive statistics as well as inferential statistics were
used to evaluate the effect of the computational modules on
disciplinary learning gains. One sample paired t-test was used to
compare the pretest scores to the posttest scores. The null
hypothesis for each test is that the mean score on the pretest for a
group of students is equal to the mean score on the posttest for the
same group of students. The alternative hypothesis for each test is
that the mean score on the pretest is significantly different to the
score on the posttest. Finally, a comparison between the two
groups ofmodules (i.e., programmingMATLAB1 vs. configuring
simulations in COMSOL1) was performed.

Qualitative Data Analysis. As Stick and Ivankova did in their
sequential explanatory design [42], we decided to enhance the
depth of the qualitative analysis by using a multiple case study
design [43]. A case study approach facilitated in-depth inves-
tigations of student experiences with modeling and simulation.
The use of multiple cases or units of analysis is a common strategy
for identifying contextual variations [44]. By comparing cases,

“one can establish the range of generality of a finding or explanation,
and at the same time, pin down the conditions under which that
findingwill occur” [45].We individually studiedhow the six students
in each of the four areas of application of modeling and simulation
approached the solution of the engineering challenge [46].

The case study was then structured to optimize the
opportunity to learn as much as possible about the experiences
of the participants [47]. Two specific cases were built around the
four engineering undergraduate courses whose students were
exposed to computational learning modules. We chose to group
the four courses into two cases because of two reasons (1) the
major elements of modeling and simulation practices were very
similar for the structures and the thermodynamics course, and for
the kinetics and mechanical properties course, and (2) because the
quantitative results were similar between the modules following a
programming approach and the modules following a configuring
approach, suggesting similar levels of difficulty between the two
implementations for each approach. The typology, summarized in
Table 5, highlights the two cases that were observed as part of this
research design. Similar elements include the modeling and
simulation goal, the computational method and the modeling tool.
Differences were only centered in the area of application.

Each case included observation of 12 participants engaging
in discipline-based computational problem solving tasks. In case
one, the computational activities are related to students’
experiences altering and executing programs using MATLAB1

and in case two the activities engaged students in configuring
simulations using of a GUI-based simulation tool called
COMSOL1. Once the interviews were transcribed by a third
party, two researchers performed the data analysis. Thematic
analysis [48] at two levels was used to analyze data for identifying
challenges and benefits. Within-case analysis was performed
between the two areas of application exposed to similar modeling
and simulation tasks and cross-case analysis was performed across
the twomajor cases. Figure 3 depicts how data analysis procedures
were aligned with the three research questions.

The data analysis started by reading through the interview
transcripts several times and conducting open coding [44]. During
open coding categories were freely generated [49,50]. To this end,
each question was analyzed independently gathering insights from
the students’ answers and, in some cases, comments by the
interviewer. After the students’ actions and responses for each
question were identified, common ideas/approaches between them
were highlighted. A title, a description and some quotes where
assigned to these commonalities and they were named as
categories. Also, their number of instances was identified. After

Table 5 Context and Design Features of the Interview Protocols

Area of
application Modeling and simulation goal Disciplinary problem

Mathematical
model

Computation
method Tool

Structures Studying a system at the microscopic level to be
able to understand and predict macroscopic
behaviors

Calculate expectation value for the
order parameter of a magnetic
nanotube

Statistical
mechanics

Monte Carlo
algorithm

MATLAB1

Thermo-
dynamics

Calculate expectation value for
magnetization of a magnetic
nanotube

Statistical
mechanics

Kinetics Application of continuum theory to be able to
predict system behavior

Characterize the diffusion of a drug
in a delivery system to determine
the drug uptake

Fick’s second
law

Finite
element
analysis

COMSOL1

Mechanical

properties

Evaluate a cylindrical bar for
necking and stability as a tensile
member of structural system

Elastic/plastic
constitutive
relations
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the experts who designed the task conducted their review, the
categories were refined and regrouped using axial coding [50].
Axial coding was used to compare and contrast the emerging
categories and reorganize them into themes. Graphing techniques
were also used, such as 2� 2 or other cell design to compare
several categories at once. Those with a very limited number of
instances were either discarded or assigned to another category.

The next step was to write individual case studies for each of
the courses. In doing so, we grouped the quotes that belonged to the
same category. We reread each of the quotes and, if necessary,
regrouped them.Once the quoteswere categorized,we proceeded to
identify the most representative quotes for each category and
followed by documenting each individual case. Finally, we
examinedall the cases together to inspect similarities and differences
in order to establish consistent patterns across multiple cases.

Role of the Researchers

The research team consists of an interdisciplinary group of
researchers who are engineering educators or educational
researchers. Three investigators worked together in all aspects
of this study by providing their own disciplinary expertise while
simultaneously learning from each other. Author 2, with expertise
in research and teaching of computational materials science
and engineering, developed the computational learning modules,
the assessments and the structured interviews. Author 1, with
expertise in engineering education research in the area of
modeling and simulation in science and engineering contributed
to the design of the study and analysis of learning outcomes.
Author 6, with expertise in educational assessment and project
evaluation, assisted with data collection and analysis. In addition,
one postdoctoral student, Author 4, with expertise in computa-
tional materials science participated in the study assistingAuthor 2
with the design and validation of the learning materials and data
collection methods. Author 2, Author 4 and the course instructor
delivered the computational modules during class time. Author 2
and 4 offered additional office hours to help students with their
assignments. Two doctoral students, Author 3 and 5, with training
in engineering education and computing education, participated in
the data analysis under the supervision of Author 1. All members
of the team worked together in the interpretation of the findings,
implication of the study and conclusions.

Validity and Trustworthiness

Validity and reliability for the quantitative portion of the studywas
considered throughout the entire process. During the design stage,
data collection instruments, including the conceptual assessments
and the interview protocols, were jointly created by two
disciplinary experts and revised by a third one. These instruments
were then revised by two social scientists who provided feedback
on the structure, length, wording, and presentation of the
materials. The interview protocols were pilot tested with at least
one student and then revised based on the student feedback.

During the data collection stage, we employed multiple
sources of evidence to verify our data sources. Sources included the
conceptual assessments, think-aloud transcripts, interview videos,
and students’ hand-written notes [43]. During the qualitative data
analysis, we followed the internal validity guidelines for case study
analysis as proposed by Eisenhardt [51]. We attempted to discover
the underlying theoretical reasons for why a relationship existed.
This was done in order to provide a good understanding of the

dynamics of such relationships. We also measured constructs and
verified relationships by judging the strength and consistency of the
relationship within and across cases. We displayed in detail the
evidence and procedureswhen reporting thefindings so that readers
may apply their own judgment.

The trustworthiness of the qualitative data analysis was
supported by two strategies; inter-rater reliability combined with
peer-debriefing to revise and refine the initial categories. In the
first iteration, the two researchers individually categorized 16% of
the data (i.e., two transcripts out of twelve from each case). Then,
the two researchers discussed their separate categories and worked
collectively to achieve a consensus on categories describing
similar experiences. Once an agreement was reached, the
transcripts were coded separately using the identified codes. In
this process, new categories were identified where different
experiences of modeling and simulation were found. Finally, to
validate the categories, a third researcher expert in the technical
background conducted a separate peer debriefing [52]. This
process offered the researchers a different perspective on the data
that helped them to refine and sharpen the findings. This analysis
allowed the educational researchers to validate the accuracy of the
student responses, thus improving the credibility of the findings.

During the data analysis stage, we also sought multiple ways
to verify the data collection and analysis by means of coder and
dialogic reliability checks with all six research groupmembers. As
mentioned above, 16% of the transcripts were initially coded by
two educational researchers. For all cases, the groupmet to discuss
the coding schemes until we reached consensus. First, the two
educational researchers presented the emerging categories and the
sample quotes supporting them. Then, two disciplinary experts
revised the categories and quotes to better explain what
affordances and challenges students encountered. These explan-
ations were incorporated into the analysis framework as well as
into the explanation of the results. We dutifully followed a process
for documenting a chain of evidence where we continually
checked the links between our research questions, protocols, data,
and claims [43].

RESULTS

This section presents the quantitative results of the disciplinary
learning and qualitative results of student experiences with
modeling and simulation. We first analyze these results separately
in depth and then we performed a cross-case comparison relating
and contrasting each of them.

Learning Performance

This section aims at responding the research question: What are
student disciplinary learning gains when engaging in modeling and
simulation processes following a programming or a configuring
approach? Two approaches, building models by altering and
executing a program created usingMATLAB1, or configuring and
executing models within COMSOL1, were used in the modules to
integrate computation into disciplinary learning. There were 71
observations from all modules, because each participant could
encounter multiple modules. Among the observations, 42 were
based on modules of the first type that had a programming
component in MATLAB1 while 29 were based on modules of the
second type in which the underlying algorithmic complexity was
hidden and students instead relied on constructing models via the
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COMSOL1 GUI interface. The descriptive statistics of learning
performance, in terms of conceptual understanding for each
module, is summarized in Table 7.

Pre- and post-test learning scores of each module were
compared to identify student learning performance. We reject the
null hypothesis for both “configuring models,” suggesting that
learning gains were statistically significant for the Mechanical
Properties module 1, t¼�3.45, p¼ 0.0047 and the Kinetics
module 1, t¼�4.34, p¼ 0.0006. This indicates that students
performed significantly better in understanding associated
disciplinary concepts after being exposed to the two computa-
tional learning modules that did not require them to simulta-
neously engage in disciplinary learning, configuring, and
programming models. The results of the paired t-test for the
programming approach were non-significant and therefore, we fail
to reject the null hypothesis.

Affordances and Challenges in Different Stages of the
Modeling and Simulation Process

This section aims to respond the research question: How
undergraduate engineering students experience modeling and
simulation processes when following a programming or a
configuring approach? For this, we then qualitatively analyzed
student experiences with modeling and simulation to identify (1)
how students engaged with different representations, (2) how did
students engage in modeling and simulation processes following a
programming or a configuring approach, and (3) benefits and
challenges that students may have encountered when engaging in
modeling and simulation processes. We first describe general
categories found when students programmed models with
MATLAB1, and then identify patterns of student experiences
with configuring and executing models in COMSOL1.

Within-Case Analysis 1: Programming and Executing Models
With MATLABW. Twelve students were interviewed to study
their experiences with modeling and simulation using MAT-
LAB1. The participants in this study were given gender-neutral
pseudo names per IRB guidelines. Six of the participants were
enrolled in the Structures of Materials course: (H)Dakota_S,
(L)Justice_S, (H)Jaylin_S, (L)Jessie_S, (L)Landry_S, and (H)
Sidney_S. For these students, the protocol was focused on a model
for ordering atoms in a lattice to understand order parameter and
the Monte Carlo algorithm. The other six students were part of the
Thermodynamics course: (H)Charlie_T, (H)Skyler_T, (L)
Emory_T, (L)Phoenix_T, (H)Casey_T, and (L)Emerson_T. Their
protocol was focused on the concept of magnetization and the use

of the Monte Carlo algorithm to understand statistical mechanics.
This section describes how students approached the different
stages of the modeling and simulation process along with
affordances and challenges students encountered.

Simulation Model Process. The participants started by analyzing
and describing a situation with different temperatures for the given
system. When asked about how magnetization/order parameter
should behave at different temperatures, students drew figures
representing the order of domains to explain its effects. (H)
Charlie_T, (H)Dakota_S, (L)Emory_T, (L)Jessie_S, (L)
Landry_S, (L)Phoenix_T, (H)Casey_T, (L)Emerson_T, and (H)
Sidney_S accompanied the representations by responses such as
the one from (H)Charlie_T as identified on Appendix A as Q1.
Note that although both students used graphical representations to
support their explanation of the model, these are contrasting
examples. (H)Charlie_T provided an explanation that demon-
strated a good understanding of the underlying statistical
mechanics concept. He recognized systems at low temperatures
favor states with low energies while systems at high temperatures
explore their states democratically and therefore more often visit
states with higher multiplicity and less order. In contrast (L)
Emerson_T (as shown on Appendix A as Q2), demonstrated a lack
of clarity in conveying this concept. The response did not clearly
indicate whether the student believed that high energy states have
higher probability than low energy states at high temperature,
which would be false, or if he or she understood that high energy
states are more common because they constitute a larger number
of states, which would be correct. Furthermore, at the end of the
activity, students were asked to identify the most difficult concepts
in solving the problem. Four Structures students [(H)Dakota_S,
(L)Jessie_S, (L)Justice_S, and (L)Landry_S] and two Thermody-
namics students [(L)Emerson_T and (L)Emory_T] highlighted
that the order parameter/magnetization was the most difficult part.

Simulation Development Process. Most of the participants (11
out of 12) were not able to build either a mathematical or a
computational external representation of the phenomenon. Some
of them had problems with foundational mathematical represen-
tation such as (L)Emory_T who said, “Is there any mathematical
thing that specifies adding a number to a consecutive one?” (L)
Emory_T, also conflated the expression formagnetization with the
energy equation as shown in a representative quote (Q3) on
Appendix A. Some other times, students exhibited a lack of
conceptual understanding when building the mathematical
representation. For example, when asked for the mathematical
expression of order parameter, all Structures students struggled to

Table 7 Descriptive Statistics and t-test on Student Learning Scores of Each Module

Pretest Posttest

Module Approach Mean Std. dev. n Mean Std. dev. n t DF P-value

Structure of materials
1 Programming 48.68 22.78 19 51.32 32.78 19 �0.38 18 0.7061

Thermodynamics
2 Programming 35.87 24.80 23 44.57 30.11 23 �1.50 22 0.1479

Mechanical properties
1 Configuring 25.00 25.00 13 59.62 24.02 13 �3.45 12 0.0047�

Kinetics and phase transformations
1 Configuring 53.13 20.16 16 75.00 20.41 16 �4.34 15 0.0006�

�Statistically significant at with P< 0.05.
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recall a definition for this concept. (H)Dakota_S explicitly said, “I
somewhat forget what an order parameter is.” (L)Landry_S said
that the most confusing part of the exercise was, “The piece about
order parameter was really the most confusing. Because I didn’t
know what they wanted, or what they meant by order parameter.”
And (L)Justice_S: “I think mainly the order parameter one just
because I didn’t really understand it.”

Students proposed an external mathematical representation
for the two variables: energy and either magnetization (Thermo-
dynamics) or order parameter (Structures). During this process, all
the students built upon previous answers and representations.
However, six students made fallacious connections between
related but incongruent representations that reinforced conceptual
misunderstandings. For instance, when students were asked to
write a mathematical expression for the energy of the system in
terms of the four domains, (H)Charlie_T, (H)Dakota_S, (L)
Emory_T, (L)Jessie_S, (L)Landry_S, (L)Phoenix_T, (H)
Casey_T, (L)Emerson_T, and (H)Sidney_S used a graphical
representation that depicted the alignment of domains to build the
mathematical representation for the energy as shown in the
corresponding quote (Q4) on Appendix A.

(L)Landry_S, (H)Sidney_S, and (H)Charlie_T also extracted
the mathematical expression for the magnetization or order
parameter from the MATLAB1 code provided. This inverted the
expected sequence of mappings between models anticipated by
the exercise, as it was anticipated that students would use the
mathematical expression to analyze the algorithm, not vice-versa
(see (H)Charlie_T’s quote (Q5) on Appendix A for a sample).
Finally, when asked about the most difficult part of the
assignment, the required math to solve the problem was noted
as difficult by three students from the Thermodynamics course and
three from the Structures course.

Simulation Experiment Process. During this step, students
worked with a MATLAB1 implementation of the MC algorithm.
Regarding the MATLAB1 representation, (L)Phoenix_T viewed
the algorithm as an aid to their thinking process: “I read the
algorithm . . . to see what—if there’s anything here that might help
me” while (L)Emerson_T felt it was a “convenient way” to solve
these kinds of problems: “So having an algorithm, that’s just fool
proof as long as you follow the steps the same way each time or
retrieve the same results.”

However, when the participants were trying to understand
and complete the Monte Carlo algorithm, some of them presented
misconceptions about the disciplinary knowledge or the algo-
rithm. (H)Casey_T: Right now I’m just confused about what
“energysum” is. Or (H)Charlie_T: I don’t know why we have the
running total actually.

Participants kept saying that the aim of the algorithm was
either to converge to the most stable state [(L)Justice_S,
(H)Dakota_S, (L)Emory_T, (H)Sidney_S] or to find a minimum
[(L)Phoenix_T, (H)Casey_T, (L)Emerson_T, (L)Jessie_S,
(H)Skyler_T, (H)Charlie_T]. This is an important distinction
between thermodynamics, which asserts that the equilibrium of the
system is associated with an extremum of an appropriately chosen
thermodynamic potential function and statistical mechanics, which
asserts that the equilibrium is associated with a properly weighted
average over microstates. These two assertions lead to identical
results in an ergodic equilibrium system in the thermodynamic
limit, but the distinction is important for appreciating the
difference between the two theoretical frameworks. Hence,
students struggled to actually understand the actual purpose of

the algorithm, and connect it with the disciplinary knowledge
related to the module.

Although students like (H)Sidney_S struggled with this
representation because of their lack of experience with MATLAB
1: “I’d never done MATLAB1 before,” others like (L)
Emerson_T or Skiler_T highlighted the benefit they got out of
programming MATLAB1 to solve the exercise (see correspond-
ing samples of quotes Q6 and Q7 on Appendix A).

To the final question related to the most difficult steps in
solving the problem, four students from Structures and three
students from Thermodynamics noted the implementation of
Monte Carlo algorithm as the most challenging one. Three
Structures students that talked about the Monte Carlo algorithm
said they were confused with some specific parts of the algorithm
such as Boltzmann’s constant or the quantity “Delta” in the code.
(H)Jaylin_S said, “Why exactly E to the negative delta? Or why
kBT? But I remember thinking that out once, by reading the book
and Wikipedia, but I just forgot now. That would be something
very nice to know,” (L)Jessie_S: “I guess just Monte Carlo, and
more generally, like, actually understand the math behind it and
stuff, instead of just grasp at it.”

Simulation Analysis Process. When the participants were trying
to understand and complete the MC algorithm, some of them
presented misconceptions about magnetization, order parameter,
statistical mechanics, or the algorithm. For example, (H)Casey_T
was struggling to calculate the magnetization and its relationship
to the energy “So I guess I got confused with the energy and
the magnetization. . .so I guess I’ll just add a quantity to calculate
the magnetization.” While (H)Casey_T identified part of
the confusion as arising from an inability to distinguish
between the energy and the order parameter (magnetization),
the other likely source of confusion was a lack of understanding of
the statistical mechanics concept of an “expectation value.” An
expectation value is a properly weighted average of a measureable
quantity, for example, energy or magnetization, over the ensemble
of states accessible to the system that can be used to predict the
value of this quantity for the system at a given temperature. This
scenario depicts that sometimes students struggle with the
computational representation (MATLAB1 code) not because a
lack of ability to deal with it from the programming point of view,
but because of a disciplinary misconception.

Ten students considered their prior experience with the
computational module in class helpful for approaching this
problem. This group thought the visual aids provided during
computational module helped them to understand the concepts
(see Q8 for a sample quote on Appendix A). It is not clear to what
extent the perception of understanding that arises here from
interacting with the visual output represents a deep form of
learning, that is, an improvement in the students’ internal
representational model via a kind of visual intuition or a
reinforcement of tentative internal representations that jibe with
the visual feedback, or to what extent it represents a fragmented or
fallacious sense of understanding through visual familiarity.

At the end of the interview, students were asked what
additional information they would desire regarding the module
topic and solution. (L)Justice_S, (L)Landry_S, (H)Sidney_S, (L)
Phoenix_T, (H)Charlie_T, and (L)Emory_T mentioned that they
would like to be able to understand how to apply this model to
other areas. For example, (L)Justice_S said: “How else can the
Monte Carlo be used other than just for nanotube domains or for a
lattice in how ordered, disordered is it? Can it be used to simulate
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something else?” Student comments suggested that they would
like to be able understand the model from a higher level of
abstraction. They don’t want to only solve a specific problem but
to be able to extrapolate the model to other situations.

Within-Case Analysis 2: Configuring and Running Simula-
tions With COMSOLW. We present here student computational
modeling and simulation process, their challenges and benefits
when using COMSOL1. This characterization was identified as
part of the experiences of twelve participants interviewed to
describe their experiences using the COMSOL1 tool to complete
the open-ended design problem. The participants in this study
were given gender-neutral pseudo names per IRB guidelines.
Module topic number three related to Kinetics and Phase
Transformations where six of the participants [(H)Peyton_K,
Charlie _K, (L)Tatum_K, (H)Phoenix_K, (L)Justice_K, (L)
Heyden_K] performed a finite element analysis to characterize
the diffusion in a spherically symmetric drug delivery system. In
the fourth module topic, six of the participants [(H)Sidney_M, (H)
Emerson_M, (H)Rowan_M, (L)Parker_M, (L)River_M, (L)
Finley_M] completed an activity related to mechanical properties
in which they were asked to use a finite element analysis to
evaluate plastic necking of a cylindrical bar. The description of
students’ experiences using COMSOL1 are summarized below.

Simulation Model Process. While describing the system behav-
ior, (L)Tatum_K used prior experience to discuss the expected
outcome, although his or her phrasing indicates a misconception
regarding the distinct contributions of the geometry (surface-to-
volume ratio) andmaterial properties (diffusivity). For a sample of
a quote see Q9 on Appendix A.

In the case of the Kinetics activities, four out of six students
recalled aspects of building similar models as part of the course
module exercises; these recollections helped them think through
how to decompose modeling task. In the highlighted example, (L)
Justice_K’s prior experiences helped guide him through the process
of setting up the model and identifying the challenge of setting up
the model in COMSOL (see Q10 on Appendix A for a quote).

During the interview process, students explained some
related concepts improperly. In the mechanics subject area,
students’ misconceptions were apparent when students discussed
their analysis of the mechanical structure. Students struggled
understanding the concepts of mechanical loading [(H)Rowan_M,
(H)Emerson_M, (L)River_M, (L)Finley_M, (L)Parker_M, (H)
Sidney_M]. For instance, when (H)Rowan_M was asked to
discuss the implications of the analysis of the bar just modeled, the
interviewer suggested “not confusing the conditions of plasticity
and necking.” (H)Rowan_M responded with the excerpt provided
on Appendix A as Q11.

Simulation Development Process. A common challenge that
students faced during the modeling activities was their limited
knowledge of the COMSOL1 features and tools that were useful
in building or analyzing their design. It is important to note that
students in most instances had no prior exposure to COMSOL1,
and during the initial modules students used a “cookbook”
approach to configure the problem for solution by COMSOL1.
As shown in Appendix B, the structured interview asked students
to explain work without being provided with step-by-step
instructions. Most participants lacked the expertise regarding
how to appropriately employ COMSOL1 tools to achieve sub-
task goals.

In the instances that related to Kinetics, students who were
able to understand aspects of behavior characteristics that
determined the system response still struggled to recall the
configuration techniques needed to model the phenomena using
COMSOL1 (i.e., external computational representation) despite
their ability to recall the conceptual facts related to the system
behavior [(L)Justice_K, Charlie _K, (L)Heyden_K, (H)Peyton_K,
(L)Tatum_K, (H)Phoenix_K]. In one instance (H)Charlie_K, was
able to summarize his thoughts regarding how the suggested
adjustments to the model would impact the diffusion profile of the
drug delivery system. Although, (H)Charlie_Kwas able to express
his expectations and was aware that COMSOL1 could help
analyze the changes, he relied on the interviewer to help him
program his suggested changes in COMSOL1. The participants in
the Mechanics activity experienced their own challenges with
recalling knowledge related to how to set up and implement
COMSOL1. In most cases students’ actions and thoughts
revealed their challenge with properly using the COMSOL1

tool [(L)River_M, (L)Parker_M, (L)Finley_M, Armari_K].
(L)Finley_M advised the interviewer of his trial and error

approach to changing his design in COMSOL1 (see Q12 on
Appendix A). Most students referred to different aspects of their
experiences using COMSOL1; these past experiences then
became a resource for reasoning, making decisions and setting
their expectation during the computational design activity
provided for them as part of the structured interview
[(L)Justice_K, (L)Tatum_K, (L)Heyden_K, (H)Charlie_K,
(L)River_M, (L)Finley_M, (L)Parker_M, (H)Rowan_M].

Simulation Experiment Process. In the case of the Kinetics
activities, students recalled aspects of building similar external
representations as part of the course module exercises; these
recollections helped them think through how to decompose
modeling task. As highlighted in the simulationmodel process, (L)
Justice_K prior experiences help guide him through the process of
setting up the model and identifying the challenge of setting up the
model in COMSOL1 (see Q13 onAppendixA for a representative
quote). For (H)Rowan_M, his value in the experience of learning
the COMSOL1 tool for professional practice motivated him to
acquire knowledge that was useful during the interview. He was
able to complete most of the model set-up with very little
assistance from the interviewer. This is highlighted when he refers
back to his prior experiences with COMSOL1 when asked what
he learned for the computational module provided during the
interview (see Q14 on Appendix A). From the quote Q14, it is not
clear to what extent the perception of understanding that arises
here from interacting with the visual output represents a deep form
of learning, or to what extent it represents a fallacious or
fragmented sense of understanding through visual familiarity.

Simulation Analysis Process. All the students in Mechanical
Properties referred to the computational outputs of COMSOL1

when formulating their judgments regarding the usefulness of
their designs given the findings. These descriptions refer to the
mechanical properties of the modeled structure in general and
the qualitative aspects of the computational observations that
supported their design judgments [(H)Rowan_M, (H)Sidney_M,
(H)Emerson_M, (L)River_M, (L)Finley_M, (L)Parker_M].
For instance, four students [(L)Parker_M, (H)Rowan_M,
(L)Finley_M, and (H)Emerson_M] relied on graphical output
from the COMSOL1model to characterize the failure mode. Here
(L)Parker_M refers to the 3D visualization produced by the
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model: “You can see that instead of the necking occurring down
here—since we strengthened it, necking won’t occur placed just in
the middle. Between this fortified place and the top now yields
because there’s still that critical stress being applied.”

When students were asked to reflect on what they learned by
completing the computational modules they highlighted the value
as a visual aid. The COMSOL1 external representation were
perceived as helpful in building conceptual understanding of the
scientific concepts taught in the class lectures [(L)Heyden_K, (H)
Phoenix_K, (H)Peyton_K, (L)Tatum_K, (L)Justice_K]. Exam-
ples of students’ comments from the Kinetics course provide
insight as to how students valued COMSOL1 as a visualization
learning tool. In the first example, (H)Phoenix_K highlighted the
value of reinforcing what was learned during the class: “it allows
you to visualize things . . . Cause you talk about it theoretically in
class, be like, “Oh, it phase separates,” but then when you do the
computational modules you actually see how that happens and
how it changes.”

Astudent from theKinetics activity highlighted the usefulness
of the tool in helping her build deeper conceptual understanding
beyond memorizing the material (see Q15 on Appendix A for a
sample quote). Students in themechanics subject area also noted the
tool as a useful visualization aid for building their conceptual
understanding of the subject [(H)Emerson_M, (H)Rowan_M,
(L)Parker_M, Finely_M, (L)River_M]. (H)Emerson_M noted the
usefulness of COMSOL1 as a visual aid in his reflection regarding
learning with the computational modules: “This is the first
simulation for a visual aid we have in the classroom other than
the book, but those are stagnant 2D drawings, so this is color and
actually changeswith time.” Some other students perceived that the
steps providedduring themoduleswere limited in context regarding
how the knowledge could be applied beyond the task goals.
(L)River_M advised that the module be redesigned to help guide
inquiry learning andmetacognitive skills (seeQ16 onAppendixA).
Although students were aware of what they needed to set-up in
COMSOL1, their lack of experience and fluency operating
COMSOL1 was articulated at various stages of their design
process as they worked through the interview design
activity [(H)Sidney_M, (H)Rowan_M, (L)Finley_M, (L)River_M,
(L)Parker_M, and (H)Emerson_M].

CROSS-CASE ANALYSIS BETWEEN PROGRAMMING
APPROACH AND CONFIGURING APPROACH AND
DISCUSSION

This section aims to integrate andmake sense of the overallfindings
of the study and to try to explain differences identified in
quantitative portion of the study by going deeper into describing
students’ experiences during the interviews. Thus this section
addresses the research question: What are affordances and
challenges that students encountered when engaging in modeling
and simulation processes following a programming or a configuring
approach? Here, we relate and explain the main findings from the
two previous sections, which were identified after comparing and
contrasting students’modeling and simulation processes with their
disciplinary learning gains.Whenwe compared pretest and posttest
assessments from all four computational modules, it was identified
that students in the configuring approach on average reported
statistical significant learning gains, as opposed to students exposed
to the programming approach.We also identified no clear pattern on
relationship (1) between high and low performing students who

participated in the think aloud and the outcome of their experiences
following during the modeling and simulation processes nor (2)
between high and low performing students and their performance in
the conceptual pretest and posttest assessments. However, we did
identify commonalities and differences between instances in which
students were asked to engage in tasks that required them to
configure and execute models vis-�a-vis instances in which student
were also asked to engage in programming models. We were
particularly interested in how each supported or hindered students’
ability to make-meaning from different representations and to draw
inferences on how students engaged in specific stages of the
modeling and simulation process.

Challenges When Generating and Interacting-With
Computational Tools

Students faced difficultieswith the algorithmic representationswhen
implementing the model or when operating it to establish the
experimental conditions by means of its graphical user interface.
Students’ interactions with the software posed challenges that
interfered with their ability to leverage their prior experiences to
approach related problems. ForMATLAB1 learningmodules,most
of the students (eleven out of twelve), faced difficulties implement-
ing the algorithmic representation due lack of understanding of: (1)
The connection between the overall goal of the MC algorithm and
the disciplinary concepts, (2) how certain variables represented or
related to the mathematical model, and (3) the MATLAB1 syntax
(Within-Case Analysis 1: Simulation Experiment Process). For the
COMSOL1 learning modules, some other students encountered
difficulties navigating the interface for setting up themodel (Within-
Case Analysis 2: Simulation Development Process). For the latter
case, the software itself guided students through a series of interfaces
that assisted their design and subsequent problem solving processes
(Within-Case Analysis 2: Simulation Experiment Process). This
process was not always fully understood by the students who were
often unable to meaningfully relate them to mathematical or
conceptual aspects of the system. It is notable that quantitative
conceptual learning gains were observed in the COMSOL1

exercises but not in the MATLAB1 exercises although students,
for the most part, had prior exposure to MATLAB1 (Quantitative
Results: Learning Performance). This may indicate that the
complexity of the task of parsing and conceptualizing code, even
when that code is partially provided in a known language and
environment, distracts from disciplinary learning in ways that
building models in GUI environments does not.

Building or programming simulations and/or computational
representations appears to be a challenging task. For instance,
literature in computer science education has consistently identified
over years that learning to program is difficult [53–55]. Some of
the difficulties that students might have encountered in this study
include: (1) orientation, where the learner identifies the purpose of
the programming task, (2) notation, where the learner must master
the syntax and semantics of the programming language; (3)
structure, where the learner needs to deal with the difficulties of
acquiring standard patterns or schemas that can be implemented to
attain small-scale goals, and (4) pragmatics, where the learner
develops the skills to be able to specify, develop, test, and debug
programs using whatever tools are available [56,57]. This study
was performed in the context of a broader curriculum revision that
involved sequencing the computational modules after a systematic
introduction to programming throughMATLAB1, but challenges
arise when students changemajors, take courses out of sequence or
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substitute programming coursework in other languages such as
Java or Python. While programming is a transferrable skill, the
need to learn new syntax presents a barrier, and furthermore, it is
not clear that skill in programming translates into facility using
GUI based software. Therefore, a tension exists between what
level of transparency needs to be provided to learners when
working with expert computational tools [36]. These tensions also
exist in engineering education where educators have questioned
the use of research tools as learning tools, the integration of
computation as a tool that can help students create or adapt models
to solve engineering problems, and the deployment of transparent
simulation tools that can allow learners to inspect and evenmodify
the underlying model [37].

Affordances When Generating and Interacting-With
Computational Tools

Once implemented or configured, students view the models as
useful tools for testing and experimentation when performing the
simulation runs, and for making abstract concepts visible during
the interpretation of results (Within-Case Analysis 1: Simulation
Experiment Process, Simulation Analysis Process; Within-Case
Analysis 2: Simulation Experiment Process, Simulation Analysis
Process). Students reported benefiting from running or executing
the models once they overcame the programming, configuring
stages or the simulation stages as identified in Figure 1. Students
find them as useful tools for experimentation and as tools for
meaning making to help them understand systems behavior or to
enhance conceptual learning. However, deeper investigation is
needed to identify what is the effect of these expert tools in
supporting students’ learning gains.

When considering students’ perceptions, previous studies have
reported the educational value expert computational tools can
provide in helping students make meaning of difficult concepts in
engineering [35]. Some other studies have identified significant
differences between pretest and posttest assessments measuring
student conceptual understanding, after being exposed to laboratory
experiences with modeling and simulation tools [34]. However,
there is still little to no research that supports student mastering
learning goals after being exposed to integrated expertmodeling and
simulation tools. Other possible explanations for students’ inability
tomaster learning objectives after being exposed to simulation tools,
and in particular as related to expert modeling and simulation tools,
could be attributed to the complexity of the simulation task [13], as it
was the case of the activities presented as part of this study. Another
possible explanation could be attributed to the conceptual overload
caused by the exploratory process [58], which in this case seemed to
be caused by the MATLAB1 interface in which students need to
write the programming code, or the complex graphical user interface
in COMSOL1.

Challenges for Meaning-Making With Computational
Tools

Students seemed to have particular trouble mapping between their
internal representations (i.e., conceptual model) and the external
representations (mathematical or computational model) and from
the mathematical representation to the computational instantiation
when engaged in a programming approach (Within-Case Analysis
1: Simulation Development Process, Simulation Experiment
Process). To describe the systems’ components and behaviors,
students used different forms of representations provided either
in the protocol or additional ones students derived from prior

activities or learning experiences. In the process students were
required to make connections between these representations in
order to be able to proceed with the problem solving task. Often
these artifacts were used as tools to describe their understanding of
the system and later on were used to set up their models. Students
were observed to infer improper or misleading relationships
between these representations that interfered with their solution of
the problem at hand. This issue seemed more problematic for
students using programming models with MATLAB1 because
more complex mappings from mathematical representations to
algorithmic representations and programming codes were re-
quired (Within-Case Analysis 1: Simulation Experiment Process).
At the same time, we did observe students make reverse mappings
from codes provided to mathematical representations, and these
mappings appeared to help them overcome hurdles that they could
not surmount relying on their internal models alone to generate
mathematical representations (Within-Case Analysis 1: Simula-
tion Development Process). However, we suspect that the added
complexity required to map from mathematical representations to
algorithmic representations to codes added sufficient complexity
to the problem that students’ attention were diverted from the
acquisition of disciplinary concepts.

We speculate on the possibility that learners find it difficult to
create representations because of (1) lack of the required previous
knowledge [59], particularly in terms of devising or interpreting the
physical model, or lack of understanding of the underlying systems
in which they are working [60], (2) a struggle in applying or
mapping knowledge about graphical representations while simul-
taneously comprehending new domain knowledge [61,62], (3) the
arbitrary nature of representations because learners do not
continuously participate in these practices [63,64]; or the level of
difficulty of the disciplinary concepts. Specifically, students’ lack of
prior knowledge, particularly as related to the physical model (not
their conceptual understanding), was a strong limitation on their
abilities to abstract the physical phenomena to represent the given
system mathematically, and subsequently connecting that repre-
sentationwith the computational aspects of the simulation. Previous
knowledge is an important component for students to be able to
effectively use representations [59]. Studies that have compared
novices and experts revealed that experts use representations more
proficiently as tools together with domain knowledge [61,65,66].

Similar studies [67,68], found that experts recalled elements on
representations in patterns based on principles rather than on surface
features, as novices did [66]; that they used these devices as toolswith
which to think [62,66,69]; and that differences in searches between
novices and experts are in dissimilar problem spaces [70]. Thenovice
learners who participated in this study seemed to have difficulties
recalling the conceptual aspects of the disciplinary problem, and
therefore, were often unable to make connections between the
mathematical and computational aspects of the problem solution.

Affordances for Meaning-Making With Computational
Tools

It was particularly notable that students experienced strong affinity
with visual and graphical representations, particularly those that
translated associated concepts into time-dependent, 3D and/or color
images (Within-Case Analysis 1: Simulation Analysis Process;
Within-Case Analysis 2: Simulation Analysis Process). Students
characterized these as being more intuitive and realistic than
mathematical representations. A majority of students identified
these aspects of visualization as the most useful catalyst for their
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learning. However, we are skeptical of student self-reported claims
because students using both the configuring and programming
approaches and then executing the models, made these claims;
while only the students who configured models using COMSOL1

showed significant learning gains with respect to disciplinary
concepts (Quantitative Results: Learning Performance).

While graphical representations have been identified as ways
to enhance engineering problem-solving and scientific-inquiry
skills [71] by making the content accessible to students in a more
learnable or concise way [72], research on the effectiveness of
inducing the use of different forms of representation, such as
learner-generated drawings, has demonstrated inconsistent re-
sults [73,74]. We believe that although these students used
representations to explain their conceptual understanding and to
walk through the problem-solving process, some of them were
unable to use them effectively, and therefore, failed to successfully
complete their assignments. By interacting with the computational
representation in MATLAB1 and COMSOL1, some students
appear to have experienced cognitive conflict, confronting new
information that may have contradicted their prior beliefs [75].
Although these students might have experienced an initial step in
their learning process, some of them failed to experience learning
gains in their disciplinary knowledge, particularly as identified for
the programming approach (Within-Case Analysis 1: Simulation
Analysis Process).

IMPLICATIONS FOR LEARNING

Our analysis suggests that for students’ to successfully understand
the problem and achieve a solution requires appropriate
interactions between internal (e.g., mental models, thought
experiments) or external representations (e.g., computational
models) [4]. In this study, different forms of representations were
identified. The internal representations that we refer to here as
“conceptual” models may take the form of mental models or
thought experiments, among others. To deploy their conceptual
model for the purpose of understanding a system, students first
have to translate their conceptual models into a “set of rules and
structures that can be represented in mathematical terms using
a programming or modeling language” [76]. Mathematical models
use mathematical equations to represent the key relationships
among system components, which then are translated into other
forms of representations afforded by the computational tools.

By executing the simulation students can ask “what if”
questions about the system. Changes are made in the
physical conditions or their mathematical representation

and themodel is runmany times to “simulate” the impacts
of the changes in the conditions. The model results are
then compared to gain insight into the behavior of the
system [76].

Once the computational tool depicts the output of the
simulation, the learner must map this visual representation back
onto their conceptualmodel in order to improve their understanding
of the system and potentially to re-evaluate their own conceptual
model of the underlying system or the scientific principles bywhich
it is understood. However, affordances of different tools can
influence the process just described. For the case of students
programming models with MATLAB1, students must map their
conceptual model to a mathematical representation, which is then
mapped by the student to an algorithmic representation taking the
form of a simulation that transforms the solution into a new visual
representation that could be a data plot, diagram or animation. For
students configuring and executing models in COMSOL1, they
must map their conceptual model to a set of schematics or diagrams
to identify the system to be modeled mathematically, and establish
the relationships among variables. Then, students must translate
these variables and manipulate them to configure the simulation
software in order to identify the system’s behavior via new
representations created by the simulation software.

Figure 4 depicts observed differences on students’modeling
and simulation processes when engaged in either a programming
approach or a configuring approach. Our findings suggest that
students, in general, experienced the highest challenges in the
“simulation development” stages. Our findings also suggest that
those students who might have been capable of overcoming those
challenges, may have also benefited in acquiring disciplinary
knowledge in the “simulation experiment and analysis” stages,
particularly if engaged in a configuring approach. However,
students in the programming approach seem to need additional
supports to overcome such challenges, particularly as related to the
mapping of the mathematical representations, and then to the
algorithmic representations.

Previous research conducted with experts has identified that
external representations provide specificity to the mental model,
providing details and constraints, and at the same time off-load
cognitive load [4]. However, our findings suggest that for novice
learners, integrating modeling and simulation in undergraduate
engineering education is a form of complex learning. For students to
effectively use these tools, they must integrate disciplinary
knowledge with mathematical representations and at the same
time deal with aspects of scientific thinking, engineering thinking
(i.e., inquiry processes, problem solving, design), and computational

Figure 4 Observed differences of modeling and simulation processes between a programming approach and a
configuring approach.
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thinking. For these novice learners whose computational literacy
may not be fully developed, this integration may have caused
cognitive overload. In our introduction, we generally defined
modeling as a process consisting of producing or setting-up a model
to represent the innerworkings of a system [17].Ourfindings suggest
that modeling is a very challenging process for novice learners that
may be a source of confusion or difficulty. This difficulty may be at
times caused by lack of prior knowledge [77], students’ inability to
map between representations [78], students’ difficulties in applying
algorithmic thinking [79], or complexities presented by a graphical
user interface for operating, or specifically in this case, for
configuring a model [80]. We also defined simulation as the process
of operating a computer model that can be reconfigured by changing
input parameters so that variations in its performance can be
explored [17]. Ourfindings suggest that studentsmay have benefited
from engaging in simulation processes, specifically by analyzing the
simulation output: (1) Eliciting cognitive conflict allowing them to
identify their own misconceptions [75], and (2) making the content
accessible in a more learnable way [72].

The implications for learning can be related to Cognitive
Load Theory (CLT) [81] and complex learning [82]. CLT
describes how learning occurs through a cognitive architecture
composed by a limited working memory and a vast long-term
memory. When students are exposed to many interacting
information elements, students are overwhelmed given the limited
working memory capacity. [83]. It is generally accepted that
performance worsens at cognitive load extremes. That is, both
excessive underload or excessive overload conditions can affect
learning negatively [83]. Experts do not experience cognitive
overload in the same situations as novices because they have
previous knowledge that help them to make sense of the
interacting elements, thus loading them as a unit in the working
memory. In our study, novice learners who lacked the required
prior knowledge may not have benefited from the representations
and thus struggled to gain a deeper understanding of their
disciplinary knowledge (see Table 7). We then hypothesize that
these students may have experienced cognitive overload because
they needed additional background knowledge to make sense of
the disciplinary phenomenon they were simulating. This is
consistent with prior research that has identified the critical role of
prior knowledge in determining the impact of visual representa-
tions on learners’ cognitive structures and processes [77]. The
qualitative analysis also suggests that some students struggled to
understand the MATLAB1 representations, either because these
were too abstract or because they were not familiar with
MATLAB1 programing. The result suggests that for modules
that include programming components, additional scaffolding
may be required to reduce the cognitive load.

Another source of cognitive load could have resulted from
students’ difficulties in handling the operational features of the
computational tool due to their inexperience with the graphical
user interface. These students seemed to have experienced
extraneous load when making sense of elements that were not
directly beneficial towards learning, thus depleting cognitive
resources. These resources, that otherwise would have been
devoted to intrinsic load (i.e., to create and automate schemata in
the long termmemory), were then devoted to extraneous load [83].
Specifically, these students may not have fully benefited from the
learning experience because they were devoting their cognitive
resources to secondary or unessential issues such as the functional
or operational characteristics of the software, instead of focusing
on the representations themselves.

SUMMARY, LIMITATIONS, AND CONCLUSION

This study presented a description of how undergraduate materials
science and engineering students engaged with modeling and
simulation practices using different computational approaches, and
how different approaches related to their disciplinary learning. Our
findings suggest that novice learners may encounter challenges,
particularly in the simulation development stage, when they have to
formulate and develop the model, or when they have to select and
establish experimental conditions for the simulation runs by
configuring a model via a graphical user interface. We hypothesize
that these tasks seem particularly challenging in part because
students may lack the appropriate prior knowledge or the required
programming skills or in part because of the complexity of the
software. On the other hand, once students completed themodeling
stage, they seem to benefit from the simulation experiment and
simulation analysis stages. Students, specifically in the configuring
approach, seemed to benefit from testing their ideas by performing
the simulation runs and benefit from the simulation output when
engaging in the interpretation and presentation of results.
Throughout the study we offered instances of how students
explained their understanding of the problem to be solved and how
they tried to draw upon their prior knowledge andmake that explicit
to us by means of the representations they used. We also offered
instances inwhich students attempted tomake connections between
different forms of conceptual, mathematical, and computational
representations, particularly for the programming approach.
Through the different categories and overall findings identified
we were able to recognize what were major challenges students
encounteredwhen experiencingmodeling and simulation practices.
We argue that integrating these practices at the undergraduate level
represents a form of complex learning. From the explanations
provided we can infer that the computational tools, at times, were
supporting disciplinary learning, but at other times were interfering
with it.We therefore emphasize the importance of the integration of
direct instruction or delayed instruction methods to support the
process. Suchmethods should bedesigned inways to offer feedback
to learners providing consolidation checkpoints where they can test
the representational connections being formed so that fallacious or
fragmented connections do not hinder learning.

The limitations of the study relate to the naturalistic nature of
the educational innovation that resulted in the researchers’
inability to control for the possible influence of previous exposure
to computational learning experiences the preceding semester, or
additional exposure to computational modules the same semester,
but on other courses. However, because of (1) the very different
nature of the modules and the computational tools, (2) the
differences in disciplinary knowledge measured through the
conceptual assessments, and (3) no clear patterns between
students’ performance in the module and the conceptual tests;
we believe this possible interaction may have had a minor effect.
Regardless of this limitation, we believe that this exploration
provides in-depth descriptions of what benefits or struggles
students experienced throughout different stages of the modeling
and simulation process afforded by different computational tools,
and therefore provides some insights into how we can help
students overcome challenges during their learning processes.

In conclusion, it is important to couple these instructional
strategies with research that is conducted in naturalistic classroom
settings because many of the results from contrastive studies on
expertise (i.e., experts versus novices) do not translate easily into
instructional interventions about training for the acquisition of
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expertise [70]. Our work will continue to explore how expert tools
and practices that are commonly used in engineering workplaces
can be effectively integrated into engineering classrooms. To
accomplish this goal, it is important to use design-based research
procedures to identify students’ struggles so that we can design
and redesign learning experiences in response. Our ultimate goal is
to identify design principles that can help us design learning
experiences that effectively integrate computational modeling and
simulation practices and tools, because these are increasingly
critical in industry and research enterprises.
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Sample of Representative Quotes From Students’ Responses

No. Case: M&S step and student representative quote

Case 1: Programming and executing models with MATLAB1: Simulation model process
Q1 (H)Charlie_T: That is a rule. At higher and higher temperature, the interaction energy is smaller and smaller, compared to like the overall energy

of the system. So it matters less and less. So at higher temperatures you could have more and more configurations. Okay, so then tie that to
average magnetization. So the magnetization is higher when they are all aligned in a specific way. So it means at lower temperatures you
would have higher magnetization. Because at higher temperatures you have more random configurations. Which means you have lower
magnetization. At lower temperatures, that interaction energy is more important; so they tend to align. And if they are aligned then they will
have a higher magnetization

Q2 (L)Emerson_T: In general, from thermodynamics, I would say that at high temperatures that involve high energy systems, so the total
[magnetization] value would be positive; let us say so the orientations would most likely be opposite at high temperatures and at low
temperatures they would be more likely to look like tube B [pointing at Figure], where they are all oriented in the same direction because that
would lower the temperature, lower the energy

Case 1: Programming and executing models with MATLAB1: Simulation development process
Q3 (L)Emory_T: I guess we could relate energy to magnetization. No? I am trying to think how similar the equation or the approach would be to the

previous one because I feel without anything relating to the magnetization like variable wise it probably has to be similar to that. In fact I am
thinking it is like almost the same except with a B but I do not know

Q4 (H)Sidney_S: So I am thinking that if for each domain, the only ones that matter are the ones that are next to each other. And that is what you need to
sort of add up. And if they are different, then the product would be negative. If they are the same, they would be positive. So I would do—if we call
this S1, S2, S3, and S4, I would say, oh, the sum of the products of S1, S2 plus S2, to S3 plus S3, S4—that is the number that would be, well, maybe
there for—if they are the same, they might be positive. So the more positive value, the lower the energy will be. So just like it is negative.

Q5 (H)Charlie_T: So we just take our little line here for calculating magnetization (Question 3 Equation). And so as energy sum we just have a new
one that is magnetization. And that gets—I guess should I just assume we have four total? . . . you add it to the main position

Case 1: Programming and executing models with MATLAB1: Simulation experiment process
Q6 (L)Emerson_T: Actually just like sitting down in front of MATLAB1 just testing new things definitely helps; you just have to spend some time

playing with it. This exercise was extremely similar to the computational modules I would say. I did the Monte Carlo essentially twice in
structures and in thermodynamics so it is pretty embedded in my mind by this point. I think like the programs definitely help some with
comprehending the material because it is kind of hard at least for me it is hard to imagine

Q7 (H)Skyler_T: “The programming itself ... Because you have to know it [the mathematical representation] to make the program work. You can’t
just wing it”

Case 1: Programming and executing models with MATLAB1: Simulation analysis process
Q8 (H)Skyler_T: Seeing the colors change was more—Like when the program was running and there was like, they had the mesh grid with the blue

and red, that made it clearer than the writing, but, you know, it is pretty math-intensive. You have to read it once or twice before it like seems
reasonable

Case 2: Configuring and running simulations with COMSOL1: Simulation model process
Q9 (L)Tatum_K: So let us just talk about the diffusion mechanism versus its practical application. So, I think that since there is a greater surface-to-

volume ratio, it would be good, because we saw that with—when we compared the sphere and the thin-films, since the sphere had a larger
surface-to-volume ratio, the drug was able to go through material more consistently, and so, I think in this case, since we have an even greater
surface-to-volume ratio, you would see better diffusivity towards the center

Q10 (L)Justice _K: So in the same way it was normally set up, I think you would want to create another sphere. This time it tells you the new radius of
the outside. So you would want to create a new sphere, cut out a square again, and then you want to, like, use what current eighth of the sphere
you have and use that to cut out your new drug-absorbing sphere. I actually have played around with COMSOL a little bit and I actually found
that kind of hard to do, to create a shape within in a shape—to cut it out. Because what happened when I did, it would fuse material that would
overlap within it. So. I guess I am not exactly sure how to do that yet

Q11 (H)Rowan_M: Yeah, essentially, it means if we pass that threshold value where we are deviating—which we actually prescribed in the plasticity
part. If we pass that threshold value where the material ceases to behave elastically and begins to behave plastically then the material is going
to fail because of necking, or at least it is going to lose its properties that make it a valuable material

Case 2: Configuring and running simulations with COMSOL1: Simulation development process
Q12 (L)Finley_M: “Well I’m just going to go and see if I can add a section to the middle <laughs>....which is 7 millimeters instead of. . .Well I don’t

know really how COMSOL1 works; so I’m going to try and figure it out as I go”
Case 2: Configuring and running simulations with COMSOL1: Simulation experiment process
Q13 (L)Justice_K: So in the same way it was normally set up, I think you would want to create another sphere. I actually have played around with

COMSOL1 a little bit and I actually found that kind of hard to do, to create a shape within in a shape—to cut it out. Because what happened
when I did, it would fuse material that would overlap within it. So. I guess I am not exactly sure how to do that yet

Q14 (H)Rowan_M: I think the primary thing I learned from this computational module is actually how to use COMSOL1, which was quite nice
because I am required to learn it for work. And so this was really a helpful introduction for me, you know, sort of throwing you under the bus
and learning how to use it because it is not intuitive your first time around. But after running this computational module I sort of started to
develop an intuitive grasp of like the user interface

Case 2: Configuring and running simulations with COMSOL1: Simulation analysis process
Q15 (L)Justice_K: A lot of—it is not just equation manipulating anymore. We can watch what an equation does to the simulation. If we were to

change the way the equation was defined, then the simulation would work out much differently as well. It also—I think it is really important
towards reinforcing the material, because if you tell me to think of Fick’s second law—if I had not gone through this, I might be more inclined
towards memorizing an equation and all the parts of the equation, but I can associate something with this

Q16 (L)River_M: I mean I liked how this [the think aloud exercise] was kinda set up tomake you think about each step and I think that may have helpedme
to kinda just like—maybe not like something that I had to turn in, but more so just like questions to help me think through if I was not getting it. So,
I would know what questions to ask while you guys were there if I was not understanding the concept, instead of just following in the steps
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APPENDIX B

Sample Interview Questions
Part I: Please take a moment to read the purpose of the activity.
Prompts: Now that you have read it, what are your initial thoughts of going about solving the exercise as a whole?Where would you

start? What steps would you take? Please work through the exercise in any sequence that makes the most sense to you. As you are
working on each part please explain your thinking as best you can.

Part II: Please describe a plan and a prediction of your expectations.
Prompts: [conceptual questions asked associated with the scenario]. Explain your reasoning.

Part III [programming]: Please describe the model of your analysis.
What model are you planning to use? Please explain your answer. Howwould youwrite amathematical expression for the system in

terms of the given parameters? Explain your proposed expression to the best of your ability. Howwould you go about to implement your
model in the computer? Explain to the best of your ability what this algorithm accomplishes and why one would use it.

Part III [configuring]: Please describe the setup of your analysis.
Prompts: Why has the system been configured in such way? How this configuration relates to the problem you are trying to solve?

How and why were the boundary conditions set as they were? What are your initial thoughts about adjusting the model? As you make
each alteration to the model, please explain your reasoning.

Part IV: Please describe the results of your solution.
Prompts: What did this computational analysis show? What limitations does it imply for the system in question? How might you

determine if this is a good or bad result? Why?

Generic Prompts: Can you clarify for mewhy you think it should be that way? Can you please tell more about you reasoning process
here? That is correct. Can you explain how you came to the correct answer? Can you back up to this step and explain to me how you got
from this step to your present answer?

Final reflection: What parts of this exercise were most confusing or challenging? What concepts came up in this exercise that you
feel you would like to understand more clearly?
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