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Abstract Several groups have studied experimen-
tally the deformation of the front of mode I cracks
propagating quasistatically along the interface between
bonded plates. The theoretical interpretation of such
experiments has always been based up to now on a for-
mula of Rice (ASME J Appl Mech 52:571–579, 1985);
this formula provides the first-order variation of the
local mode I stress intensity factor resulting from some
small, but otherwise arbitrary coplanar perturbation of
the front of a semi-infinite crack in an infinite body. To
be applicable to bonded plates, this formula requires
that the characteristic distance of variation of this per-
turbation in the direction of the crack front be small
compared to all other characteristic dimensions of the
problem, and first of all the thickness of the plates. This
condition is unfortunately frequently violated in prac-
tice. The purpose of this paper is therefore to provide a
more exact formula for the variation of the local stress
intensity factor, for the specific cracked geometry and
boundary conditions used in experiments; this should
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allow for more accurate theoretical interpretations. This
is done in two steps. The first one consists in adapting
Rice’s (ASME J Appl Mech 52:571–579, 1985) treat-
ment, applicable to the extreme case of plates of infinite
thickness, to the other extreme one of plates of infin-
itesimal thickness, using the standard Love-Kirchhoff
plate theory. An interesting outcome of the analysis is
that the distance from the crack front to the boundary
of the plate acts as a “cutoff length”, in the sense that
when the distance between two points on the crack front
gets larger than it, the influence of the crack advance
at the first point upon the stress intensity factor at the
second diminishes quickly; the plate thickness, how-
ever, plays no similar role. The second step consists
in supplementing the theoretical expressions applica-
ble to extreme values of the plate thickness with finite
element computations providing results for intermedi-
ate values. These computations lead to the definition
of a simple, approximate but accurate “interpolation
formula” for the variation of the local stress intensity
factor, applicable to plates of arbitrary thickness.

Keywords Crack · Coplanar perturbation ·
Plate · Finite thickness · Love-Kirchhoff theory ·
Finite elements

1 Introduction

In the past 20 years, a number of works have been
devoted to experimental studies of the deformation of
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the front of plane cracks propagating quasistatically in
heterogeneous materials; see Schmittbuhl and Maloy
(1997), Delaplace et al. (1999), Maloy and Schmittbuhl
(2001), Schmittbuhl et al. (2003), Maloy et al. (2006),
Dalmas et al. (2009), Chopin (2010), Santucci et al.
(2010), and the recent reviews of Bonamy (2009) and
Bonamy and Bouchaud (2011). In a typical experiment,
two plexiglas plates were bonded together through
application of a large pressure at high temperature, an
inhomogeneous distribution of toughness being gener-
ated on the interface through some suitable treatment.1

The plates were then gradually separated by increas-
ing the gap between them on one side, thus inducing
propagation of a crack from this side along the inter-
face. The transparency of the plates allowed for direct
optical observation of the shape of the crack front as a
function of the distance of propagation.

Theoretical interpretations of experiments of this
type have been proposed by many authors; see
Schmittbuhl et al. (1995), Tanguy et al. (1998),
Schmittbuhl and Vilotte (1999), Krishnamurthy et al.
(2000), Roux et al. (2003), Schmittbuhl et al. (2003),
Charles et al. (2004), Katzav and Adda-Bedia (2006),
Bonamy et al. (2008), Laurson et al. (2010), Ponson and
Bonamy (2010) and the reviews of Alava et al. (2006)
and Lazarus (2011). These interpretations were invari-
ably based on a formula of Rice (1985) providing the
first-order expression of the variation of the local mode
I stress intensity factor resulting from some small, but
otherwise arbitrary in-plane perturbation of the crack
front. This formula was established for a semi-infinite
crack in some infinite body. Clearly, to be applicable to
a crack lying on the interface between bonded plates,
it requires that the characteristic distance of variation
of the perturbation of the front be small compared to
all other characteristic dimensions of the problem, and
first of all the thickness of the plates.

Unfortunately, this condition is often violated in
actual experiments. In Dalmas et al. (2009)’s experi-
ments for instance, regularly distributed tough spots of
size comparable to the plate thickness were generated,
resulting in notable fluctuations of the position of the
crack front over this lengthscale. Even in more custom-
ary experiments which involved randomly distributed
toughness inhomogeneities of much smaller size, Fou-
rier components of the fluctuations of position of the

1 In a variant, the interface was between a plate and a rigid sub-
strate.

front of wavelength comparable to the plate thickness
were present; see for instance Figure 5 of Schmittbuhl
et al.’s (2003) paper.

Applicability of Rice’s (1985) formula to the exper-
iments discussed is therefore questionable. More accu-
rate interpretations of these experiments would result
from use of a formula specifically adapted to the geo-
metric configuration employed. Establishing it seems
all the more important since extensions of Rice’s (1985)
formula to different situations—a tunnel-crack loaded
in mode I (Leblond et al. 1996) or in some arbitrary
combination of modes (Lazarus and Leblond 2002); a
system of two coplanar, parallel, identical mode I tun-
nel-cracks (Pindra et al. 2010); a system of two copla-
nar, parallel semi-infinite mode I cracks (Legrand and
Leblond 2010)—have revealed a notable influence of
the cracked geometry considered upon the “influence
function” depicting the effect of a small crack advance
at some point of the front upon the variation of the
stress intensity factor at some other point. The effect is
particularly important upon the asymptotic behavior of
this function at large distances (Legrand and Leblond
2010).

The aim of this paper is therefore to extend Rice’s
(1985) formula to coplanar perturbation of a crack lying
on the interface between bonded plates, or equivalently
on the mid-plane of a plate of double thickness.2 This
will be done in two steps. First, Rice’s (1985) treat-
ment, appropriate for plates of very large thickness,
will be adapted to the other extreme case of plates of
very small thickness. This will be done by replacing the
standard 3D theory of elasticity he used by the Love-
Kirchhoff plate theory, which is known to be the cor-
rect asymptotic theory in the limit of an infinitesimal
plate thickness (Sanchez-Hubert and Sanchez-Palencia
1992). Second, the theoretical expressions applicable
to extreme values of the thickness will be supplemented
with finite element computations providing results for
intermediate values. These results will be used to define
a simple, approximate but accurate “interpolation
formula” for the variation of the local stress intensity
factor, applicable in all cases.

The paper is organized as follows:

• Section 2 presents the problem to be solved.

2 The general consensus is that the sole role of the interface is
to enforce coplanar propagation of the crack between the plates;
its lower elastic stiffness is unimportant and may be ignored.
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• Section 3 recalls Rice’s (1985) solution, applicable
to plates of very large thickness.

• As a prerequisite for the next section, Sect. 4
expounds some generalities on cracks lying on the
mid-plane of plates.

• Rice’s (1985) treatment is then adapted in Sect. 5
to the case of plates of very small thickness.

• Finally Sect. 6 presents the numerical study for
plates of intermediate thickness and the interpola-
tion formula deduced from it.

2 Statement of the problem—notations

Figures 1 and 2 offer different 2D views of the 3D prob-
lem considered. A plate occupies the domain 0 ≤ x <

+∞,−h ≤ y ≤ h,−∞ < z < +∞ in the 3D space.
This plate contains a plane crack occupying the region
0 ≤ x ≤ a(z),−∞ < z < +∞ in the plane y = 0.
The crack front is almost straight so that the distance
a(z) separating it from the Oz axis may be written in
the form

a(z) ≡ a + δa(z), |δa(z)| � a. (1)

At each point P of the crack front, we define some
local axes Px1, P x2, P x3 with Px1 perpendicular to
the front within the Oxz plane, Px2 parallel to the Oy

axis and Px3 tangent to the front.
The plate is made of some isotropic elastic material

with Young’s modulus E and Poisson’s ratio ν.
The loading consists of uniform, opposite displace-

ments v0,−v0 in the y direction imposed on the upper
and lower halves of the left boundary.

The crack is thus loaded in a state of pure mode I
at all points of its front. When this front is straight, the
mode I stress intensity factor is uniform along it and

Fig. 1 The general problem—view in the Oxy plane

Fig. 2 The general problem—view in the Oxz plane

denoted K . When it is curved, this stress intensity fac-
tor is non-uniform and denoted K(P ) or K(z), depend-
ing on the context. If the deviation from straightness is
slight, K(z) may be written in the form

K(z) ≡ K + δK(z), |δK(z)| � K. (2)

The problem is to derive an expression of the local fluc-
tuation of the stress intensity factor at the point z of the
crack front, δK(z), accurate to first order in the values
of the perturbation of this front, δa(z′),−∞ < z′ <

+∞.
Use will be made of Fourier transforms of func-

tions in the direction of the crack front. The definition
adopted for the Fourier transform ̂φ(k) of an arbitrary
function φ(z) will be

̂φ(k) =
+∞
∫

−∞
φ(z)eikzdz ⇔

(3)

φ(z) = 1

2π

+∞
∫

−∞
̂φ(k)e−ikzdk.

3 The Rice solution for an infinite 3D body

Rice (1985) derived the expression of δK(z) for a semi-
infinite crack in an infinite body. Such a geometric sche-
matization is acceptable in the present case only if the

123



L. Legrand et al.

characteristic distance of variation λ of the perturbation
of the crack front3 satisfies the conditions

λ � h, λ � a, (4)

the first of which implies that the plate must be “very
thick”. Provided that these conditions are met, δK(z)

is given by the formula

δK(z)

K
= 1

2π
PV

+∞
∫

−∞

δa(z′) − δa(z)

(z′ − z)2 dz′

(subject to conditions (4)) (5)

where the symbol PV denotes a Cauchy principal
value.

The equivalent formula in Fourier’s space is readily
shown to be

̂δK(k)

K
= −|k|

2
̂δa(k) (subject to conditions (4)).

(6)

4 Generalities on cracks lying on the mid-plane of
very thin plates

We now consider the limit of a “very thin” plate, that
is one satisfying the conditions

h � λ, h � a. (7)

There are two ways to consider this limit, according
to whether one observes the plate as it is or adopting a
magnified view of the vicinity of the crack front. Within
the framework of matched asymptotic expansions, the
first possibility corresponds to considering the “exterior
problem”, and the second one the “interior problem”.
For the sake of simplicity and clarity, we shall avoid
a fully rigorous, but heavily formal study of these two
problems, and be content with a more qualitative and
intuitive presentation.

4.1 Exterior problem

Consider the vicinity of some arbitrary point P of the
crack front, with the local axes Px1, P x2, P x3 defined
in Fig. 2. Figure 3 shows the “exterior” view of this
region. In a formal asymptotic expansion of the equa-
tions of the problem, this view would correspond to
using the variables x1, x2/h, x3, that is, considering a
dilation of coordinates in the sole direction x2.

3 That is, in the case of a sinusoidal perturbation, simply the
wavelength 2π/|k|.

Fig. 3 The exterior problem

In the limit h → 0, the mechanical situation is equiv-
alent to a system of two symmetric plates occupying the
region x1 ≤ 0 and clamped into some rigid frame at
x1 = 0. These plates must be described using Love-
Kirchhoff’s plate theory, since it is known to be the
correct asymptotic one in the limit h → 0 (Sanchez-
Hubert and Sanchez-Palencia (1992), p. 158 sqq.).
Within this theory, the displacement u2(x1, x3) ≡
v(x1, x3) of the upper plate in the x2 ≡ y direction is
of the following form, in the plane x3 = 0 and behind
and near the point P :

v(x1, 0) = 1

2

∂2v

∂x2
1

(0, 0)x2
1 + O(x3

1) (x1 ≤ 0).

Using rather Love-Kirchhoff’s deformation tensor (the
opposite of the curvature tensor of the plate)4

C ≡ −grad(grad v), (8)

this expression may be rewritten as

v(x1, 0) = −C11(P )

2
x2

1 + O(x3
1) (x1 ≤ 0). (9)

4.2 Interior problem

Now Fig. 4 shows the “interior” view of the vicin-
ity of the point P . In a formal asymptotic expan-
sion, this view would correspond to using the variables
x1/h, x2/h, x3, that is, considering a dilation of coor-
dinates in the directions x1 and x2 but not x3. (Dilating
coordinate x3 would mean letting λ go to zero together
with h).

In the limit h → 0, the 3D elasticity problem
becomes one of plane strain in the plane Px1x2, since
the characteristic distance of variation λ of the posi-
tion of the crack front becomes infinitely larger than

4 The more customary notation K for Love-Kirchhoff’s defor-
mation tensor is avoided in order to prevent any possible
confusion with the stress intensity factor K .
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Fig. 4 The interior problem

the typical dimension h of the region studied. In this
problem, the component C11(P ) of Love-Kirchhoff’s
deformation tensor in the exterior problem acts as a
boundary condition imposed on the far left of the upper
half of the geometry, which is thus subjected to some
prescribed bending moment (see Fig. 4). The linearity
of the problem implies that the stress intensity factor
K(P ) at point P must depend linearly on this boundary
condition, so that there must be a constant γ such that

K(P ) = −C11(P )

2γ
. (10)

4.3 Calculation of the constant γ

Although the calculation of the constant γ is not strictly
indispensable in the present context, we shall present
it for completeness.

The standard way of evaluatingγ would be to explic-
itly solve the interior problem. It so happens, however,
that this is unnecessary in the present case. Indeed, as
will now be seen, γ may be calculated analytically and
explicitly by combining elementary energetic consider-
ations and Irwin’s formula connecting the local energy-
release-rate G(P ) to the local stress intensity factor
K(P ).

Let us consider a rectangular region centered at the
point P of the crack front, with sides parallel to the
Px1 and Px3 axes (Fig. 5). Conditions (7) make it pos-
sible to choose, for the dimensions L1 and L3 of this
rectangle along these axes, values much larger than h,

Fig. 5 Definition of a domain for the calculation of the local
energy-release rate

while still much smaller than λ and a. The conditions
L1, L3 	 h allow for the use of Love-Kirchhoff’s the-
ory to evaluate the total energy of the region (the result
will be asymptotically exact in the limit h → 0), while
the conditions L1, L3 � λ, a make it possible to con-
sider the strain and stress states as uniform within its
left, deformed part.

Let M denote the tensor of bending and torsion
moments, related to the deformation tensor C through
Love-Kirchhoff’s constitutive law

M = D [(1 − ν)C + ν(tr C)1] (11)

where

D ≡ Eh3

12(1 − ν2)
(12)

is the bending stiffness. In the left part of the upper
plate, the values of the components of the deformation
tensor are C11 = C11(P ), C13 = C33 = 0 (because
of the clamping conditions v = 0, ∂v/∂x1 = 0 at
x1 = 0). It then follows from Eq. 11 that M11 =
DC11(P ), so that the value of the surface density
of elastic energy of the upper plate is 1

2 M : C =
1
2 M11C11 = D

2 [C11(P )]2. Accounting for the pres-
ence of two plates, one concludes that the value of the
total elastic energy of the rectangular region is

W = D [C11(P )]2 LL3 (13)
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where L is the length of the crack within the rectangle,
that is, the distance between its left side and the crack
front (see Fig. 5).

Now the opposite of the potential energy of pre-
scribed forces, φ, is just the work done in the deformed
configuration by the bending moments imposed on the
left side of the plates. Therefore, by the work theorem,

φ = 2W. (14)

It follows from Eqs. 13 and 14 that

− ∂

∂L
(W − φ) = ∂W

∂L
= D [C11(P )]2 L3. (15)

But the left-hand side of Eq. 15 is equal to
∫ L3/2
−L3/2 G(x3)

dx3 = G(P )L3, by the very definition of the local
energy-release-rate. It follows that

G(P ) = D [C11(P )]2 . (16)

Using now Irwin’s formula, one gets from there the
value of the local stress intensity factor:

K(P ) =
√

E

1 − ν2 G(P ) = − Eh3/2

2
√

3 (1 − ν2)
C11(P ),

(17)

where Eq. 12 has been used and account has been
taken of the obvious positiveness of K(P ) and nega-
tiveness of C11(P ). This means that K(P ) and C11(P )

are related by a formula of type (10), with

γ ≡ √
3

1 − ν2

Eh3/2 . (18)

4.4 Synthesis of results

Combining Eqs. 9 and 10, one sees that the asymptotic
expression of the displacement of the upper plate in the
y direction, behind and near the point P of the crack
front, in the exterior problem, reads

v(x1, 0) = γK(P ) x2
1 + O(x3

1) (x1 ≤ 0) (19)

with γ given by Eq. 18. This expression is the equiv-
alent, for cracks lying on the mid-plane of very thin
plates, of the standard asymptotic formula for the crack
opening displacement near the crack front in classical
3D fracture mechanics.5 It will play a central role in
the next section.

5 It may be noted incidentally that Eq. 19 is just a straightforward
3D extension of that applicable to 2D problems, which underlies
the derivation of some solutions of thin elastic cracked bodies
using beam theory; see Tada et al. (2000) for specific examples.

5 The solution for a very thin plate

We shall now adapt Rice’s (1985) treatment of the in-
plane perturbation of a semi-infinite crack in some infi-
nite body to the in-plane perturbation of a crack lying
on the midplane of a very thin plate (that is, satisfying
conditions (7)).

In fact Rice’s (1985) paper contained two inde-
pendent derivations of the same final formula: one
based on the theory of Bueckner’s 3D weight functions,
and the other on a direct calculation of the Neuber–
Papkovich potentials of the 3D elasticity problem. The
first approach would be inapplicable here, because of
lack of development of an analog of Bueckner’s theory
for thin plates. On the other hand the second approach
can be adapted to a thin plate, as will be seen; in fact
the adaptation will even turn out to be simpler than the
original, in that it will directly deal with the displace-
ment field instead of the Neuber–Papkovich potentials.
It will suffice to consider the exterior problem defined
in Section 4, making use of Eq. (19); the study of the
interior problem will not be necessary.

5.1 Original problem for an arbitrary perturbation of
the crack front

The “exterior equations” of the problem defined in
Sect. 2, with a perturbation of the crack front of
arbitrary amplitude (that is, without hypothesis (1)),
within Love-Kirchhoff’s plate theory, read on the upper
plate:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

∂2

∂x2 + ∂2

∂z2

)2

v(x, z) = 0 for 0 ≤ x ≤ a(z), −∞ < z < +∞
v(0, z) = v0

∂2v

∂x2 (0, z) = 0

}

for −∞ < z < +∞

v(a(z), z) = 0
∂v

∂n
(a(z), z) = 0

}

for −∞ < z < +∞

(20)

where the symbol ∂/∂n denotes the normal derivative
to the front. Equation 201 is the equilibrium equation,
Eq. 202,3 are the boundary conditions on the left side,
and Eq. 204,5 are the clamping conditions on the crack
front.
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5.2 First-order problem for an infinitesimal
perturbation of the crack front

Consider now a perturbation of small amplitude (obey-
ing hypothesis (1)), and denote δv(x, z) the variation,
under constant loading, of the normal displacement
of the upper plate arising from the variation of posi-
tion δa(z) of the crack front around the mean value a.
The equilibrium equation and boundary conditions of
the left side satisfied by δv(x, z) are readily obtained
through differentiation of Eq. 201,2,3 at constant v0:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

∂2

∂x2 + ∂2

∂z2

)2

δv(x, z) = 0 for 0 ≤ x ≤ a, −∞ < z < +∞
δv(0, z) = 0

∂2δv

∂x2 (0, z) = 0

}

for −∞ < z < +∞.

(21)

On the other hand the conditions verified by δv(x, z)

on the crack front cannot be obtained from Eq. 204,5

in such a simple way. To derive them, it is convenient
to temporarily write the perturbation of the front in the
form

δa(z) ≡ εφ(z)

where ε is a small parameter and φ(z) a given func-
tion. We then introduce the power expansion of the
displacement in the original problem, up to the third
order, in the plane perpendicular to the front at the point
(a +εφ(z), z), with explicit indications of dependence
of all quantities upon ε:

v
(

ε; x, z + ε(a − x)φ′(z)
)

= γK(ε; z) [a + εφ(z) − x]2

+χ(ε; z) [a + εφ(z) − x]3

+O
(

[a + εφ(z) − x]4
)

(0 ≤ x ≤ a + εφ(z)).

(22)

(In the left-hand side, the correction of the z coordi-
nate arises from the fact that the normal vector to the
perturbed front is not exactly ex but ex − εφ′(z)ez,
see Fig. 2; also, in the right-hand side, the distance
from the point

(

x, z + ε(a − x)φ′(z)
)

to the point
(a + εφ(z), z) of the crack front is considered to be a+
εφ(z)− x, with an error of second order in ε). Differen-
tiating this equation with respect to ε at ε = 0, one gets
∂v

∂ε
(0; x, z) + ∂v

∂z
(0; x, z)(a − x)φ′(z)

= 2γK(0; z)(a − x)φ(z) + γ
∂K

∂ε
(0; z)(a − x)2

+3χ(0; z)(a − x)2φ(z) + O((a − x)3)

or more simply, since for ε = 0 the problem becomes
2D in the Oxy plane and v,K and χ independent of z:

∂v

∂ε
(0; x, z) = 2γK(0)(a − x)φ(z)

+γ
∂K

∂ε
(0; z)(a − x)2

+3χ(0)(a − x)2φ(z) + O((a − x)3).

Multiplying both sides by ε and identifying ε∂v/∂ε to
δv, εφ to δa and ε∂K/∂ε to δK , one gets from there

δv(x, z) = 2γK(a − x)δa(z) + γ δK(z)(a − x)2

+3χ(a − x)2δa(z) + O((a − x)3)
(0 ≤ x ≤ a)

(23)

where henceforth superfluous indications that quanti-
ties are taken at ε = 0 have been discarded. It follows
that
⎧

⎨

⎩

δv(a, z) = 0
∂δv

∂x
(a, z) = −2γKδa(z)

for − ∞ < z < +∞.

(24)

These are the boundary conditions on the crack front
looked for.

5.3 Solution of the first-order problem in Fourier’s
space

To solve Eqs. 21, 24, take their Fourier transform in the
direction z and get
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

∂2

∂x2 − k2
)2

̂δv(x, k) = 0 for 0 ≤ x ≤ a, −∞ < k < +∞
̂δv(0, k) = 0

∂2
̂δv

∂x2 (0, k) = 0

}

for −∞ < k < +∞

̂δv(a, k) = 0
∂ ̂δv

∂x
(a, k)

= −2γK ̂δa(k)

⎫

⎬

⎭

for −∞ < k < +∞.

(25)

The solution of Eq. 251 must be looked for in the
form of an exponential eμx . Then μ satisfies the char-
acteristic equation (μ2 − k2)2 = 0, which admits two
double solutions, μ = k and μ = −k. It follows that
̂δv(x, k) must be a linear combination of the functions
ekx, xekx, e−kx, xe−kx , or equivalently of the form

̂δv(x, k) = (Ax + B) sinh(kx) + (Cx + D) cosh(kx)

(26)
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where A,B,C and D are constants to be determined.6

Now Eq. 252,3 immediately imply that

A = D = 0, (27)

and the values of B and C then follow from Eq. 254,5:
⎧

⎪

⎨

⎪

⎩

B = 2γKa ̂δa(k)
cosh(ka)

cosh(ka) sinh(ka) − ka

C = −2γK ̂δa(k)
sinh(ka)

cosh(ka) sinh(ka) − ka
.

(28)

Then, by Eq. 26,
̂δv(x, k) = 2γK ̂δa(k)

×a cosh(ka) sinh(kx) − x sinh(ka) cosh(kx)

cosh(ka) sinh(ka) − ka
.

(29)

5.4 Fourier transform of the variation of the stress
intensity factor

The next task is to relate the Fourier transform of the
variation of the stress intensity factor, ̂δK(k), to that of
the perturbation of the front, ̂δa(k). To do so, differen-
tiate Eq. 23 twice with respect to x at x = a:

∂2δv

∂x2 (a, z) = 2γ δK(z) + 6χδa(z)

⇒ δK(z) = 1

2γ

∂2δv

∂x2 (a, z) − 3χ

γ
δa(z),

then take the Fourier transform of this equation:

̂δK(k) = 1

2γ

∂2
̂δv

∂x2 (a, k) − 3χ

γ
̂δa(k). (30)

Now, by Eq. 29,

∂2
̂δv

∂x2 (a, k) = −4γ kK ̂δa(k)
sinh2(ka)

cosh(ka) sinh(ka) − ka
.

(31)

Also, to calculate the constant χ , note that by Eq. 22
applied to the unperturbed configuration of the crack
front (ε = 0),

γK ≡ 1

2

d2v

dx2 (a); χ ≡ −1

6

d3v

dx3 (a) (32)

where v(x) is the unperturbed normal displacement of
the upper plate. Now it is easy to calculate this dis-
placement from the equations of the unperturbed (2D)
problem (20) with a(z) ≡ Cst. ≡ a):

v(x) = v0

(

1 − 3x

2a
+ x3

2a3

)

, (33)

6 The constant D should not be confused with the bending
stiffness defined by Eq. 12, which no longer plays a role.

so that

γK = 3v0

2a2 ; χ = − v0

2a3 = −γK

3a
. (34)

(The value of K in Eq. 341, with γ given by Eq. 18,
coincides with that provided by Tada et al. (2000), p.
419, for the problem in question). Combining Eqs. 30,
31 and 34, one gets

̂δK(k)

K
= 1

2γK

∂2
̂δv

∂x2 (a, k) − 3χ

γK
̂δa(k)

= − 2k sinh2(ka)

cosh(ka) sinh(ka) − ka
̂δa(k) + ̂δa(k)

a

=
(

1 − 2ka sinh2(ka)

cosh(ka) sinh(ka) − ka

)

̂δa(k)

a

or equivalently

̂δK(k)

K
= F(ka)

̂δa(k)

a
(subject to conditions (7))

(35)

where F(p) is a function of the “reduced wavenumber”

p ≡ ka (36)

defined by

F(p) ≡ 2p cosh(2p) − sinh(2p)

2p − sinh(2p)
. (37)

Several features of the function F(p) are noteworthy:

• First, expanding cosh(2p) and sinh(2p) in powers
of p, one easily shows that

F(0) = −2. (38)

• Second, the very definition (37) of F(p) implies
that it is indefinitely differentiable except perhaps
at the origin. But near the origin, it is obviously the
ratio of two power series of p, and this ratio has a
finite limit for p → 0, as just noted. Hence it is
also indefinitely differentiable at the origin. In con-
clusion, F(p) is indefinitely differentiable on the
whole real line.

• Finally it is easy to show that

F(p)= − 2|p| + 1 + O
(

p2e−2|p|) for p → ± ∞.

(39)

There is a connection here with the work of Van-
dembroucq and Roux (1997) on biharmonic functions
satisfying certain conditions on the boundary of a
slightly perturbed domain. Although the results of these
authors, obtained by a conformal mapping technique,

123123



Coplanar perturbation of a crack lying on the mid-plane of a plate

do not directly apply to the present problem because
of some differences in the boundary conditions, a link
may be established in the limiting case where the depth
a of the crack goes to infinity; the asymptotic behavior
of the function F(p) described by Eq. 39 fully agrees
with Vandembroucq and Roux (1997)’s findings in this
case.

There is also a connection with a very recent, yet
unpublished work of Ponson et al. (2011) devoted to the
problem of coplanar perturbation of a crack resulting
from a “peeling test”, in which some thin flexible mem-
brane bonded onto some rigid substrate is gradually
pulled from it. This problem was more complex than
that envisaged here in that it required use of the Föppl-
von Karman nonlinear plate theory in order to account
for the effect of the in-plane tension of the deformed
membrane; on the other hand the geometry was sim-
pler in that the crack was semi-infinite. The solutions
obtained may be compared by replacing the lower
deformable plate by a rigid one and letting the depth
a of the crack go to infinity in the present work, and
dropping nonlinearities in Ponson et al.’s (2011) work.
The two solutions do coincide with these adaptations
and simplifications.

5.5 Variation of the stress intensity factor

Although Eqs. 35, 37 for the Fourier transform ̂δK(k)

may be used directly, an explicit formula for the varia-
tion of the stress intensity factor in the physical space,
δK(z), rather than in Fourier’s space, may also be
useful.

To derive such a formula, take the inverse Fourier
transform of Eq. 35:

δK(z)

K
= 1

2π

+∞
∫

−∞

̂δK(k)

K
e−ikzdk

= 1

2π

+∞
∫

−∞
F(ka)

̂δa(k)

a
e−ikzdk.

Now use the Fourier decomposition of ̂δa(k) in this
expression:

δK(z)

K
= 1

2π

+∞
∫

−∞

⎛

⎝

+∞
∫

−∞
F(ka)

δa(z′)
a

eikz′
e−ikzdz′

⎞

⎠ dk.

It would seem tempting at this stage to change the
order of integration; the inverse Fourier transform of the

function F(p) would then appear as a result of the first
integration on k. This is however not feasible because
the function F(p), being nonzero at infinity as is appar-
ent in Eq. 39, does not admit a Fourier transform.

A more elaborate reasoning is thus necessary. First,
rewrite the preceding expression in the form
δK(z)

K
= I1 + I2,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

I1 ≡ 1

2π

+∞
∫

−∞

⎛

⎝

+∞
∫

−∞
F(ka)

δa(z)

a
eik(z′−z)dz′

⎞

⎠ dk

I2 ≡ 1

2π

+∞
∫

−∞

⎛

⎝

+∞
∫

−∞
F(ka)

δa(z′) − δa(z)

a
eik(z′−z)dz′

⎞

⎠ dk.

(40)

The integrals I1 and I2 may now be calculated as
follows:

• With regard to I1, performing the integration on z′,
one gets

I1 = 1

2π

+∞
∫

−∞
F(ka)

δa(z)

a
2πδ(k) e−ikzdk

= F(0)
δa(z)

a
= −2

δa(z)

a
(41)

where Eq. 38 has been used.
• With regard to I2, note first that the function

k �→ −i

+∞
∫

−∞

δa(z′) − δa(z)

z′ − z
eik(z′ − z)dz′

vanishes at infinity, being a Fourier transform, and
that its derivative is the function

k �→
+∞
∫

−∞

[

δa(z′) − δa(z)
]

eik(z′−z)dz′.

Therefore integration by parts of the expression of
I2 yields

I2 = i

2π

+∞
∫

−∞

⎛

⎝

+∞
∫

−∞
F ′(ka)

δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′

⎞

⎠ dk

= i

2π

+∞
∫

−∞
F ′(ka)

⎛

⎝PV

+∞
∫

−∞

δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′

⎞

⎠ dk

where the introduction of the PV is allowed by the
fact that the integral is convergent in the usual sense.
Now note that the function

k �→ −i PV

+∞
∫

−∞

δa(z′) − δa(z)

(z′ − z)2 eik(z′−z)dz′
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again vanishes at infinity, being a Fourier transform,
and that its derivative is the function

k �→ PV

+∞
∫

−∞

δa(z′) − δa(z)

z′ − z
eik(z′−z)dz′.

Therefore a second integration by parts of the
expression of I2 yields

I2 = − 1

2π

+∞
∫

−∞
F ′′(ka)

×
⎛

⎝PV

+∞
∫

−∞

δa(z′) − δa(z)

(z′ − z)2 eik(z′−z)dz′
⎞

⎠ adk.

The order of integration may now be changed since
the function F ′′(p), being zero at infinity as implied
by Eq. 39, does admit a Fourier transform unlike
F(p). One thus gets

I2 = −PV

+∞
∫

−∞

δa(z′) − δa(z)

(z′ − z)2

×
⎛

⎝

1

2π

+∞
∫

−∞
F ′′(ka)eik(z′−z)adk

⎞

⎠ dz′

or equivalently

I2 = PV

+∞
∫

−∞
f

(

z − z′

a

)

δa(z′) − δa(z)

(z′ − z)2 dz′,

(42)

where f (u) is a function of the “reduced distance”

u ≡ z − z′

a
(43)

defined by7

f (u) ≡ − 1

2π

+∞
∫

−∞
F ′′(p)e−ipudp

= − 1

π

+∞
∫

0

F ′′(p) cos(pu)dp; (44)

note that f (u) is just in fact the opposite of the
inverse Fourier transform of F ′′(p).

7 Use is been made here of the fact that the function F(p) being
even, see Eq. 37, its second derivative is also even.
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Fig. 6 The function f (u) for a very thin plate

Combining Eqs. 40, 41 and 42, one finally gets

δK(z)

K
= −2

δa(z)

a

+PV

+∞
∫

−∞
f

(

z − z′

a

)

δa(z′) − δa(z)

(z′ − z)2 dz′

(subject to conditions (7)) (45)

with f (u) given by Eq. 44.
Formula (45) is analogous to that derived by Rice

(1985) for perturbation of a semi-infinite crack in an
infinite body, Eq. 5, except for two differences. First,
the formula involves a term proportional to δa(z) in
addition to the integral term, which represents the vari-
ation of the stress intensity factor for a uniform advance
of the crack front (δa(z′) ≡ δa(z),∀z′).8 Second, the
“influence function” in the integral term is more com-
plex since it involves an extra function f ((z − z′)/a).

Figure 6 provides a graphical representation of the
function f (u) obtained by performing the second inte-
gral in Eq. 44 numerically, using an explicit expression
of F ′′(p) deduced from Eq. 37. The slightly negative
values of f (u) for large values of u in this figure
have been checked to be significant and not arise from
numerical errors. Also, one may note the following
additional features of this function:

• First, by Eq. 442,

f (0) = − 1

π

[

F ′(+∞) − F ′(0)
] = 2

π
(46)

8 In fact a term of this kind does appear in Rice’s (1985) formula
but must logically be discarded when this formula is applied to
a cracked plate, its contribution becoming negligible then.
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where use has been made of the propertiesF ′(0)= 0
(consequence of the fact that the function F(p) is
even) and F ′(+∞) = −2 (consequence of Eq. 39).
Note that the value of f (0) is higher than its equiva-
lent for a semi-infinite crack in an infinite body, that
is, the constant prefactor of 1

2π
in Rice’s (1985) for-

mula (5), by a factor of 4. In other words, the influ-
ence function is 4 times larger for a thin plate than
for an infinite body, when the distance between the
points considered is much smaller than a (but still
of course much larger than h).

• Second, it has been noted in Sect. 5.4 that the func-
tion F(p) is indefinitely differentiable on the entire
real line, and the same is of course true of its second
derivative. It then follows from a classical theorem
that the opposite f (u) of the inverse Fourier trans-
form of F ′′(p) vanishes at infinity more quickly than
any power function of u. The behavior at large dis-
tances of the influence function f ((z − z′)/a)(z′ −
z)−2 in Eq. 45 is thus very different from that of
the simple influence function (z′ − z)−2 in Eq. 5.
Clearly, in the cracked geometry envisaged here,
the distance a from the left boundary to the mean
position of the crack front acts as a “cutoff length”
above which the influence function quickly van-
ishes.

6 Numerical study for a plate of arbitrary
thickness

6.1 Generalities

We shall now envisage the general case of a plate of
arbitrary thickness. Therefore, neither conditions (4)
nor conditions (7) will be imposed. We shall however
introduce the hypothesis that

h � a. (47)

Indeed this condition is always fulfilled in practice,
and considerable simplifications result from there. Note
immediately for instance that with such a hypothesis,
λ � h suffices to warrant conditions (4) and there-
fore applicability of Rice’s (1985) formulae (5) and
(6); whereas λ 	 h suffices to warrant conditions (7)
and therefore applicability of formulae (35) and (45).

We shall look for some “interpolation formula”, in
Fourier’s space, between the expression (6), appropriate

for λ � h, and the expression (35), appropriate for
λ 	 h, in the form

̂δK(k)

K
=

[

− (1 − θ(kh))
|k|
2

+ θ(kh)
F (ka)

a

]

̂δa(k),

(48)

where θ(q) denotes some even function of the “reduced
wavenumber”

q ≡ kh (49)

to be determined, obeying the properties

θ(0) = 1; θ(±∞) = 0. (50)

Formula (48) does possess the desired features: if
λ � h, |kh| = 2πh/λ 	 1 so that θ(kh) � 0 and
the expression of ̂δK(k)/K reduces to (6); and if
λ 	 h, |kh| = 2πh/λ � 1, θ(kh) � 1 and it reduces
to (35).

Formula (48) may seem to be criticizable on the
grounds that since the problem involves three charac-
teristic lengths, a, h and λ ≡ 2π/|k|, and thus two
dimensionless geometric parameters, for instance kh

and ka, the function θ should depend on both of these
parameters instead of just one, kh. However the depen-
dence of θ upon ka may safely be disregarded: indeed

• if λ is much smaller than a, then the latter length is
much larger than the other two by hypothesis (47);
it is thus safe to consider it as infinite and replace
θ(kh, ka) by θ(kh,±∞);

• if λ is comparable to a or larger, then it is neces-
sarily much larger than h by hypothesis (47); then
θ(kh, ka) � 1 by Eq. (50)1, whatever the value of
ka.

Hence with hypothesis (47), one may safely consider
the interpolation function θ as a function of the sole
variable kh, as assumed in Eq. 48.

6.2 Principle of numerical calculations

The function θ(q) will be determined by performing
finite element elastic computations of cracked plates
of finite dimensions. The depth a of the crack and the
length of the unbroken ligament ahead of the crack
front will be chosen much larger than the thickness h

of the plate. Two configurations of the front will be
considered, one straight and one with slight sinusoidal
in-plane undulations of wavelength λ. Because of the
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periodicity of the problem in the z direction, only one
slice of material lying between the planes z = 0 and
z = λ will be meshed, periodic boundary conditions
being imposed on these planes.

The oscillations of the local stress intensity factor
along the crack front, δK(z), will be determined by
comparing the values of this factor in the original and
perturbed configurations of the front. One test of the
relevance of the first-order perturbation approach will
be that these oscillations will have to be sinusoidal like
those of the local crack advance, δa(z); this test will
serve to fix a maximum admissible value of the ampli-
tude of variation of δa(z). For acceptable values of this
amplitude, the value of the ratio ̂δK(k)/̂δa(k) (k =
±2π/λ) will be deduced from that of the ratio of the
amplitudes of variation of δK(z) and δa(z).

Various values of λ will be considered, all of them
comparable to h and therefore much smaller than a.
Under such conditions |ka| 	 1 so that F(ka)/a ∼
−2|k| by Eq. 39. Hence Eq. 48 reduces to

̂δK(k)

K
= −1

2
[1 + 3θ(kh)] |k| ̂δa(k)

(subject to the condition |ka| 	 1), (51)

which shows that the function θ(kh) is related to the
quantity

X ≡ − ̂δK(k)/K

|k| ̂δa(k)
(52)

through the equivalent relations

X = 1

2
[1 + 3θ(kh)] ⇔ θ(kh) = 2X − 1

3
. (53)

Equations 52 and 53 will serve to determine numerical
values of the quantity X and the function θ(kh) from
those of the ratio ̂δK(k)/̂δa(k). Note in particular that
by Eqs. 50 and 53, X must take the values 2 and 1

2 in
the limits |kh| � 1 (λ 	 h) and |kh| 	 1 (λ � h)

respectively.

6.3 Presentation of numerical calculations

All computations are performed with the finite element
code CAST3M developed by the French Commissariat
à l’Energie Atomique (CEA).

Two types of computations are performed with dif-
ferent boundary conditions on the upper and lower
halves of the left boundary of the cracked plate: oppo-
site vertical displacements versus opposite bending

moments. Boundary conditions of the first type pre-
cisely correspond to those employed in actual exper-
iments. Boundary conditions of the second type are
representative of those prevailing on the left side of a
rectangular subregion of the plate of dimensions much
smaller than a, though much larger than h.9 (That
dimensions satisfying these two conditions may be
found is a consequence of hypothesis (47)). Hence the
two types of conditions are expected to yield identical
results for sufficiently large plates; this will serve as a
test that the dimensions considered are sufficient.

The two types of computations also use different
dimensions, meshes and types of elements, although
the plate thickness is 1 mm in all cases. In these involv-
ing prescribed displacements, the distance a between
the left side and the unperturbed crack front is 100
mm or 200 mm, depending on whether λ is smaller or
larger than 10 mm; the mesh consists of 449,760 (for
λ < 10 mm) or 646,440 (for λ > 10 mm) bilinear 8-
node parallelepipedic elements and 471,713 or 688,568
nodes. In those involving prescribed moments, which
require a smaller mesh since they focus on a subre-
gion of the plate, the distance a between the left side
and the unperturbed front is 50 mm, and the mesh con-
sists of 182,400 bilinear 6-node prismatic elements and
106,896 nodes. In both cases the elements are strictly
parallelepipedic or prismatic only for the unperturbed
straight configuration of the front; for the perturbed
configuration the same mesh is used with a slight dis-
tortion of elements.

The value of Poisson’s ratio is the same in all cases,
namely ν = 0.3.

Local values of the stress intensity factor along
the crack front are evaluated using Destuynder et al.
(1983)’s “G − θ method”, the accuracy of which is
well established.

In a first step, a straight front is considered. The
unperturbed stress intensity factors calculated for the
two types of boundary conditions are compared to
the exact analytic values provided by Tada et al. (2000),
pp. 417 and 419, for the problems in question. The
relative error found decreases from about 10% for
a/h = 10 to less than 0.1% for the largest values of this
ratio. (The explanation of the relatively large difference
for the smallest value of a/h does not lie in numerical

9 It is implicitly assumed here that the crack advance does not
induce any variation of the bending moments exerted on the two
halves of the left side; this is true in all calculations since λ � a.
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Fig. 7 Distribution of the normalized energy-release-rate along
the crack front for δamax/λ = 0.01

Fig. 8 Distribution of the normalized energy-release-rate along
the crack front for δamax/λ = 0.1

errors but in the fact that Tada et al. (2000)’s solutions
are asymptotic ones in the limit a/h → +∞).

In a second step, wavy fronts of sinusoidal shape
with different amplitudes δamax are considered.
Figures 7 and 8 show, in the typical case where λ = h,
the distribution of the local energy-release-rate, nor-
malized by half the sum of its maximum and minimum
values, along the crack front, for values of δamax equal
to 1 and 10% of λ. In each case the blue curve repre-
sents numerical results and the red one the sinusoidal
approximation of these results having the same minima
and maxima. The oscillation of the energy-release-rate
can be observed to be sinusoidal for the smaller ampli-
tude, but not so for the larger one. This shows that the
linear perturbation approach is applicable only to the
smaller one, which is therefore adopted in subsequent
calculations.

Fig. 9 The quantity X for a plate of arbitrary thickness

6.4 Results

Figure 9 shows numerical values of the quantity X

definedbyEq.52,asa functionofkh. (Onlypositiveval-
uesofkhareconsideredhere since the functionX(kh) is
obviously even). The two types of boundary conditions
can be observed to yield identical results, which shows
that the dimensions of the plates considered are large
enough. Also, the quantity X goes to the values 2 (thin
plate solution) and 1

2 (3D solution) in the limits kh → 0
and kh → +∞ respectively, as expected.

Figure 9 shows that a decrease of kh from values
much larger than unity to values much smaller than it, or
equivalently an increase of λ from values much smaller
than h to values much larger than it, induces an increase
of X. This clearly shows that in contrast to the distance
between the crack front and the boundary of the plate,
the plate thickness does not play the role of a “cut-
off length” above which the ratio ̂δK(k)/̂δa(k) should
quickly decrease. (There is in fact nothing surprising
in this conclusion: in Love-Kirchhoff’s thin plate the-
ory, the deformation of a plate is never confined by the
thickness but by the boundary conditions).

It is also shown in Fig. 9 that the numerical results
may be accurately represented by the following very
simple approximate formula for the function θ(q),
which is therefore adopted hereafter:

θ(q) � 1

1 + 1
3 |q|4/3

. (54)

6.5 Final formulae in Fourier’s space and the physical
space

We shall now provide final formulae for the variation of
the stress intensity factor, distinguishing between the
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cases a < +∞ and a = +∞ (which often represents
an acceptable approximation in actual experiments).
The formulae will be parametrized by the dimension-
less quantity

ξ ≡ a

h
(	 1 by condition (47)). (55)

In Fourier’s space, formula (48) for ̂δK(k) may be writ-
ten in the form

̂δK(k)

K
= G

(a

h
; kh

)
̂δa(k)

h
(subject to condition (47)) (56)

where

G(ξ ; q) ≡

⎧

⎪

⎨

⎪

⎩

− [1 − θ(q)]
|q|
2

+ θ(q)
F (ξq)

ξ
if ξ < +∞

−1

2
[1 + 3θ(q)] |q| if ξ = +∞.

(57)

In Eq. 57, the expression of the function θ(q) is given
by Eq. 54, and that of the function F(p) by Eq. 37 (or
(39) when ξ is infinite).

The following special features of the function
G(ξ ; q) are of interest:

G(ξ ; 0) = −2

ξ
; G(ξ ; q) ∼ −|q|

2
for q → ±∞.

(58)

Of course, the values of G(ξ ; .) at the origin and near
infinity are connected to those of ̂δK(k) for crack front
perturbations of very large wavelength in a thin plate
(Eqs. 35 and 38), and of very small wavelength in an
infinite body (Eq. 6), respectively.

In the physical space, the formula for δK(z) may be
obtained through Fourier inversion of that for ̂δK(k).
The reasoning is completely analogous to that pre-
sented in Sect. 5.5 for the case of a very thin plate
(the only difference being that the reference length
used here is h instead of a), and therefore will not be
repeated. The resulting formula reads

δK(z)

K
= −2

δa(z)

a

+PV

+∞
∫

−∞
g

(

a

h
; z − z′

h

)

δa(z′) − δa(z)

(z′ − z)2 dz′

(59)

where g(ξ ; v) is a function of the dimensionless param-
eter ξ and the “reduced distance”
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Fig. 10 The function g(ξ ; v) for a plate of arbitrary thickness

v ≡ z − z′

h
(60)

defined by

g(ξ ; v) ≡ − 1

2π

+∞
∫

−∞

∂2G

∂q2 (ξ ; q)e−iqvdq

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 1

π

+∞
∫

0

∂2G

∂q2 (ξ ; q) cos(qv)dq if ξ < +∞

2

π
− 1

π

+∞
∫

0

∂2G

∂q2 (+∞; q) cos(qv)dq if ξ = +∞.

(61)

The extra term 2
π

in the final expression of g(+∞; v)

arises from the fact that the function ∂G/∂q(+∞; q)

being discontinuous at the point q = 0, with ∂G/∂q

(+∞; 0±) = ∓2 (see Eqs. 501 and 572), its deriv-
ative ∂2G/∂q2(+∞; q) in the integral from −∞ to
+∞ must be understood in the sense of generalized
functions, with an additional term −4δ(q).

Figure 10 shows the function g(ξ ; v) obtained
numerically from Eq. 612 for various values of ξ ,
including infinity.10 Again, like in Figure 6, the slightly
negative values of g(ξ ; v) for moderate ξ and large v

have been checked to be significant. The numerical
results may also be supplemented by analytical ones in
some special cases. First, at the origin, by Eq. 61,

g(ξ ; 0) =
⎧

⎨

⎩

− 1
π

[

∂G
∂q

(ξ ;+∞) − ∂G
∂q

(ξ ; 0+)
]

if ξ < +∞
2
π

− 1
π

[

∂G
∂q

(+∞;+∞) − ∂G
∂q

(+∞; 0+)
]

if ξ = +∞

⎫

⎬

⎭

= 1

2π
in all cases (62)

10 The curve corresponding to ξ = 10 is shown for illustrative
purposes but involves some error since the necessary hypothesis
(47) is barely satisfied for such a value.
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where use has been made of the properties ∂G/∂q

(ξ ;+∞) = − 1
2 in all cases, whereas ∂G/∂q(ξ ; 0+) =

0 or −2 depending on whether ξ < +∞ or ξ =
+∞. Equation 62 means that the influence function
g( a

h
; z−z′

h
)(z′ −z)−2 in Eq. 59 behaves like 1

2π(z′−z)2 at
short distances, like in an infinite body, of course (see
Eq. 5). Also,

lim
v→±∞ g(ξ ; v) =

⎧

⎨

⎩

0 if ξ < +∞
2

π
if ξ = +∞ (63)

since the integrals in Eq. 612 go to zero when v goes
to ±∞. All of these features agree with what can be
observed in Fig. 10.

It is easy to understand the behavior of the function
g(ξ ; v). When the distance |z − z′| increases from val-
ues much smaller than h to values much larger than it,
but still much smaller than a (that is, when the normal-
ized distance |v| increases from values much smaller
than unity to values much larger than it, but still much
smaller than ξ ), this function increases from the value
for an infinite body, 1

2π
, to that for a thin plate, 2

π
.

However, since the distance a has been observed to
play the role of a cutoff length, when |z − z′| becomes
comparable to or much larger than it (that is, when
|v| becomes comparable to or much larger than ξ ), the
function decreases back to zero. Of course, the larger
the value of a or ξ , the slower the decrease; for a = +∞
or ξ = +∞, there is no decrease at all.

The role of cutoff length played by the distance a

is probably best illustrated by Fig. 11, which shows
g(ξ ; v) as a function of the variable v/ξ ≡ (z − z′)/a.
(The use of this new variable obviously forbids to
consider the case ξ = +∞ ⇔ a = +∞). This figure

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5

ξ = 10
ξ = 20
ξ = 30
ξ = 40

Fig. 11 Plot of g(ξ ; v) versus v/ξ ≡ (z − z′)/a

clearly shows that the decrease of g(ξ ; v) occurs above
some critical distance comparable to a.

7 Conclusion

The aim of this paper was to provide a first-order for-
mula for the local variation of the mode I stress inten-
sity factor resulting from some small but otherwise
arbitrary coplanar perturbation of the front of a pla-
nar crack, in the specific case where this crack results
from gradual separation of two bonded plates from one
side. This configuration is frequently used in experi-
ments, and it was our hope to provide an alternative to
Rice’s (1985) formula for the theoretical interpretation
of such experiments. Indeed, although this formula has
systematically been used for this purpose up to now, it
was derived for a semi-infinite crack in some infinite
body, and thus applies to the configuration considered
only when the characteristic distance of variation of the
perturbation of the front is much smaller than the plate
thickness.

In a first step, Rice (1985)’s treatment, appropri-
ate for infinitely thick plates, was adapted to the other
extreme case of plates of infinitesimal thickness. This
was done by replacing the standard 3D theory of elas-
ticity he used by Love-Kirchhoff’s theory of plates. The
validity of this procedure is ensured by the fact that the
latter theory is known to be the correct asymptotic one
for very thin plates. An interesting outcome of the anal-
ysis is that the distance between the crack front and the
boundary of the plate plays the role of a “cutoff length”
for elastic interactions along the crack front; that is,
the influence of the crack advance at some point of
the front upon the stress intensity factor at some other
point quickly vanishes when the separation between
these points becomes larger than this distance. The
plate thickness, on the other hand, plays no similar role.

In a second step, the analytical formulae applicable
to extreme, infinite or infinitesimal, values of the plate
thickness, were completed by finite element computa-
tions for a number of intermediate values. In addition
to confirming the validity of the analytical formulae
for the two limit cases, these computations allowed us
to define an approximate but accurate formula for the
local variation of the stress intensity factor applicable
to plates of arbitrary thickness.
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