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There has been considerable interest in recent years in theoretical formulae providing, for
various crack configurations, the local variation of the stress intensity factors resulting
from some small but otherwise arbitrary coplanar perturbation of the crack front. In this
work, we establish the expression of the variation of the mode I stress intensity factor
up to second order in the perturbation, in the specific case of a semi-infinite tensile crack
embedded in some infinite body. The treatment is basically simple and uses earlier results
of Rice [34]. Formulae are given in both the physical space and Fourier’s space. They differ
from earlier ones established by Adda-Bedia et al. [1] for the same problem, using a more
complex method of solution. Finite element computations performed for sinusoidal pertur-
bations support the new formulae, rather than the older ones. As an application, it is finally
shown that the mean value of the energy-release-rate along the front of a perturbed semi-
infinite tensile crack is exactly the same, up to second order in the perturbation, as if the
front were straight.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past 25 years, formulae providing the distribution of the stress intensity factors (SIFs) for planar cracks with slightly
perturbed fronts have received considerable attention. Such formulae have been established for a semi-infinite crack loaded
in mode I [33] or arbitrarily [9]; an internal circular crack loaded in mode I [10] or arbitrarily [8]; an external circular tensile
crack [11]; a tunnel-crack loaded in mode I [23] or arbitrarily [21,22]; a semi-infinite interface crack loaded arbitrarily
[19,20,28]; a pair of coplanar, parallel, identical tensile tunnel-cracks [31]; a pair of coplanar semi-infinite tensile cracks
[24]; and an emerging tensile crack lying on the mid-plane of a semi-infinite plate [26].

The existence of these formulae has opened the way to theoretical studies of the evolution in time of the deformation of
the front of cracks propagating in materials with heterogeneous fracture properties, in various situations: a tunnel-crack
loaded in mode I [7] or arbitrarily [30]; a semi-infinite interface crack loaded arbitrarily [29]; and a pair of coplanar
semi-infinite tensile cracks [25]. From a more practical point of view, Rice [33]’s formula for perturbation of a semi-infinite
tensile crack has also been extensively used to assist the interpretation of experiments of separation of bonded plates; see
the works of Schmittbuhl et al. [37], Tanguy et al. [39], Schmittbuhl and Vilotte [38], Krishnamurthy et al. [15], Roux et al.
[35], Schmittbuhl et al. [36], Charles et al. [5], Katzav and Adda-Bedia [13], Bonamy et al. [3], Laurson et al. [16], Ponson and
Bonamy [32], and the reviews of Alava et al. [2] and Lazarus [18]. Very recently, Patinet et al. [27] have extended these works
. All rights reserved.
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Nomenclature

A amplitude of the perturbation of the crack front
da(s) or da(z), Da(s) or Da(z) local infinitesimal or finite advance of the crack front
dK(s) or dK(z), DK(s) or DK(z) infinitesimal or finite variation of the local mode I stress intensity factor
/(s) or /(z) function characterizing the shape of the perturbed crack front
G(s) or G(z) local energy-release-rate
K(s) or K(z) local mode I stress intensity factor
K0, K1(s) or K1(z), K2(s) or K2(z) terms in the expansion of K(s) or K(z) in powers of A
ŵðkÞ Fourier transform of an arbitrary function w(z)
s curvilinear abscissa along the crack front
z Cartesian abscissa along the front of an unperturbed semi-infinite crack
Z(s,s

0
) or Z(z, z

0
) fundamental kernel

Z0(s, s
0
) or Z0(z, z

0
), Z1(s, s

0
) or Z1(z, z

0
), Z2(s, s

0
) or Z2(z, z

0
) terms in the expansion of Z(s, s

0
) or Z(z, z

0
) in powers of A
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by accounting for the effect of the finite dimensions of the specimens in such experiments, using Legrand et al. [26]’s exten-
sion of Rice [33]’s formula to perturbation of a tensile crack lying on the mid-plane of a plate.

One drawback of the application of the theoretical formulae mentioned above to the interpretation of various experi-
ments was that all of these formulae were accurate only to first order in the perturbation of the front, whereas there was
ample evidence that geometric nonlinearities played an important role in most of the experiments. Clearly, such interpre-
tations of experiments would greatly benefit from use of more accurate, higher-order formulae.

In spite of this, a single work may be found in the literature about the second-order coplanar perturbation of a crack,
namely that of Adda-Bedia et al. [1], later summarized by Katzav et al. [14], devoted to the case of a semi-infinite tensile
crack. Unfortunately these papers contained several incompatible second-order formulae. It therefore seems necessary to
re-examine the problem.

This paper is devoted to such a re-examination. The method of solution is based on direct and basically straightforward
use of earlier results of Rice [34], and is thus simpler in principle than that of Adda-Bedia et al. [1], which involved calculation
of the second derivatives of the Neuber–Papkovich potentials of the problem with respect to the amplitude of the perturba-
tion. It is therefore believed to be more reliable, and this will be confirmed by finite element computations supporting the
new formula that will be found, rather than the old ones.

The paper is organized as follows:

� Section 2 presents the results of Rice [34] which underlie the treatment. These results consist of two formulae providing,
for an arbitrary planar tensile crack, the infinitesimal variations of the mode I SIF and fundamental kernel (FK, to be defined
below) arising from some infinitesimal coplanar perturbation of the front.
� Section 3 then applies Rice [34]’s second formula to the calculation of the first-order expression of the FK for a semi-

infinite crack with a slightly perturbed front.
� Section 4 next presents the calculation of the second-order expression of the SIF for the same cracked geometry. The prin-

ciple consists in deducing from Rice [34]’s first formula, used with the first-order expression of the SIF and FK, the first-
order expression of the derivative of the SIF with respect to the amplitude of the perturbation, and then integrating.
� A Fourier transform of the formula found in Section 4 in the direction of the crack front, suggested by the natural trans-

latory invariance of the problem in this direction, is then performed in Section 5.
� The result of Section 5 is next specialized in Section 6 to the case of a sinusoidal perturbation. The expression found is

compared, together with the earlier ones of Adda-Bedia et al. [1] and Katzav et al. [14], to the results of some finite ele-
ment computations.
� As an application, we finally consider in Section 7 a semi-infinite tensile crack with a periodically but otherwise arbitrarily

perturbed front. It is shown that the mean value of the energy-release-rate along this front is exactly the same, up to sec-
ond order in the perturbation, as if it were straight.

2. Rice’s formulae

Consider a planar crack with arbitrary contour embedded in some isotropic elastic body X symmetric about the crack
plane (Fig. 1). Load the crack through some symmetric system of forces and/or displacements prescribed on X and/or oX.
The crack is then in a situation of pure mode I at each point of its front; let K0(s), s being some curvilinear abscissa along this
front, denote the local SIF.

Now let the front undergo some infinitesimal coplanar perturbation, the loading remaining fixed; let da(s) denote the lo-
cal orthogonal distance from the original front to the perturbed one (Fig. 1). Rice [34] has shown that under such conditions,
the infinitesimal variation dK of the local SIF is given by the following equation, referred to as Rice’s first formula in the sequel:



Ω

δa(s)

Fig. 1. An arbitrary planar crack with a slightly perturbed front in an arbitrary body.
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dKðs1Þ ¼ ½dKðs1Þ�daðsÞ�daðs1Þ;8s þ PV
Z

CF
Zðs1; sÞK0ðsÞ½daðsÞ � daðs1Þ�ds: ð1Þ
In this expression,

� the integral is taken over the crack front CF and the symbol PV
R

CF represents the Cauchy principal value of this integral;
� ½dKðs1Þ�daðsÞ�daðs1Þ;8s denotes the value of dK(s1) for a uniform advance of the front equal to da(s1)(da(s) � da(s1), "s);
� Z(s1, s) denotes the fundamental kernel (FK), tied to Bueckner’s mode I crack-face weight function.

The FK depends on the cracked geometry considered, but has no dependence upon the loading other than on which por-
tions of X and oX have forces versus displacements imposed. It satisfies the following general properties:
Zðs1; s2Þ ¼ Zðs2; s1Þ; Zðs1; s2Þ �
1

2pðs1 � s2Þ2
for s1 � s2 ! 0: ð2Þ
The second of these properties shows that the integral in Eq. (1) does make sense as a Cauchy principal value.
In addition, Rice [34] has shown that provided that the crack advance da(s) vanishes at points s1 and s2, the infinitesimal

variation of the FK is given by the following equation, referred to as Rice’s second formula in the sequel:
dZðs1; s2Þ ¼ PV
Z

CF
Zðs1; sÞZðs; s2ÞdaðsÞds: ð3Þ
Note that there are in fact two principal values here, at s = s1 and s = s2.
Rice’s formulae have been used by Bower and Ortiz [4] and Lazarus [17] to numerically calculate the SIF along the front of

planar tensile cracks with arbitrary contours. The method consisted in starting from some ‘‘reference’’ configuration of this
front for which the SIF and FK were known, and then gradually deforming it, updating the SIF and FK at each step, until the
configuration of interest was reached. The use made here of Rice’s formulae is a kind of analytical equivalent of this numer-
ical method, involving two steps of deformation only.

3. First-order variation of the fundamental kernel

3.1. Generalities

We now consider the specific case of a semi-infinite tensile crack embedded in some infinite body (Fig. 2). The loading
consists only of forces imposed at various locations in the body and/or on the crack faces (no prescribed displacements).
The initially straight crack front is displaced within the crack plane Oxz by a distance Da(z) of the form
DaðzÞ � A/ðzÞ; ð4Þ
A being a small, but not necessarily infinitesimal ‘‘amplitude’’ and /(z) a given smooth function.
The FK for this crack configuration is denoted Z(A; z1, z2), and our interest here lies in the first-order expression of

Z(A; z1, z2),



O

y

z

x
a(z)Δ

Fig. 2. A semi-infinite crack with a slightly perturbed front in an infinite body.
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ZðA; z1; z2Þ � Z0ðz1; z2Þ þ AZ1ðz1; z2Þ þ OðA2Þ: ð5Þ
More precisely, the expression of the FK Z0(z1, z2) for the unperturbed configuration of the crack is known to be [33,34]
Z0ðz1; z2Þ �
1

2pðz1 � z2Þ2
; ð6Þ
and we are looking for that of Z1(z1, z2).
3.2. Application of Rice’s second formula

To be applicable, Rice’s second formula (3) requires that the perturbation of the front be zero at those points z1, z2 where
the variation of the FK is to be evaluated; thus it does not directly apply to the arbitrary perturbation (4). To make up for this
difficulty, it suffices, following Rice [34]’s suggestion, to additively decompose the perturbation /(z) into two sub-
perturbations:

� one, /⁄(z), consisting of a suitable combination of a translatory motion and a rotation bringing points z1 and z2 to their
correct final positions, given by the two equivalent formulae
/�ðzÞ �
/ðz1Þ þ /ðz2Þ�/ðz1Þ

z2�z1
ðz� z1Þ

/ðz2Þ þ /ðz1Þ�/ðz2Þ
z1�z2

ðz� z2Þ;

8<: ð7Þ
� the other, /(z) � /⁄(z), bringing all points to their correct final positions while leaving points z1 and z2 fixed.

Since our interest lies only in the first-order expression of the FK, the variation of this FK may be obtained by simply add-
ing the variations arising from the two sub-perturbations. Now in the first sub-perturbation, the shape of the front is un-
changed, so that the FK remains identical, by Eq. (6), to the inverse of 2p times the squared distance between the points
considered; but the variation of this distance is zero to first order in A, so that the variation of the FK is zero. On the other
hand the second sub-perturbation induces a variation of the FK given by Rice’s second formula applied to the perturbation /
(z) � /⁄(z) instead of /(z). It follows that
Z1ðz1; z2Þ ¼
1

4p2 PV
Z þ1

�1

/ðzÞ � /�ðzÞ
ðz� z1Þ2ðz� z2Þ2

dz ð8Þ
where use has been made of Eq. (6).
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3.3. Transformation of the expression of Z1

Although Eq. (8) may directly be used to evaluate Z1(z1, z2) numerically, the presence of the rational function
1/[(z � z1)2(z � z2)2] in the integrand makes it unfit for any analytical calculation, whatever the form chosen for the function
/(z). To get a more convenient form, one must decompose this rational function into partial fractions:
1 The
1

ðz� z1Þ2ðz� z2Þ2
¼ 1

ðz1 � z2Þ2
1

ðz� z1Þ2
þ 1

ðz� z2Þ2

" #
þ 2

ðz1 � z2Þ3
1

z� z2
� 1

z� z1

� �
; ð9Þ
and then calculate the integrals of /(z) � /⁄(z) times the various fractions, using Eq. (7) for /⁄(z). When doing so, one must
beware that each of these integrals individually diverges at infinity, so that it is momentarily necessary to integrate between
large but finite bounds �L1, L2 before taking the limit L1, L2 ? +1 in the final combination of integrals.1 One thus gets for the
fractions 1/(z � z1) and 1/(z � z1)2, using expression (7)1 of /⁄(z):
R L2

�L1

/ðzÞ�/�ðzÞ
z�z1

dz ¼ PV
R L2
�L1

/ðzÞ
z�z1

dz� /ðz2Þ�/ðz1Þ
z2�z1

ðL1 þ L2Þ � /ðz1Þ ln L2�z1
L1þz1

PV
R L2
�L1

/ðzÞ�/�ðzÞ
ðz�z1Þ2

dz ¼ PV
R L2
�L1

/ðzÞ�/ðz1Þ
ðz�z1Þ2

dz� /ðz2Þ�/ðz1Þ
z2�z1

ln L2�z1
L1þz1

8<:

plus, using Eq. (7)2, similar expressions for the fractions 1/(z � z2) and 1/(z � z2)2. Using then Eq. (9) and noting that the
terms proportional to L1 + L2 in the integrals of [/(z) � /⁄(z)]/(z � z1) and [/(z) � /⁄(z)]/(z � z2) cancel out, one gets
PV
Z L2

�L1

/ðzÞ � /�ðzÞ
ðz� z1Þ2ðz� z2Þ2

dz ¼ 1

ðz1 � z2Þ2
PV
Z L2

�L1

/ðzÞ � /ðz1Þ
ðz� z1Þ2

dzþ PV
Z L2

�L1

/ðzÞ � /ðz2Þ
ðz� z2Þ2

dz

" #

þ 2

ðz1 � z2Þ3
PV
Z L2

�L1

/ðzÞ
z� z2

dz� PV
Z L2

�L1

/ðzÞ
z� z1

dz
� �

� 1

ðz1 � z2Þ2
/ðz2Þ � /ðz1Þ

z2 � z1
ln

L2 � z1

L1 þ z1
þ /ðz1Þ � /ðz2Þ

z1 � z2
ln

L2 � z2

L1 þ z2

� �
þ 2

ðz1 � z2Þ3
/ðz1Þ ln

L2 � z1

L1 þ z1
� /ðz2Þ ln

L2 � z2

L1 þ z2

� �
:

It is easy to check that the sum of the logarithmic terms here goes to zero in the limit L1, L2 ? +1. One thus gets in this limit,
by Eq. (8):
Z1ðz1; z2Þ ¼
1

4p2ðz1 � z2Þ2
PV
Z þ1

�1

/ðzÞ � /ðz1Þ
ðz� z1Þ2

þ /ðzÞ � /ðz2Þ
ðz� z2Þ2

þ 2
z1 � z2

/ðzÞ
z� z2

� /ðzÞ
z� z1

� �" #
dz

¼ 1

4p2ðz1 � z2Þ2
PV
Z þ1

�1

1
z� z1

þ 1
z� z2

� �
/0ðzÞ þ 2

z1 � z2

1
z� z2

� 1
z� z1

� �
/ðzÞ

� �
dz; ð10Þ
where the last expression follows from integration by parts of the first two terms in the preceding integral.

4. Second-order variation of the stress intensity factor

We now study the SIF K(A;z1) for a semi-infinite tensile crack with a front perturbed in the same way as before, Eq. (4).
Unlike the FK, this SIF depends on the loading imposed. For simplicity, this loading will be assumed to be such that the dis-
tribution of the SIF along the front be invariant when it is displaced by a uniform distance in the direction x, be it straight or
not; the first, non-integral term in Rice’s first formula (1) is then zero, whatever the initial configuration of the front consid-
ered. Also, the unperturbed SIF will be assumed to be uniform along the front.

The topic of interest here is the second-order expression of K(A;z1),
KðA; z1Þ � K0 þ AK1ðz1Þ þ A2K2ðz1Þ þ OðA3Þ: ð11Þ
More specifically, K0 is assumed to be known, the expression of K1(z1) directly results from Rice’s first formula:
K1ðz1Þ ¼
K0

2p
PV
Z þ1

�1

/ðzÞ � /ðz1Þ
ðz� z1Þ2

dz ¼ K0

2p
PV
Z þ1

�1

/0ðzÞ
z� z1

dz; ð12Þ
and we are looking for that of K2(z1).
To determine the expression of K2(z1), consider a primary perturbation of the front of the form (4), upon which is added a

secondary perturbation
limit will be perfectly defined since the integral in Eq. (8) is convergent at infinity, its integrand behaving like jzj�3 by Eq. (7).
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daðzÞ � dA /ðzÞ ð13Þ
having the same function /(z) as the primary one, but some now infinitesimal amplitude dA. Then Rice’s first formula, applied
to the variation of the SIF resulting from the additional perturbation, provides, upon division by dA, the value of the deriv-
ative (@K/@A)(A;z1). The formula involves the SIF and FK for the primarily perturbed configuration of the front. If expressions
of these quantities accurate to first order in A are used, the result is the first-order expression of (@ K/@A)(A;z1).2

One thus gets
@K
@A
ðA; z1Þ ¼ PV

Z þ1

�1
½Z0ðz1; zÞ þ AZ1ðz1; zÞ�½K0 þ AK1ðzÞ�½/ðzÞ � /ðz1Þ�dzþ OðA2Þ

¼ K0 PV
Z þ1

�1
Z0ðz1; zÞ½/ðzÞ � /ðz1Þ�dzþ A PV

Z þ1

�1
½Z0ðz1; zÞK1ðzÞ þ Z1ðz1; zÞK0�½/ðzÞ � /ðz1Þ�dzþ OðA2Þ:
Integration with respect to A then yields
KðA; z1Þ ¼ K0 þ AK0 PV
Z þ1

�1
Z0ðz1; zÞ½/ðzÞ � /ðz1Þ�dzþ A2

2
PV
Z þ1

�1
½Z0ðz1; zÞK1ðzÞ þ Z1ðz1; zÞK0�½/ðzÞ � /ðz1Þ�dz

þ OðA3Þ;
so that
K2ðz1Þ ¼
1
2

PV
Z þ1

�1
½Z0ðz1; zÞK1ðzÞ þ Z1ðz1; zÞK0�½/ðzÞ � /ðz1Þ�dz:
The final expression of K2(z1) is then obtained by using the expressions (6), (10) and (12) of Z0,Z1 and K1:
K2ðz1Þ ¼
K0

8p2 PV
Z þ1

�1

Z þ1

�1

1
z0 � z1

þ 2
z0 � z

� �
/0ðz0Þ þ 2

z� z1

1
z0 � z1

� 1
z0 � z

� �
/ðz0Þ

� �
/ðzÞ � /ðz1Þ
ðz� z1Þ2

dzdz0: ð14Þ
This expression differs from, and is more complex than, formulae (34) and (35) of Bedia et al. [1] (which are themselves
distinct).

5. Formulae in Fourier’s space

The potential usefulness of a formula for the Fourier transform of the second-order variation K2(z1) in the direction of the
crack front is strongly suggested by the natural invariance of the problem in this direction. Such a formula for the first-order
variation K1(z1) has already been extensively used in the literature and proven very useful.

The definition of the Fourier transform ŵðkÞ of an arbitrary function w(z) adopted here is
wðzÞ �
Z þ1

�1
ŵðkÞeikzdk () ŵðkÞ � 1

2p

Z þ1

�1
wðzÞe�ikzdz: ð15Þ
For completeness, we first recall the classical expression of the Fourier transform of the first-order variation (see e.g. Lazarus
[18]):
 cK1ðkÞ ¼ �K0 jkj

2
/̂ðkÞ: ð16Þ
This expression is easily established by expressing the function / in Eq. (12)2 in terms of its Fourier transform /̂, and then
calculating the integral
PV
Z þ1

�1

eikz

z� z1
dz ¼ eikz1 PV

Z þ1

�1

eikðz�z1Þ

z� z1
dz ¼ eikz1 PV

Z þ1

�1

cosðkz0Þ þ i sinðkz0Þ
z0

dz0 ¼ i sgnðkÞeikz1

Z þ1

�1

sin u
u

du

¼ ip sgnðkÞeikz1 ð17Þ

where sgn (x) denotes the sign of x.

To get the expression of the Fourier transform of the second-order variation, the simplest method again consists in
expressing /(z) and /(z0) in Eq. (14) in terms of the Fourier transform /̂:
K2ðz1Þ ¼
K0

8p2

Z þ1

�1

Z þ1

�1
PV
Z þ1

�1

Z þ1

�1

1
z0 � z1

þ 2
z0 � z

� �
ik0/̂ðk0Þeik0z0

��
þ 2

z� z1

1
z0 � z1

� 1
z0 � z

� �
/̂ðk0Þeik0z0

�
/̂ðkÞ e

ikz � eikz1

ðz� z1Þ2
dzdz0

)
dkdk0:
e that Rice’s formula may safely be applied using the infinitesimal distance between the fronts and the infinitesimal length element measured
icularly to, and along the Oz axis, respectively, instead of the true ones measured perpendicularly to, and along the primarily perturbed front; indeed
rs made are of second order in A.
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Performing the integration on z0, we obtain upon use of Eq. (17):
K2ðz1Þ ¼
K0

8p

Z þ1

�1

Z þ1

�1
sgnðk0Þ PV

Z þ1

�1
�k0ðeik0z1 þ 2eik0zÞ þ 2i

z� z1
ðeik0z1 � eik0zÞ

� �
eikz � eikz1

ðz� z1Þ2
dz

( )
/̂ðkÞ /̂ðk0Þ dkdk0:
To now integrate on z, one must calculate the three integrals
PV
Z þ1

�1

eikz � eikz1

ðz� z1Þ2
dz; PV

Z þ1

�1

eik0zðeikz � eikz1 Þ
ðz� z1Þ2

dz; PV
Z þ1

�1

ðeik0z1 � eik0zÞðeikz � eikz1 Þ
ðz� z1Þ3

dz;
this is easily done through integrations by parts and repeated use of formula (17). The result for K2(z1) reads
K2ðz1Þ ¼
K0

8

Z þ1

�1

Z þ1

�1
½sgnðkÞsgnðk0Þkðkþ k0Þ þ sgnðk0Þsgnðkþ k0Þðk02 � k2Þ � k02�/̂ðkÞ/̂ðk0Þeiðkþk0Þz1 dkdk0:
A nicer formula may be obtained by grouping the terms (k, k0) and (k0, k) together in the double integral, which is equivalent
to ‘‘symmetrizing’’ the term [. . .] with respect to k and k0:
K2ðz1Þ ¼
K0

8

Z þ1

�1

Z þ1

�1
Fðk; k0Þ /̂ðkÞ/̂ðk0Þeiðkþk0 Þz1 dkdk0 ð18Þ
where
Fðk; k0Þ � 1
2
fsgnðkÞsgnðk0Þðkþ k0Þ2 þ ½sgnðkÞ � sgnðk0Þ�sgnðkþ k0Þðk2 � k02Þ � k2 � k02g; ð19Þ
the values of this function in the various regions of the plane (k, k0) are illustrated in Fig. 3. Using the change of variable
k1 � k + k0, the preceding expression of K2(z1) may be rewritten in the form
K2ðz1Þ ¼
K0

8

Z þ1

�1

Z þ1

�1
Fðk; k1 � kÞ/̂ðkÞ/̂ðk1 � kÞ dk

� �
eik1z1 dk1;
which implies, upon comparison with the definition (15)1 of the Fourier transform, that
cK2ðk1Þ ¼
K0

8

Z þ1

�1
Fðk; k1 � kÞ /̂ðkÞ/̂ðk1 � kÞdk: ð20Þ
Again, this expression differs from formulae (36) of Adda-Bedia et al. [1] and (6) of Katzav et al. [14] (which are themselves
distinct).
2−2k’  −kk’

2−2k’  −kk’

−2k  −kk’2

−2k  −kk’2

k

k’

kk’

kk’

O

Fig. 3. Values of the function F(k, k0) in the plane (k, k0).
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6. Case of a sinusoidal perturbation – numerical validation

The formulae found for the second-order variation of the SIF ( (14) or equivalently (20)) will now be validated through
finite element calculations performed for a sinusoidal perturbation of the front.

The first task is to apply these formulae to such a perturbation. We therefore consider the case where the functions /(z)
and /̂ðkÞ are of the form
3 Imp
in trans
/ðzÞ � cosðk0zÞ () /̂ðkÞ � 1
2
½dðk� k0Þ þ dðkþ k0Þ� ð21Þ
where k0 is a positive number and d denotes Dirac’s function. The first-order variation of the SIF then follows from combi-
nation of Eq. (15)1, (16) and (21)2:
K1ðz1Þ
K0 ¼ �

Z þ1

�1

jkj
4
½dðk� k0Þ þ dðkþ k0Þ�eikz1 dk ¼ � k0

2
cosðk0z1Þ;
and the second-order variation from combination of Eq. (18) (equivalent to (20)), (19) and (21)2:
K2ðz1Þ
K0 ¼ 1

32

Z þ1

�1

Z þ1

�1
Fðk; k0Þ½dðk� k0Þ þ dðkþ k0Þ�½dðk0 � k0Þ þ dðk0 þ k0Þ�eiðkþk0Þz1 dk dk0

¼ 1
32
½Fðk0; k0Þe2ik0z1 þ Fð�k0;�k0Þe�2ik0z1 þ Fðk0;�k0Þ þ Fð�k0; k0Þ� ¼

k2
0

32
ðe2ik0z1 þ e�2ik0z1 � 2Þ ¼ � k2

0

8
sin2ðk0z1Þ:
The second-order expansion of the SIF follows from these expressions:
KðA; z1Þ
K0 ¼ 1� A

k0

2
cosðk0z1Þ � A2 k2

0

8
sin2ðk0z1Þ þ OðA3Þ: ð22Þ
The numerical computation will provide the local value of the energy-release-rate G(A; z1) rather than that of the SIF. The
second-order expansion of G(A; z1) is readily deduced from that of the square of the SIF, itself resulting from Eq. (22):
KðA; z1Þ
K0

� �2

¼ 1� Ak0 cosðk0z1Þ � A2 k2
0

4
sin2ðk0z1Þ þ A2 k2

0

4
cos2ðk0z1Þ þ OðA3Þ

¼ 1þ A2 k2
0

4
� Ak0 cosðk0z1Þ � A2 k2

0

2
sin2ðk0z1Þ þ OðA3Þ

) GðA; z1Þ
G0 ¼ A0 � A1 cosðk0z1Þ � A2 sin2ðk0z1Þ þ OðA3Þ;

A0 � 1þ A2 k2
0

4

A1 � Ak0

A2 � A2 k2
0

2

8>><>>: ð23Þ
where G0 denotes the unperturbed energy-release-rate. The comparison with the numerical computations will be performed
on the two ratios A1/A0 and A2/A1, the theoretical values of which are
A1

A0
¼ Ak0

1þ A2k2
0=4

;
A2

A1
¼ Ak0

2
: ð24Þ
Using the finite element code CAST3M developed by the French Commissariat à l’Energie Atomique (CEA), finite element
computations are performed for elastic blocks of the type shown in Fig. 4. The blocks contain an emerging crack the front
of which is perturbed according to Eq. (21)1. Because of the periodicity of the problem in the z direction, only one slice of
material lying between the planes z = 0 and z = k, where k � 2p/k0 denotes the period, is meshed; periodic boundary condi-
tions are imposed on these planes. The other dimensions, that is the depth a of the crack, the length b of the unbroken lig-
ament ahead of the crack front, and the thickness 2h of the block in the vertical direction, are all taken much larger than the
period k in order to simulate an infinite body.

Two types of computations are performed with different boundary conditions on the two halves of the left boundary
x = �a: opposite bending moments versus opposite vertical displacements. The two types of conditions must yield identical
results for large values of the ratios a/k,b/k and h/k, and this serves as a test that the values chosen are acceptable.

The two types of computations also use different dimensions, meshes and types of elements. In these involving prescribed
moments, the values of the ratios a/k,b/k and h/k are 50, 50 and 10 respectively, and the mesh consists of 96,000 bilinear 6-
node prismatic elements and 53,346 nodes. In those involving prescribed displacements, the values a/k = 3200,3 b/k = 3200,
h/k = 32 are used, and the mesh consists of 530,100 bilinear 8-node parallelepipedic elements and 598,353 nodes. In both cases
the elements are strictly prismatic or parallelepipedic only for the unperturbed straight configuration of the front; for the per-
turbed configuration the same mesh is used with a slight distortion of elements.
osing vertical displacements rather than bending moments makes it necessary to use a much larger value of a/k, in order to ensure invariance of the SIF
latory motions of the front in the x direction.
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Fig. 4. Geometry considered for the numerical validation.
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A value of 0.3 is used for Poisson’s ratio; the developments above make it clear that the expansion of the SIF is in fact
independent of this value. In view of the linearity of the problem, arbitrary values are chosen for the bending moments
or vertical displacements imposed.

Local values of the energy-release-rate along the crack front are evaluated using Destuynder et al. [6]’s G � h method, the
accuracy of which is well established.

Fig. 5 illustrates the results obtained by prescribing bending moments, with a value of the ‘‘normalized amplitude of per-
turbation’’ A/k of 0.1. The quantity on the horizontal axis is the normalized distance along the crack front, z1/k, and that on
the vertical axis is the energy-release-rate G(A; z1), expressed in arbitrary units because of the arbitrariness of the magnitude
of the loading. The dark blue curve represents numerical results and the red one the sinusoidal approximation of these re-
sults having the same maxima and minima. The notable gap between the two is a clear indication that the sinusoidal var-
iation predicted by the first-order expression of G(A;z1)/G0 represents only a mediocre approximation, and that second-order
effects are important.

The numerical values of the ratios A1/A0 and A2/A1 may easily be deduced from Fig. 5. Indeed the sinusoidal approximation
of G(A; z1)/G0 having the same maxima and minima as the true expression (23) of this ratio is simply that obtained by dis-
carding the term �A2sin2(k0z1) in this expression, since this term is precisely zero at the maxima and minima. Hence the red
curve simply corresponds to this simplified expression. This means that A0 and A1 may be identified to the mean value and
amplitude of the sinusoidal function represented by the red curve, that is half of the sum and difference of its extremal val-
ues. Also, A2 may be identified to the maximum vertical gap between the red and dark blue curves.

The numerical values of the ratios A1/A0 and A2/A1 determined in this way, together with the theoretical values predicted
by Eq. (24), are as follows:
ðA1=A0Þnum ¼ 0:571

ðA1=A0Þtheor ¼ 0:572

(
;

ðA2=A1Þnum ¼ 0:306

ðA2=A1Þtheor ¼ 0:314:

(
ð25Þ
The very good agreement appearing here strongly suggests that all theoretical formulae for the perturbed SIF, (12) and (16)
at order 1, (14) and (20) at order 2, are correct. In contrast, formulae (34)–(36) of Adda-Bedia et al. [1] and (6) of Katzav et al.
[14] yield the following theoretical values of the ratio A2/A1:Ak0, Ak0, 3Ak0/2, Ak0, respectively; these values differ from the
numerical result (25)3 by a factor of 2 or 3.

As a complement, Figs. 6 and 7 show some results obtained by prescribing vertical displacements. The quantities repre-
sented are the numerical values of the ratios A1/A0 and A2/A1, plotted versus the normalized amplitude of perturbation A/k
and compared to the theoretical values provided by Eq. (24). These equations can be observed to provide very good values of
A1/A0 and A2/A1 up to A/k = 0.20; this means that the second-order formula (23) for G(A; z1)/G0 gives an accurate represen-
tation of this quantity even for normalized amplitudes which are no longer truly small. This is remarkable in view of the fact



Fig. 6. Ratio A1/A0 as a function of the normalized amplitude – numerical results versus theoretical expression.

Fig. 5. Distribution of the energy-release-rate along the front – numerical results and sinusoidal approximation.

Fig. 7. Ratio A2/A1 as a function of the normalized amplitude – numerical results versus theoretical expression.
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that for such amplitudes, the variation of G(A; z1)/G0 along the crack front is quite large: see Fig. 5 where, even for a lower
normalized amplitude A/k = 0.1, the ratio of the maximum to minimum values of G(A; z1)/G0 is already of the order of 4.

7. An application

As an example of an application, we wish to compare the average values of the energy-release-rate G(A; z1) along the front
of a semi-infinite tensile crack in its unperturbed, straight configuration and some arbitrarily perturbed one. More precisely,
we shall show that the two mean values are exactly the same up to second order in the perturbation, provided that they are
taken with the same infinitesimal weight dz. (The other possible choice, for the curved front, is the infinitesimal length ele-
ment ds; the difference between the two quantities is of order O(A2) and therefore significant).

The definition of the average value of a function defined on the entire real line and varying arbitrarily over it raises dif-
ficulties. In order to circumvent them, we shall assume the crack front perturbation to be periodic, of period 2p/k0 where k0 is
a positive number; the functions /(z) and /̂ðkÞ are then of the form
/ðzÞ �
Xþ1

n¼�1
aneink0z () /̂ðkÞ ¼

Xþ1
n¼�1

andðk� nk0Þ: ð26Þ
The energy-release-rate is then also periodic, and its average value over the entire front may be unambiguously defined as its
average value over a period.

To derive the expression of this average value, one must use the second-order expansion of the square of the SIF, which
reads by Eq. (11):
KðA; z1Þ
K0

� �2

¼ 1þ 2A
K1ðz1Þ

K0 þ 2A2 K2ðz1Þ
K0 þ A2 K1ðz1Þ

K0

" #2

þ OðA3Þ: ð27Þ
It is thus necessary to evaluate the average values of K1(z1)/K0, [K1(z1)/K0]2 and K2(z1)/K0.
To calculate the first one, note that by Eqs. (15)1, (16) and (26)2,
K1ðz1Þ
K0 ¼ �

Z þ1

�1

jkj
2

/̂ðkÞeikz1 dk ¼ �1
2

Xþ1
n¼�1

jnjank0eink0z1 : ð28Þ
Now the average value of eink0z1 is zero or unity depending on whether n differs from, or is equal to zero. Thus in the sum
above, only the term n = 0 could yield a nonzero contribution to the average value, but it does not because of the factor
jnj = 0; therefore
K1ðz1Þ
K0

* +
¼ 0: ð29Þ
Also, Eq. (28) implies that
K1ðz1Þ
K0

" #2

¼ 1
4

Xþ1
m¼�1

Xþ1
n¼�1

jmnjamank2
0eiðmþnÞk0z1 :
In this double sum, the sole nonzero contributions to the average value arise from the pairs (m, n) = (�n, n). It follows that
K1ðz1Þ
K0

" #2* +
¼ 1

4

Xþ1
n¼�1

n2janj2k2
0 ð30Þ
where use has been made of the fact that a�n ¼ an since / is a real function.
Finally, combination of Eqs. (18) and (26)2 yields
K2ðz1Þ
K0 ¼ 1

8

Z þ1

�1

Z þ1

�1
Fðk; k0Þ

Xþ1
m¼�1

Xþ1
n¼�1

amdðk�mk0Þandðk0 � nk0Þ
 !

eiðkþk0 Þz1 dkdk0

¼ 1
8

Xþ1
m¼�1

Xþ1
n¼�1

Fðmk0;nk0Þaman eiðmþnÞk0z1 :
Again, the sole nonzero contributions to the average value arise from the pairs (m, n) = (�n, n) so that
K2ðz1Þ
K0

* +
¼ 1

8

Xþ1
n¼�1

Fð�nk0;nk0Þa�nan ¼ �
1
8

Xþ1
n¼�1

n2janj2k2
0 ð31Þ
where Eq. (19) (or Fig. 3) has been used.
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Combining Eqs. (27), (29), (30) and (31), one sees that
KðA; z1Þ
K0

� �2
* +

� GðA; z1Þ
G0

� �
¼ 1þ OðA3Þ ð32Þ
where G0 denotes the unperturbed energy-release-rate; this establishes the property announced.
The meaning of this property is that when the crack front propagates without any deformation over some pre-specified

distance a under constant loading, the total (elastic + potential) energy released is independent of whether this front is
straight or (periodically) curved.

This result could be anticipated using a simple argument sketched in a paper of Gao and Rice [12] and explained in more
detail below. Fig. 8 shows the trace of the crack plane within a slice of material of thickness equal to the period k of the crack
front perturbation, and four possible configurations of the front, two straight ones S1, S2 separated by a distance of a, and two
identically curved ones C1, C2 separated by the same distance.

The loading being fixed, let W1
S and W2

S denote the total (elastic + potential) energies of the slice for the configurations S1

and S2 of the front, and W1
C and W2

C those for the configurations C1 and C2. By definition of the energy-release-rate,
W1
S �W2

S ¼ G0ak; W1
C �W2

C ¼ hGðA; z1Þiak
where the average value is taken with the infinitesimal weight dz (not ds). Taking the difference between these equations,
one gets
W1
C �W1

S � W2
C �W2

S

	 

¼ ½hGðA; z1Þi � G0�ak:
But the difference W1
C �W1

S represents the variation of energy of the slice caused by the deformation of the front from the
straight configuration S1 to the curved one C1; and W2

C �W2
S admits a similar interpretation. Now the invariance of the prob-

lem in the direction x implies that such a difference is unaffected by translatory motions of the front in this direction, so that
W1

C �W1
S ¼W2

C �W2
S . The preceding equation then implies that
hGðA; z1Þi ¼ G0: ð33Þ
This reasoning makes it clear that the property discussed is related to the invariance of the problem considered in the direc-
tion of crack propagation, and would not subsist for other geometries and/or loadings. On the other hand it may be observed
to be independent of the magnitude of the perturbation, and thus hold at all orders in A.

A final observation is that unlike formulae (14) and (20), none of those of Adda-Bedia et al. [1] and Katzav et al. [14] sat-
isfies property (32). This brings additional support to the former formulae since the correctness of the property has been
established by independent means.
8. Conclusion

This paper was devoted to some re-derivation of the expression of the second-order variation of the local stress intensity
factor (SIF) resulting from coplanar perturbation of the front of a semi-infinite tensile crack in some infinite body. The task
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seemed necessary in view of the fact that the earlier work of Adda-Bedia et al. [1] on the topic, as well as Katzav et al. [14]’s
summary of it, contained inconsistencies.

The method of derivation, which consisted in some basically straightforward application of some results of Rice [34], was
simpler in principle than that of Adda-Bedia et al. [1], which implied calculation of the second derivatives of the Neuber–
Papkovich potentials of the problem with respect to the amplitude of the perturbation.

The results of Rice [34] used were twofold. The first one was a formula for the infinitesimal variation of the local mode I
SIF resulting from infinitesimal coplanar perturbation of an arbitrary planar crack, involving the fundamental kernel (FK) of
the cracked geometry considered. The second one was a similar formula for the infinitesimal variation of the FK.

In a first step, Rice’s second formula was used to derive an expression of the FK for a semi-infinite crack with a slightly
curved front, accurate to first order in the deviation from straightness.

In a second step, Rice’s first formula was applied to the same perturbed configuration of the front with the first-order
expressions of the SIF and FK, to derive the first-order expression of the derivative of the SIF with respect to the amplitude
of the perturbation. Integration with respect to this amplitude then yielded the second-order expression of the perturbed SIF.

A Fourier transform of this second-order expression in the direction of the crack front, suggested by the natural invariance
of the problem in this direction, was then performed.

The next step consisted in applying the formula for the Fourier transform of the second-order variation of the local SIF to
some sinusoidal perturbation of the front. Finite element computations were then performed for solid blocks of large dimen-
sions, simulating an infinite body, and containing such a sinusoidally perturbed crack. The numerical results were found to
bring support to the new formula for the second-order variation of the local SIF, rather than the earlier ones of Adda-Bedia
et al. [1], and Katzav et al. [14].

As a final application, we considered a semi-infinite crack with a periodically perturbed front, and calculated the average
value of the energy-release rate along this front up to second order in the deviation from straightness. This average value was
found to exactly coincide with that for a straight front, and a simple rationale for the coincidence was provided. This obser-
vation and explanation brought additional support to the new formula for the second-order variation of the local SIF.
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