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Faraday wave lattice as an elastic metamaterial
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Metamaterials enable the emergence of novel physical properties due to the existence of an underlying
subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular
pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are
analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion
relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism
combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase
speed, revealing that the liquid interface behaves as an elastic metamaterial.

DOI: 10.1103/PhysRevE.93.050202

Introduction. An artificial material made of organized sub-
wavelength functional building blocks is called a metamaterial
[1,2] when it exhibits properties that differ greatly from that of
the unit cell. These new physical properties are intrinsic of the
presence of an underlying structure. Although metamaterials
are still strongly associated with negative index materials
in optics [3], they also refer to structures with mechanical
[4], acoustic [5], or even thermodynamic properties [6]. By
engineering building blocks from micro to metric scale, several
new mechanical properties emerge in metamaterials, such as
cloaking in elastic plates [7], auxetic behavior [8,9], ultralight
materials [10], or seismic wave control [11]. So far the main
challenge has been to design appropriate unit cells to obtain
efficient metamaterial constructions. Here, we propose an
approach that uses stationary waves to produce the underlying
structure of a macroscopic metamaterial.

Spatial patterns arising in systems driven away from
equilibrium have been extensively studied over the last two
decades [12]. The Faraday instability is often used as a
model system in nonlinear physics and the patterns emerging
from a vertically vibrated fluid layer are well documented
[13–17]. This hydrodynamic instability appears at the interface
between two fluids subjected to a vertical oscillation. Above
a certain threshold of acceleration ac, the surface shows a
stationary deformation that oscillates at half the excitation
frequency. This pattern is both stable in time and regular in
space, with a Faraday wavelength λF defined by the inviscid
gravity-capillary wave dispersion relation

ω2
F =

(
gkF + σ

ρ
k3
F

)
tanh(kF h), (1)

where kF = 2π/λF is the Faraday wave number, g =
9.81 m s−2 is the acceleration of gravity, σ is the surface tension
of the fluid, h the fluid depth, and ρ its density. For specific
experimental conditions, one can achieve the formation of well
structured and stable patterns (squares, hexagons, triangles...
[15]). Although the pattern selection of this instability is
quite complex, for a square vessel it is most often a square
pattern that is obtained, with its two main directions aligned
with the sides of the container. The pattern becomes unstable

upon increasing the driving amplitude, and leads to a chaotic
state [18] called “defect-mediated turbulence” [19,20]. For
the Faraday instability the mechanism of transition to chaos
has been studied in [21]. It is found to be achieved by
a phase instability called oscillatory transition phase. This
oscillatory regime exhibits transverse waves with properties
reminiscent to that of waves in an elastic crystalline solid [21].
The same analogy was developed for a square pattern in a
vertically oscillating granular layer where phonons have been
evidenced [22].

Similar oscillatory motions were observed and character-
ized in one-dimensional systems such as Faraday instability
in an annular cell [23], Taylor-Couette [24], falling liquid
columns [25], Rayleigh-Bénard convection rolls [26], and
viscous fingering [27]. Very few two-dimensional (2D) sys-
tems exhibit this kind of secondary oscillatory modes: liquid
columns [28], bouncing droplets crystalline aggregates [29],
and vibrated granular materials [22].

In this Rapid Communication, we first characterize the
spontaneous in-plane transverse waves that the Faraday struc-
ture exhibits. We study their propagation in the 2D structure
and link their existence to the emergence of an effective elastic
shear modulus of the fluid-air interface confirming previous
hypotheses [20,27]. We furthermore propose a physical in-
terpretation that quantifies the appearance of this effective
mechanical property revealing that a Faraday wave lattice
behaves as an elastic metamaterial.

Experimental setup. Our experimental setup consists of
a square vessel (13 cm × 13 cm) filled with a thin layer of
silicone oil (viscosity η = 5 mPa s, density ρ = 0.965 kg L−1,
and surface tension σ = 20.9 mN m−1) of thickness
h = 3–5 mm. The vessel is mounted on a vibration exciter
(Brüel & Kjær), driven with a computer-controlled amplifier.
The acceleration delivered by the vibration exciter is moni-
tored using a calibrated accelerometer. The bath acceleration
a cos 2πf0t is sinusoidal, with frequency f0 ranging from
72 to 120 Hz. Above a given threshold acceleration ac, the
liquid interface spontaneously destabilizes and presents a
regular square pattern of standing waves [see Fig. 1(a)] with
Faraday frequency fF = f0/2. The size of the pattern is
about 25 × 25 Faraday wavelengths. We define the normalized
control parameter as ε = (a − ac)/ac.
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FIG. 1. (a) Side view of the standing Faraday instability wave
pattern obtained for ε > 0 at f0 = 72 Hz. The length of the white
segment represents the Faraday wavelength (here λF = 5.1 mm).
(b) Sketch of the experimental setup. (c) Top view of the stable
square pattern. The white segment has a length equal to λF = 5.1 mm.
(d) Top view of the oscillating Faraday pattern. The white segment
has a length equal to 4λF = 20.4 mm, which is the wavelength of the
spontaneous oscillations.

The setup and its imaging system are schematically shown
in Fig. 1(b). Diffused white light is shone on the container
with a uniform square light-emitting diode light and a beam
splitter inclined at 45◦ enables us to image the vessel from the
top, using a 2048 × 2048 pixels CCD camera. This imaging
technique is the same as presented in [16]. An example of the
stable pattern obtained is shown in Fig. 1(c), where only a
few wavelengths are represented. This image is obtained by
strobing the motion at an appropriate frequency, i.e., 18 Hz
when the forcing frequency f0 is 72 Hz and 30 Hz when the
forcing frequency f0 is 120 Hz. Each white dot corresponds to
a horizontal slope of the fluid interface, whether a maximum,
a minimum, or a saddle point [16]. There are four white spots
per Faraday unit cell [Fig. 1(c)]. Though it does not provide
any quantitative information about the wave amplitude in the
z direction, we obtain quantitative information about the in-
plane location of all the local extrema of the wave pattern.

Spontaneous secondary instability. Upon increasing the
driving amplitude to about twice the threshold value, spon-
taneous oscillations of the square lattice appear [Fig. 1(d) and
Supplemental Material movies 1 and 2 [30]]. These oscilla-
tions are in-plane modulations of the pattern along its two
main directions. They exhibit a spatial periodicity λ = 4λF ,
corresponding to the white segment presented in this figure.
We label each bright spot with indices (m,n) and we detect
their in-plane position [xmn(t),ymn(t)] using a standard custom
MATLAB algorithm. A typical spectrum corresponding to the
parameters of Fig. 1(d) is presented in Fig. 2(a). The measured
frequency is f = 1.52 Hz with an amplitude of 0.07λF . To
analyze in more detail the spatial structure of the lattice
dynamics, we perform spatiotemporal Fourier transforms by

(a) (b)

(c)

FIG. 2. The forcing frequency is f0 = 72 Hz for this figure.
(a) Typical Fourier spectrum x̃mn(ω) of the peak (18,18) in the
center of the pattern. (b) Modulus of spatial Fourier 2D spectrum
|ŷ(kx,ky,f )| for ε = 0.976, averaged for f = 1.52 ± 0.1 Hz. Open
diamonds show the position of the Fourier peaks for a stable pattern
[Fig. 1(c)]. (c) Amplitude of the spontaneous vibration as a function
of the normalized control parameter, averaged over all the antinodes
of the lattice. The up (red) and down (blue) triangles correspond to
|ỹ| and |x̃|, respectively. Dashed line is a square root fit. Gray shades
denote (from left to right) stable pattern, spontaneous vibrations of
the lattice, and chaotic behavior.

carrying out two Fourier analyses, first in time and then in
space. The spatial spectrum of the pattern is then computed for
each strobed frequency. In Fig. 2(b) we show a typical spatial
2D spectrum obtained at 1.52 ± 0.1 Hz. The Fourier peaks
corresponding to the stable Faraday pattern (open diamonds)
are split into two symmetric subpeaks indicating the standing
nature of the pattern oscillations. These subpeaks are located
at a distance kf /4 from the original one, confirming the
wavelength selection observed in Fig. 1(d). The peak in the
kx direction (respectively, ky) is split in the ky direction
(respectively, kx) revealing that the spontaneous oscillations
correspond to the propagation of a standing transverse wave
in the initial Faraday square lattice. These spontaneous
oscillations of the pattern correspond to a Hopf bifurcation
[21] that takes place close to the threshold of transition to
chaos. This is confirmed when measuring their amplitude at
the vibration frequency as a function of the control parameter
ε, where we observe the supercritical nature of this bifurcation
[Fig. 2(c)]. This figure also shows that the amplitude of the
vibrations is the same for both directions. At ε � 1, the pattern
becomes unstable and we observe the formation of defects. We
note that this threshold value is different from what was found
elsewhere [18,21] as it depends on the depth of the liquid layer,
the fluid viscosity, and the forcing frequency.
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Here, we want to point out that the spontaneous oscillations
occur at a frequency f much lower than the Faraday frequency
fF , whereas their spatial wavelength λ = 2 ± 0.0012 cm
is four times larger than λF . In our experimental conditions
and at this frequency f , the gravity-capillary dispersion
relation [Eq. (1)] gives a wavelength of λgc = 23.26 cm much
larger than λ. This means that the transverse standing wave
responsible for the pattern oscillations is governed by a
different physical mechanism.

Forced vibrations. We now investigate the characteristics
of these oscillating modes of the Faraday wave pattern by
forcing the vibrations of stable square patterns. We set the
Faraday vertical forcing frequency to f0 = 120 Hz (resulting
in λF = 3.5 mm), the liquid depth to h = 3 mm, and the
forcing acceleration to ε = 0.81 in order to get a stable and
larger initial Faraday square pattern (its size is now 35 × 35
Faraday wavelengths). We add to the vessel a custom-made
forcing device consisting of a comb dipping into the liquid to
a small depth [Fig. 3(a)]. It is mounted so that it is aligned
with one side of the container, and it vibrates vertically along
with it. The comb is set in motion by a second vibration exciter
(Brüel & Kjær) to oscillate horizontally in the reference frame
of the container at frequencies ranging from 0.5 to 10 Hz. The
distance between the comb teeth is set to 2λF , and the ampli-

(a)

(c)

(b)

FIG. 3. (a) Device used to force the vibrations of the Faraday
pattern. The black arrow shows the vertical motion of the whole
vessel, and the dotted white arrow shows the direction of the comb
vibration. The width of the vessel is 12 cm. (b) Map of the real part
of the fast Fourier transform peak Re(ỹ) for a forcing frequency of
3.7 Hz and a vertical parametric forcing at f0 = 120 Hz. The forcing
device is on the left; each pixel represents a bright point of our
images. (c) Dispersion relation f (kT ) and f (kL). Blue down triangles:
transversal waves in the y direction. Red up triangles: transversal
waves in the x direction. Open circles: longitudinal waves in the y

direction. Solid black line: linear fit. Dashed line: gravity-capillary
wave dispersion relation. Dotted line and gray background: prediction
from Eq. (4) and its associated uncertainty.

tude of the forcing sinusoidal motion is set to half the Faraday
wavelength. This allows us to generate a sinusoidal oscillation
of the line of Faraday peaks located below the forcing comb.

We observe a transversal wave that propagates away from
the forcing device at the forcing frequency f . We detect
the position [xmn(t),ymn(t)] of each bright spot and perform
a temporal Fourier transform to obtain [x̃mn(f ),ỹmn(f )].
Figure 3(b) displays Re[ỹ(f )] for the excitation frequency
f = 3.7 Hz. We observe a periodic pattern that decays along
the x direction (indexed as m) away from the forcing device.
This corresponds to the propagation of a transverse wave in the
x direction at the forcing frequency f (the motion is along y).
The vibration due to this wave is y(x,t) = y0 cos (φy + i2πf t)
and we define the spatial phase φy of the pattern vibration by
φy(x) = φ0 exp[(−α + ikT )x] where 1/α is the decay length
of the oscillation and kT its wave number. From the experi-
mental data we extract α and kT for each value of f . The decay
length 1/α does not depend significantly on f and its typical
value is 1/α � 11.5λF , whereas the value of kT depends on f .
Due to the imperfections of the forcing device, we also notice
the presence of a periodicity in the y direction (indexed as
n), corresponding to a longitudinal wave propagating in the y

direction with wave number kL that we extract from Fig. 3(b).
We perform the same analysis on Re(x̃), for which we have
similar maps as Fig. 3(b). Altogether, we report the existence
of transverse waves along both the x and y directions, as
well as longitudinal waves. Figure 3(c) presents the dispersion
relations f (kT ) (blue and red triangles) and f (kL) (open
circles) that we obtain for f ranging from 0.5 to 10 Hz.
We first notice that f (kL) obeys the standard surface waves
dispersion relation predicted by Eq. (1) (dashed line). This
means that the forcing device induces gravity-capillary waves.
Their dispersion relation appears quite linear in Fig. 3(c) since
the shallow water approximation applies (kF h � 1). On the
other hand, the dispersion relation for transverse waves f (kT )
is markedly different. We observe a linear increase of f with
kT with a much lower slope. A linear fit gives the phase speed
of the transverse waves cT = 4.60 cm s−1.

Physical interpretation. These experimental results show
that there exists a new type of wave propagating at the fluid-air
interface. They are transverse waves associated to the presence
of a preexisting Faraday wave pattern and reminiscent of
2D shear waves that propagate in elastic media. Here we
present a quasi-2D model in which we identify the Faraday
cellular pattern to a 2D metamaterial with solidlike properties.
Indeed, transverse waves in an elastic material propagate with
constant phase velocity cT that only depends on the elastic
shear modulus μ. We use the structure of the Faraday wave
lattice and the fluid properties to derive an effective elastic
shear modulus and quantitatively predict the transverse waves
properties.

We consider a reference state for the interface defined as

z0(x,y,t) = A(t) cos

(
π

x + y

λF

)
cos

(
π

x − y

λF

)
, (2)

with A(t) = A0 cos(2πfF t) the amplitude of the stationary
wave. Measurements [e.g., in Fig. 1(a)] give A0/λF =
13.5% ± 3.5%. This 2D function gives a succession of peaks
and crests arranged in a square pattern, as represented in
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FIG. 4. Open circles: evolution of S(γ ) with γ computed numer-
ically for λF = 3.5 mm and A0/λF = 13.5%. Dark line: theoretical
prediction from Eq. (3). Inset (left): reference surface. Inset (right):
sheared surface, with tan θ = γ .

Fig. 4 (inset on the left). We apply a shear strain γ = tan θ to
this elementary cell [Fig. 4 (inset on the right)] and calculate
analytically its surface area S(γ ):

S(γ ) =
∫ λF

0
dy

∫ λF +γy

γy

dx

×
[

1 +
(

∂z0

∂x

)2

+
(

∂z0

∂y
− γ

∂z0

∂x

)2
]1/2

. (3)

As f � fF we average S(γ ) in time which corresponds to
replacing A(t) withA = A02/π . Figure 4 shows the numerical
evaluation of S(γ ) for A0/λF = 13.5%.

As S(γ ) is an even function (γ and −γ give the same
area), ∂S

∂γ
|γ=0 = 0. For a nonzero amplitude of the Faraday

wave, the shearing deformation leads to a surface excess �S =
S(γ ) − S(0) that we can approximate for small deformations

�S = 1

2

∂2S

∂γ 2

∣∣∣∣
γ=0

γ 2 = 1

2
Sγγ γ 2.

For our experimental parameters (λF = 3.5 mm and
A0/λF = 13.5%) we obtain Sγγ � 4.13 × 10−7 mm2.

Due to surface tension there is an energy cost that depends
on the applied shear deformation �E(γ ) = σ�S(γ ). We then
define the effective elastic energy density per unit area WS =
σ�S/λ2

F (in J m−2) and introduce the effective shear modulus
μS of the Faraday wave pattern: WS = 2μSε

2
xy where εxy =

1
2γ . Following standard elasticity theory [31] the transverse
elastic wave phase velocity cT in a 2D elastic medium is written

cT =
√

μS

ρS

=
√

σSγγ

ρSλ
2
F

, (4)

with ρS the density per unit area, defined as ρS = ρA.

Using Eqs. (2) and (3), the velocity we obtain is cT =
4.84 ± 0.63 cm s−1, which is in excellent agreement with the
experimental result of 4.60 cm s−1. We represent in Fig. 3(c)
the estimated dispersion relation (dotted line), with the gray
background representing the uncertainty.

Conclusion. We have characterized a secondary instability
that arises in 2D Faraday patterns close to the transition to-
wards chaos. This instability leads to vibrations of the Faraday
pattern similar to a 2D transverse elastic wave which confirms
previous observations [21,22]. We established the dispersion
relation for these waves and showed that it differs markedly
from the standard gravity-capillary waves that propagate at
the liquid-air interface. We propose a physical mechanism that
combines the surface tension with the preexisting Faraday
wave structure at the interface. We are able to derive an
effective shear modulus μS for the Faraday wave pattern that
quantitatively agrees with the experimental observations.

In this work, we observe the emergence of a new physical
property, namely, an effective 2D shear elasticity, at the
liquid-air interface. This effective elasticity was identified with
granular materials [22] and with liquids [21] submitted to
vertical vibrations. In all cases common features can be found
such as the emergence of transverse modes, decoupling in
time (between forcing frequency f0 and vibration frequency
f ) and in space (between lattice wavelength λF and vibration
wavelength λ), and many quantitative observations are about
the same order of magnitude. Nevertheless, some important
differences should be noted: in [22], the dispersion branch flat-
tens close to the edge of the first Brillouin zone and the trans-
verse modes appear along the (1,1) direction of the 2D lattice,
whereas here and in [21] the (1,0) mode is excited. In [21], the
authors observe a single mode, whereas we are able to establish
the entire dispersion relation thanks to our forcing device.

We also present a model based on surface tension that
accounts for our experimental observations. Our description
using surface tension is not applicable to granular materials
used in [22] and the two systems should be compared with cau-
tion. We believe our description of the pattern as a metamaterial
could apply to the data from [21]. Our interpretation reveals
that the effective elasticity is intimately related to the existence
of a periodic pattern imprinted on the liquid interface. From
this perspective, the Faraday wave pattern creates a mechanical
metamaterial at macroscopic scale.

In the future, we would like to investigate in more detail
the limit k/kF = 1/2 corresponding to the edge of the first
Brillouin zone in a crystalline material. Another line of future
research is to understand if there exists a second elastic
constant for the medium as in usual elastic solids. More
generally, wave-based metamaterials offer unique possibilities
as wavelengths and patterns can be dynamically tuned.
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