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1) stretching energy 



2) Bending energy

RECAP : curvature for a line in 2D

what is curvature for a surface?



2) Bending energy
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2) Bending energy

at s=0 (in M) 
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O’Keefe 

3) Mechanics of tearing 

GEOMETRY



propagation

propagation

-

energy cost for crack propagation

( ~ surface tension) 
Gc : energy / unit surface
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Griffith’s criterion

ds
<latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit>

ds
<latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdCm60GUV+wAtkkyndWheTCZCKeIPuNVfE/9A/8I74xTUIjohyZlz7zkz994wi0SuPO+15MzMzs0vlBcrS8srq2vV9Y1WnhaS8SZLo1R2wiDnkUh4UwkV8U4meRCHEW+HwxMdb99xmYs0uVSjjHfjYJCIvmCBIuqil99Ua17dM8udBr4FNdjVSKsvuEYPKRgKxOBIoAhHCJDTcwUfHjLiuhgTJwkJE+e4R4W0BWVxygiIHdJ3QLsryya01565UTM6JaJXktLFDmlSypOE9WmuiRfGWbO/eY+Np77biP6h9YqJVbgl9i/dJPO/Ol2LQh+HpgZBNWWG0dUx61KYruibu1+qUuSQEadxj+KSMDPKSZ9do8lN7bq3gYm/mUzN6j2zuQXe9S1pwP7PcU6D1l7d9+r++X7t6NiOuowtbGOX5nmAI5yhgSZ59/GIJzw7p07sKOfuM9UpWc0mvi3n4QNy74/m</latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit>

ds
<latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdCm60GUV+wAtkkyndWheTCZCKeIPuNVfE/9A/8I74xTUIjohyZlz7zkz994wi0SuPO+15MzMzs0vlBcrS8srq2vV9Y1WnhaS8SZLo1R2wiDnkUh4UwkV8U4meRCHEW+HwxMdb99xmYs0uVSjjHfjYJCIvmCBIuqil99Ua17dM8udBr4FNdjVSKsvuEYPKRgKxOBIoAhHCJDTcwUfHjLiuhgTJwkJE+e4R4W0BWVxygiIHdJ3QLsryya01565UTM6JaJXktLFDmlSypOE9WmuiRfGWbO/eY+Np77biP6h9YqJVbgl9i/dJPO/Ol2LQh+HpgZBNWWG0dUx61KYruibu1+qUuSQEadxj+KSMDPKSZ9do8lN7bq3gYm/mUzN6j2zuQXe9S1pwP7PcU6D1l7d9+r++X7t6NiOuowtbGOX5nmAI5yhgSZ59/GIJzw7p07sKOfuM9UpWc0mvi3n4QNy74/m</latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit><latexit sha1_base64="6VJpUxhMcj0vkKDBHQ95KMqrboI="></latexit>



«inextensible fabric» model
(0th order approximation)
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«inextensible fabric» model
(0th order approximation)

- inextensible
- infinitely bendable

The sheet is

2D analog of a string

NO ELASTIC ENERGY
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Which direction ?
independent of previous path 
independent of material property 



Which direction ?

pulling with a given force 

Energy Release Rate Fracture
energy



propagation

Which direction ?

Maximum of Energy Release Rate

Energy Release Rate Fracture
energy



A

B

Maximum Energy Release rate : bisector
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hyperbolae with focal point A,B 
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Predicting tearing paths in thin sheets
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1) what to expect (small slope eq. for beams) 

2) plate equations



2) plate equations

dynamics



3) A geometrical coupling 

How to compute  N ?

(non-linear)



3) A geometrical coupling 

GEOMETRY



3) A geometrical coupling 

when is this geometrical coupling important?

Föppl–von Kármán equations,
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1) Gauss theorema egregium 



Gauss’ Theorema egregium

(a) (b)

(c)

Fig. 6.5 Interpretation of equation (6.32): compared to the developable case (b) (K = 0,
parabolic surface), the perimeter of a circle of fixed radius drawn on a surface is smaller for

a locally convex surface (a) (K > 0, elliptic surface), and larger for a saddle-like surface (c)

(K < 0, hyperbolic surface).

This geometric interpretation yields a direct proof of the Theorema egregium, since
these perimeters are by definition invariant by isometric deformations of a surface. It
also shows that the perimeter of a circle of radius r is less than 2π r on elliptic surfaces
such as a paraboloid (K > 0), but more than that on hyperbolic surfaces such that
(K < 0), as illustrated in Fig. 6.5.

6.2.4 A historical note

The conservation of the Gauss curvature upon isometric deformations of a surface,
as established by equation (6.26) or (6.32), was first proved by C. F. Gauss in the
Theorema egregium of his ‘Disquisitiones generales circa superficies curvas’ (General
investigations of curved surfaces), published in 1827. The Latin adjective egregium
derives from ‘ex grege’, meaning ‘out of the flock’. It means ‘remarkable’ or ‘extraor-
dinary’. Gauss indeed estimated that his formula ‘may be counted among the most
productive theorems in the theory of curved surfaces’ (‘inter fertilissima theoremata
in doctrina de superficiebus curvis referenda est’).

To derive this result, Gauss proceeded technically by expressing the Gauss curva-
ture, defined as the determinant of the curvature form, in terms of coefficients of the
metric tensor 19:
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and their partial derivatives, where r(u, v) is any parameterisation of the surface. By
definition, the components E, F and G of the metric tensor are unchanged upon
isometric deformation of the surface.

6.2.5 Practical calculation of Gauss curvature

In the previous sections, we computed the Gauss curvature K(P ) at a point P of a
surface S given as a graph (x, y) !→ (x, y, f(x, y)) in a Cartesian system of coordinate
(x, y, z) such that the tangent plane at P is horizontal. In this section, we relax this as-
sumption and compute the Gauss curvature when the orientation of the tangent plane

19The notations E, F and G for the components of the metric tensor were introduced by Gauss
himself, and were still used until recently.
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courbure de Gauss
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2) crumpling

developable surfaces are not enough
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the actual configuration near this line depends on the
degree of stretchability. In this section, we explore the
interplay of bending and stretching energy that deter-
mines this configuration.

As noted in the Introduction, multiple vertices joined
by ridges must occur when an elastic sheet is confined
within a sphere. The first stage of this process results in
a pair of developable cones, as studied by Cerda et al.
!1999". These authors analyzed the region away from the
ridge line and the vertices in the unstretchable limit, as
shown in Fig. 4. They confirmed that the flanks of the
ridge are indeed flat, as anticipated in Sec. II. They also
noted that the flat regions are limited in extent and that
part of each d-cone retains its conelike curvature. We
reconsider this behavior in Sec. VI below.

A. Variants

Ridges appear to form in a broader class of cases, as
illustrated in Fig. 11. A simpler variant of the two-
d-cone configuration may be made by creating two ordi-
nary cones in a sheet. This is done by removing a wedge-
shaped piece of the material from two different places
whose vertices are separated by distance X, as shown in
Fig. 9. When the sides of one wedge are joined, it creates
a defect called a disclination. We considered the core

region of such a cone in Sec. III. Now if the second
wedge is joined together, the sheet contains two discli-
nations. Our reasoning from Sec. II implies that the re-
gions on either side of the connecting line should once
again be flat, so that a stretched ridge joining the discli-
nations should form.

By making multiple disclinations in a flat sheet, one
may form a closed polyhedron, as shown in Fig. 11. Such
polyhedra provide simplified realizations of interacting
ridges and vertices and regions completely bounded by
ridges. Another procedure creates ridges in an unbiased
way without any imposed inhomogeneity. It consists in
joining the opposite edges of a rectangular sheet to form
a torus. This constraint creates four symmetrically
placed d-cones forming a pillowlike shape.

A complementary approach makes ridges via
smoothly adding boundary forces to a flat sheet. A very
tractable example developed by Lobkovsky !1996a" is
created by exerting only normal forces. It is called the
minimal ridge and is pictured in Fig. 13. To form a mini-
mal ridge, one first considers a surface formed by joining
two half-planes folded through a dihedral angle 2!. One
then introduces a long strip of flat elastic material of
width X. Via edge forces normal to the sheet, one then
constrains its two long edges to lie in the folded surface.
It is apparent from the figure that this smooth procedure
creates a ridge region of concentrated bending between
the two vertices. As discussed in Sec. V below, this ridge
is amenable to systematic analysis that allows several
aspects of its shape and energy to be calculated explic-
itly.

B. Scaling of ridge width

In order to gain a concrete sense of how these ridges
form, we consider a further variant called the kite shape.
The kite shape is pictured in Fig. 12. It consists of a
square sheet fastened to a frame at its edges. The frame
is hinged so that it can fold along a diagonal, thus forc-

FIG. 11. Simulated configurations showing ridge scaling: kite,
bag, boat, after Lobkovsky et al. !1995". Kite construction is
explained in Fig. 12. The bag, boat, and tetrahedron are
formed by removing sectors from a flat sheet of material and
fastening the cut edges together, as implemented in Fig. 9.
Shading is proportional to local stretching energy density. Al-
ternating bright and dark stripes indicate nonmonotonic distri-
bution of energy. The tetrahedron at the lower right !Di-
Donna, 2005" has he /X=10−4 and has a ratio of bending to
stretching energy B /S=5.1. The simulation has 80 lattice
points along the ridge.

FIG. 12. The kite, a square of elastic material fastened in a
hinged frame. Base line is shown as a dashed, horizontal line.
The transverse midline goes from front to back. This line is the
y axis of the material coordinates. The x axis is the ridge line.
Ridge length X, assumed curvature radius Rc, and sag distance
" are indicated.
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the actual configuration near this line depends on the
degree of stretchability. In this section, we explore the
interplay of bending and stretching energy that deter-
mines this configuration.

As noted in the Introduction, multiple vertices joined
by ridges must occur when an elastic sheet is confined
within a sphere. The first stage of this process results in
a pair of developable cones, as studied by Cerda et al.
!1999". These authors analyzed the region away from the
ridge line and the vertices in the unstretchable limit, as
shown in Fig. 4. They confirmed that the flanks of the
ridge are indeed flat, as anticipated in Sec. II. They also
noted that the flat regions are limited in extent and that
part of each d-cone retains its conelike curvature. We
reconsider this behavior in Sec. VI below.

A. Variants

Ridges appear to form in a broader class of cases, as
illustrated in Fig. 11. A simpler variant of the two-
d-cone configuration may be made by creating two ordi-
nary cones in a sheet. This is done by removing a wedge-
shaped piece of the material from two different places
whose vertices are separated by distance X, as shown in
Fig. 9. When the sides of one wedge are joined, it creates
a defect called a disclination. We considered the core

region of such a cone in Sec. III. Now if the second
wedge is joined together, the sheet contains two discli-
nations. Our reasoning from Sec. II implies that the re-
gions on either side of the connecting line should once
again be flat, so that a stretched ridge joining the discli-
nations should form.

By making multiple disclinations in a flat sheet, one
may form a closed polyhedron, as shown in Fig. 11. Such
polyhedra provide simplified realizations of interacting
ridges and vertices and regions completely bounded by
ridges. Another procedure creates ridges in an unbiased
way without any imposed inhomogeneity. It consists in
joining the opposite edges of a rectangular sheet to form
a torus. This constraint creates four symmetrically
placed d-cones forming a pillowlike shape.

A complementary approach makes ridges via
smoothly adding boundary forces to a flat sheet. A very
tractable example developed by Lobkovsky !1996a" is
created by exerting only normal forces. It is called the
minimal ridge and is pictured in Fig. 13. To form a mini-
mal ridge, one first considers a surface formed by joining
two half-planes folded through a dihedral angle 2!. One
then introduces a long strip of flat elastic material of
width X. Via edge forces normal to the sheet, one then
constrains its two long edges to lie in the folded surface.
It is apparent from the figure that this smooth procedure
creates a ridge region of concentrated bending between
the two vertices. As discussed in Sec. V below, this ridge
is amenable to systematic analysis that allows several
aspects of its shape and energy to be calculated explic-
itly.

B. Scaling of ridge width

In order to gain a concrete sense of how these ridges
form, we consider a further variant called the kite shape.
The kite shape is pictured in Fig. 12. It consists of a
square sheet fastened to a frame at its edges. The frame
is hinged so that it can fold along a diagonal, thus forc-

FIG. 11. Simulated configurations showing ridge scaling: kite,
bag, boat, after Lobkovsky et al. !1995". Kite construction is
explained in Fig. 12. The bag, boat, and tetrahedron are
formed by removing sectors from a flat sheet of material and
fastening the cut edges together, as implemented in Fig. 9.
Shading is proportional to local stretching energy density. Al-
ternating bright and dark stripes indicate nonmonotonic distri-
bution of energy. The tetrahedron at the lower right !Di-
Donna, 2005" has he /X=10−4 and has a ratio of bending to
stretching energy B /S=5.1. The simulation has 80 lattice
points along the ridge.

FIG. 12. The kite, a square of elastic material fastened in a
hinged frame. Base line is shown as a dashed, horizontal line.
The transverse midline goes from front to back. This line is the
y axis of the material coordinates. The x axis is the ridge line.
Ridge length X, assumed curvature radius Rc, and sag distance
" are indicated.
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is concentrated principally in lines joining adjacent ver-
tex points of maximal curvature. The energy is increas-
ingly concentrated along these ridge lines as the thick-
ness decreases. It is predominately contained in a
fraction of the sheet that decreases in proportion to the
1/3 power of the thickness. The evidence for this scaling
came from numerical simulations and nonrigorous en-
ergy balance arguments. Lobkovsky !1996a" was able to
analyze one simplified geometry using the Föppl–von
Karman equations. Applying standard methods of
asymptotic analysis, he confirmed the 1/3-power scaling
law noted above and deduced a number of other scaling
properties, together with reduced equations for the
ridge shape. Subsequently, the Chicago group explored a
variety of properties arising from the ridge singularities
!Lobkovsky and Witten, 1997", including an experimen-
tal study of the strength of crumpled material that was
consistent with the anticipated scaling law based on
ridge energy !Matan et al., 2002". In tandem with this
work, a group at the Ecole Normale Superieure in Paris
was studying more fundamental singularities: the indi-
vidual vertices !BenAmar and Pomeau, 1997". They con-
centrated on a simplified geometry that they named the
developable cone, or d-cone. This is the shape obtained
by pushing a piece of paper into a supporting ring using
a point force !Fig. 2". When a flat sheet is confined to a
small volume, such d-cones must appear. These are the
vertices that terminate the ridges discussed above. In-
spired by the Ecole Normale work, the group of Ma-
hadevan in Boston was able to draw powerful conclu-
sions about the shapes of d-cones using the fact that
asymptotically these sheets become inextensible, with
vanishingly weak strain !Cerda and Mahadevan, 1998".
They showed how the stored energy grows with increas-
ing deformation, and they showed several striking ro-
bust features of the shape. They explored the interaction
of d-cones !Cerda et al., 1999". Later the Ecole Normale
group showed that d-cones move on a surface in re-
sponse to distantly applied forces #Boudaoud et al.
!2000"; Mora and Boudaoud !2002"; Hamm et al. !2004"$.
This group, and their collaborators in Chile and Boston,
simultaneously deduced striking scaling information
about how the wavelength of incipient buckling depends

on thickness in the presence of strain #BenAmar and
Pomeau !1998"; Audoly !1999"; Cerda et al. !2002";
Cerda and Mahadevan !2003"$. These wrinkling phe-
nomena proved applicable to a great range of structures
flowing from the nonlinear interaction between bending
and strain !Belgacem et al., 2000, 2002; Sharon et al.,
2002; Conti et al., 2005". These wrinkling effects are dis-
tinct from focusing, since they do not describe the con-
centration of energy into an indefinitely small subset of
the sheet. Thus we will not discuss them further in this
paper.

B. Interface focusing

The crumpling phenomena that we discuss belong to a
rich and growing class of interfacial deformation phe-
nomena. It seems worthwhile to review these phenom-
ena to set the crumpling in context. We may classify
these phenomena according to the constitutive nature of
the interface being deformed, its dimensionality, and the
nature of the forces causing the deformation. The elastic
membranes we described above are constitutively dis-
tinct from liquid membranes such as lipid bilayers !Saf-
ran, 1994". Liquid membranes are characterized by a
bending stiffness, but no shear modulus. They thus do
not support static anisotropic shear stress within the
membrane. There is no preferred distance between two
given points. Thus the basis for focused crumpling is ab-
sent for such membranes. The rich variety of self-
generated shapes in these membranes is thus quite dif-
ferent from the ones we discuss. Liquid membranes can
show transient phenomena akin to elastic membranes,
since they develop viscous shear stress in response to
flow !Debregeas et al., 1998; de Silveira et al., 2000;
Boudaoud and Chaieb, 2001". While the membrane car-
ries no cost for changing the distance between two
points statically, it does carry a cost for changing this
distance rapidly.

The surface being deformed may be either a free-
standing membrane or the surface of a bulk liquid or
solid. Surfaces of bulk matter show a range of distinct
focusing phenomena of their own. Fluids may be
splashed onto a surface !Xu et al., 2005", or drawn into
fine threads using viscous !Cohen and Nagel, 2002" or
electrical !Ganan-Calvo, 1998; Shin et al., 2001" forces.
Inhomogeneous gels can show rich buckling patterns at
their surface owing to differential deswelling !Matsuo
and Tanaka, 1992; Chaieb and Melo, 1997" or delamina-
tion !Tanizawa and Miura, 1978; Ortiz and Gioa, 1994".
Similar buckling occurs in the forced deformation of the
Earth’s crust owing to viscous stresses from the underly-
ing mantle !Turcotte and Schubert, 2001". These pat-
terns often show apparent sharp concentration of stress.

Liquid crystals show some aspects of elasticity and
they show some stress-focusing phenomena that are
closely analogous to those of elastic sheets. A smectic
liquid crystal is a stack of fluid membranes held at a
fixed separation. If one of these membranes is curved,
the membranes within must curve more and more

FIG. 2. !Color online" Sketch of d-cone after Cerda and Ma-
hadevan !1998"; cf. Venkataramani et al. !2000". Uncurved di-
rector lines are indicated.
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through the bending stiffness !. Since all bending is in
the transverse direction, all bending moments on an el-
ement act on its transverse sides. For the unbuckled part
of the sheet, a normal pressure P from the container also
acts. Here the principal axes of the stress are the radial
and transverse directions. To maintain the imposed cur-
vature c!s" in the contacting region, this P must be non-
zero. To maintain the conical r dependence of the shape,
this P must also have a prescribed r dependence; one
finds that2 P!r"#r−3. That is, if one strictly enforces the
conical shape, e.g., by pushing the sheet into a conical
container of opening angle ", the constraint force P is
concentrated toward the center. It diverges at the center;
the total force acting within a distance r also diverges.
This contrasts with the experimental geometry of Fig. 2,
in which the constraining force is only applied at a cir-
cular boundary. The internal stresses in the two cases are
also qualitatively different. In the ideal case, the balance
of normal forces dictates a compressive stress #ss in the
azimuthal direction. Much of this stress is needed to bal-
ance the external pressure P from the conical container.
However, in the absence of P, one readily verifies !Liang
and Witten, 2006" that #ss must become tensile. !One
may verify it physically by noting that there is a positive
Gaussian curvature creating a slight outward bulge in
the surface. One may also create a small radial cut in a
paper surface and note that the edges of the cut spread
apart when the paper is deformed into a d-cone shape."
This example shows that caution is needed in interpret-
ing the unstretchable limit, even in regions where the
shape is arbitrarily close to the limiting unstretchable
shape.

C. Core region

Our central concern in examining the d-cone is to un-
derstand the degree of focusing of stress and energy. The
constraint of near unstretchability clearly causes strong
focusing at the vertex of the d-cone. This focusing even
causes a logarithmic divergence in the total energy. The
degree of focusing is evidently measured by the size R*
of the region where the approximation of unstretchabil-
ity breaks down. That is, the radial curvature Crr be-
comes comparable to the azimuthal curvature Css, or the
Gaussian curvature becomes comparable to the square
of the mean curvature. In the late 1990s, the work of
BenAmar and Pomeau !1997" and Cerda and Mahade-
van !1998" drew attention to the peculiar nature of this
region. It contrasts with the vertex region of a simple
cone made by fastening two edges of a sheet together as
in Fig. 9. In a simple cone, the material also stretches
near the vertex to avoid an infinite energy. The stretched
region has a size that remains finite even as the overall

size of the cone goes to infinity. Thus its size must be of
the order of the thickness h of the sheet.

The core region of the d-cone has a crescent shape
that is more complex than the core of a simple cone. The
crescent has a length comparable to R* and a transverse
width w that appears much narrower than R*. Moreover,
if one examines a d-cone made of ordinary paper, this R*
appears much larger than the thickness. The experimen-
tal studies of Cerda and Mahadevan !1998" and Cerda et
al. !1999" suggested that R* grows with the ring radius R,
and they proposed a scaling argument giving R*
#h1/3R2/3. Cerda and Mahadevan !2005a" repeat the ar-
gument. The argument was based on estimates of bend-
ing and stretching energy and on finding an R* that mini-
mized the total energy. It resembled the argument for
the width of a stretching ridge !Witten and Li, 1993;
Lobkovsky et al., 1995" to be discussed below. We now
analyze these energies and their implications for R*, fol-
lowing Liang and Witten !2005". We then review the ex-
perimental and numerical findings.

In estimating these, we assume that the angular depth
1
2$−"0 of the d-cone is fixed. We then vary the elastic
thickness he defined in Sec. II and the ring radius R for
various assumed choices of the core radius R*. The ac-
tual R* is that which minimizes the total energy E of Eq.
!3". We initially suppose that the sheet radius Rp is a
fixed multiple of the ring radius R. At the optimal R*,
the energy is thus proportional to the bending modulus
! times a dimensionless function of he and R. We seek
the scaling behavior of R* in the asymptotic limit R /he
%1.

In considering how R* influences the energies, it is
convenient to imagine building the d-cone in two stages.
In the first stage !Liang and Witten, 2005", we remove a

2We use the symbol ! to mean “scales as.” That is, the left
and right sides have a finite ratio in the asymptotic limit being
considered. The stronger relation $ is defined below.

FIG. 9. !Color online" Lattice of springs to simulate an elastic
sheet, after Seung and Nelson !1988". Inset at right shows
nearest-neighbor springs !light lines" and spring between adja-
cent triangles to impart bending stiffness !dark line". One may
make a disclination cone by removing a sector of the lattice
and joining boundary particles with springs as shown by the
lines at the lower left. If both sectors are joined in this way, the
minimum-energy shape of the surface has the boat shape
shown in Fig. 11. Inset to Fig. 10 shows a hexagonal section of
a similar lattice deformed into a d-cone.
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tensional response of the shell in a linearized setting. Then, we
may write the dimensionless form of the above equations, on
dropping the primes, as

!2!2w " !# $ !2%"x#%"y#

!2# & !w $ 0.
[3]

On eliminating the Airy stress function # by substituting the
second equation in 4 into the first, we get

!2!4w " !w $ !2!2%"x#%"y# , [4]

which is a singularly perturbed linear partial differential equa-
tion, whose domain of validity is limited to regions far from the
point of indentation. Substituting the perturbation expansion
w(x, y) $ w0(x, y) % !2w1(x, y) % O(!4) into 3 yields, at leading
order, !w0 $ 0. Thus, we see that for very thin shells the far-field
response to point indentation depends in a fundamental way on
the geometry of the underlying shell (7, 10–12, 15), because the
generalized d’Alembertian operator ! is elliptic for an ellipsoi-
dal surface (with Gauss curvature R1R2 & 0), it is parabolic for
a singly curved surface (with Gauss curvature R1R2 $ 0), and it
is hyperbolic for a saddle-shaped surface (the Gauss curvature
R1R2 ' 0). Of course, the complete solution is determined only
when the exterior solution to 4 is matched with the interior
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Fig. 1. Indentation of a spherical cap. (A) Localization of deformation in a plastic bottle indented by a sharp pen. The deformation is localized approximately
along a polyhedron with a triangular base (Left). As the indentation increases, one of the vertices bifurcates, leading to a polyhedral pattern with a square base
(Center). Further indentation leads to further symmetry breaking (Right). (B) Schematic diagram of a clamped spherical cap with natural curvature R, indented
at its center. (C) Elastic energy density in the elastic shell (t/R $ 0.005) for various normalized indentations Z( (see also Movie S1). The localization of deformation
at the vertices is characterized by the localized region of radius Rc (see Fig. S1). (D) Typical deformed configuration of the elastic shell (t/R $ 0.005 for a normalized
indentation Z( $ Z/R $ 0.8). The vertices lie approximately on a circle of r(Z). (E) The scaled radius r( $ r/R, versus the normalized center indentation, Z(. The solid
line is given by 5, which for small indentations simplifies to r( ) *Z(. The results from numerical simulations for different t/R (green: t/R $ 0.001; red: t/R $ 0.005;
blue: t/R $ 0.01), where filled triangles, squares, pentagons, and hexagons correspond to deformed configurations with 3, 4, 5, and 6 vertices, respectively. (F)
Force–indentation response of an elastic shell with t/R $ 0.005. Localization of deformation, which leads to formation of a pattern with three vertices, occurs
at Z( ) 0.076. The slopes of the response are shown at this indentation, which indicates )30% reduction in the apparent stiffness of the elastic shell as the
asymmetric buckling pattern emerges, which is consistent with the analytical predictions (17, 18) as well as the approximate solution based on estimating the
energy in the rim of the dimple. The dashed line is an approximate solution derived for axisymmetric deformations (14), and it compares qualitatively with
the numerical simulations; however, as expected, it overestimates the forces relative to those for the faceted shell. All of the simulations were carried out for
a cap with an opening angle ' $ 120°.
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the longitudinal growth, we also observe a 7% increase in the
width of petals/sepals, that leads to a circumferential hoop stress
on the bud.

Previous investigators have implicated the midrib as being
crucial in the mechanism of blooming (4, 5). Indeed, the midrib
is woodier than the lamina, but measurements of the stiffness of

the midrib and the lamina (SI Text) shows that the leafy part
accounts for 78% and the woody part accounts for 22% of the
total bending stiffness of a shell-like petal; the curvature of the
lamina and its width more than making up for the difference in
the actual Young’s modulus between the woody and leafy parts of
a petal. To find whether midrib is essential for blooming or not,
we shaved the midrib from one sepal and a petal when a lily is
a bud, and find that both the sepal and the petal without the
midrib open normally just like the other petals/sepals; the small
difference in the final curvature is because the stiffness of the
midrib composite is different from that of the petal/sepal. To
further quantify the role of the midrib in flower opening, we
shaved it from a fully bloomed lily and then peeled away the
woody part from the petal (Fig. 2A). We find that the leafy part
is about 4.5% (averaged over 10 samples) longer than the woody
part and induces a spontaneous outward curvature that enhances
flower opening. These observations show unequivocally that the
midrib is neither necessary nor dominant in driving blooming.

Another possibility for the underlying mechanism behind
blooming is the generation of spontaneous curvature due to dif-
ferential growth of the inner (adaxial) surface of the petal/sepal
relative to the outer (abaxial) one. Earlier experimental evidence
(5) shows that cell size on both surfaces of a petal is the same
at the onset of blooming and further that there is no cell prolif-
eration, suggesting that differential growth of the adaxial and
abaxial surface is not likely to play any role in blooming. To
corroborate this on the organ scale, we note that surface differ-
ential growth will cause a shell-like petal will bend outward more
if marginal tissues are removed, because the cross-section of
a petal becomes less curved and the longitudinal bending stiff-
ness decreases dramatically. However, we see both petals/sepals
become less curved when the lateral edges of the petals are cut
away (Figs. S1 and S2), which contradicts the hypothesis that
relative surface expansion drives blooming.

Finally, we observe a slight rotation of the base of the
petal/sepal relative to the flower axis consistent with earlier

Fig. 1. Observations of and experiments on blooming in the asiatic lily
Lilium casablanca. (A) A young green lily bud. The black dots separated by
1 cm allow us to measure growth strains. (B) The cross-section of a lily bud.
(C) A typical opening sequence of a lily flower over a period of 4.5 days.
The black line is the profile in the bud state, the transparently light blue
shows the half-open state, and the white one is the fully open state.

midribs removed rippled petals

woody part alone

leafy

woody

petal base

tipA

B

     midrib
cross section

C

Fig. 2. Anatomy of the lily bud and the role of midrib. (A) The composite
structure of a petal midrib: the Left panel shows a single petal; the Center
panel shows the grooved structure of the midrib; the Right panel shows that
when the leafy part (gray) is peeled away, the woody part straightens out,
a sign that there is some relative growth between the two. (B) When the
midribs are removed from a petal and a sepal, the flower can still bloom
normally, with a slightly different curvature relative to the pristine petals/
sepals. (C) The inner petals have rippled edges in the bud, showing clearly
that their edges are growing relative to the rest of the tissue.

A

B

Fig. 3. Experimental measurement of differential growth and numerical
simulation in a single petal. (A) Longitudinal growth strain εgxx along the
midrib and the edges varies in the lateral (y) direction. The edge growth
strain is averaged over 6 sepals, and the midrib growth strain is averaged
over 10 petals/sepals. This lateral growth gradient is sufficient to drive
blooming. (B) Simulation of the blooming process in a single elliptical petal
that is originally a convex spherical shell. As the edge-growth strain
increases (see text for details), the curvature of the petal first reverses;
i.e., it blooms. and then edge-localized ripples arise. The order of blooming
and rippling can be reversed by changing the relative distribution of growth
strains as can be seen in the inner and outer petals and sepals that follow
opposite paths.
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in-plane differential growth 
leads to curvature



Drying slice of fresh wood

Aurélie Vissac (Amàco)  & Pascal Oudetvimeo.com/144342962





going further?

mess up with the in-plane distances (metric) !



Baromorphs

moule dessus

Canaux 

côté

polymère de moulage

1 cm



Can we overcome Gauss’ theorem ?
change distances !for shape morphing : 

1 cm

P

non-isotropic expansion

Concentric channels
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Pressure p

ε⊥
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b

c

a 3D printed mould 

p < Patm p = Patm
p > Patm

eǁ

ez

d

~3–13 days post
cap initiation

~13–19 days post
cap initiation

>19 days post
cap initiation

Fig. 1 | Principle of pressure-actuated baromorph plate. a, Schematic of actuation: the pressure inside the airways induces anisotropic inflation of the 
plate (higher strain normal to the airways than along the channels). b, 3D printed mould used to cast the baromorph illustrated in c. c, Actuation of the 
plate: suction (left) tends to contract the plate in the azimuthal direction, leading to a bowl (positive Gaussian curvature), while inflation (right) leads to an 
excess angle and a transformation into a saddle shape (negative Gaussian curvature). Scale bars, 1!cm. d, Evolution of the cap of an Acetabularia alga from 
a bowl to a saddle shape due to preferential growth in the azimuthal direction. Adapted from ref. 23, Springer (d).
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Fig. 2 | Characterization of baromorph expansion and deformation. a, Schematic vertical cut of the baromorph structure. The geometry of the channels 
can be reduced to two non-dimensional parameters: the relative height Ψ!= !h/(h!+ !2e) and the channel density Φ!= !d/(d!+ !dw), where d is the width of 
the channels, dw is the width of the walls, h is the height of the channels and e is the thickness of the covering membrane. b, Dependence of the targeted 
parallel and longitudinal strain on pressure for different values of Φ with Ψ!= !0.69!± !0.05 and for different values of Ψ with Φ!= !0.5!± !0.02. Solid lines 
correspond to the model without any fitting parameter (in our simplified model ε∥ vanishes). c, Baromorph programmed to be a cone when pressurized.  
A radial segment of length dl in the rest state will elongate to (1!+ !ϵr)dl upon inflation, leading to a slope angle α. Scale bar, 1!cm. d, Experimental (symbols) 
and theoretical (solid lines, no fitting parameter) evolution of α as a function of applied pressure for baromorphs of different parameters: red diamonds 
(Ψ!= !0.78!± !0.05, Φ!= !0.5, R!= !50!mm, H!= !3.8!± !0.2!mm); blue triangles (Ψ!= !0.74, Φ!= !0.5, R!= !40!mm, H!= !5.4!mm); purple flags (Ψ!= !0.68, Φ!= !0.2, 
R!= !50!mm, H!= !6!mm); green squares (Ψ!= !0.6, Φ!= !0.5, R!= !40!mm, H!= !6.7!mm).
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can be reduced to two non-dimensional parameters: the relative height Ψ!= !h/(h!+ !2e) and the channel density Φ!= !d/(d!+ !dw), where d is the width of 
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and theoretical (solid lines, no fitting parameter) evolution of α as a function of applied pressure for baromorphs of different parameters: red diamonds 
(Ψ!= !0.78!± !0.05, Φ!= !0.5, R!= !50!mm, H!= !3.8!± !0.2!mm); blue triangles (Ψ!= !0.74, Φ!= !0.5, R!= !40!mm, H!= !5.4!mm); purple flags (Ψ!= !0.68, Φ!= !0.2, 
R!= !50!mm, H!= !6!mm); green squares (Ψ!= !0.6, Φ!= !0.5, R!= !40!mm, H!= !6.7!mm).
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perimeter < 2pi R !!



Application : soft robotics




I Bending & Stretching for plates
1) stretching energy 
2) Bending energy 
3) Mechanics of tearing 

II Small slope equations for plates

III Geometry of surfaces

1) Gauss theorem  
2) crumpling 
3) adhesion on a sphere 
4) Actuation of thin sheets 

1) what to expect (small slope eq. for beams) 
2) plate equations 
3) A geometrical coupling 

GEOMETRY


