
PHYSICAL REVIEW E 84, 056308 (2011)

Spatiotemporal spectral analysis of a forced cylinder wake
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The wake of a circular cylinder performing rotary oscillations is studied using hydrodynamic tunnel experiments
at Re = 100. Two-dimensional particle image velocimetry on the midplane perpendicular to the axis of a cylinder
is used to characterize the spatial development of the flow and its stability properties. The lock-in phenomenon
that determines the boundaries between regions of the forcing parameter space where the wake is globally
unstable or convectively unstable [see Thiria and Wesfreid, J. Fluids Struct. 25, 654 (2009) for a review] is
scrutinized using the experimental data. A method based on the analysis of power density spectra of the flow
allows us to give a detailed description of the forced wake, shedding light on the energy distribution in the
different frequency components and in particular on a cascade-like mechanism evidenced for a high amplitude
of the forcing oscillation. In addition, a calculation of the drag from the velocity field is performed, allowing us
to relate the resulting force on the body to the wake properties.
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I. INTRODUCTION

The simple geometry and the complex behavior of the
flow around a circular cylinder at low Reynolds numbers
(Re = DU0/ν ! 180, where D is the diameter of the cylinder,
U0 is the free-stream velocity, and ν is the kinematic viscosity
of the fluid) makes it a prototypical 2D wake flow. The
well-known Bénard–von Kármán (BvK) vortex street [1,2]
results from the destabilization of the steady flow in the wake
of the cylinder, driven by the periodic shedding of opposite-
signed vortices that occurs above the threshold Rec ≈ 47 (see,
e.g., [3,4]). Often used as a model for shear flow instabilities
(see, e.g., [5–9]), the cylinder wake gives a framework to
study the distinctive features of spatially developing flows.
In particular, for Re > Rec the velocity field in the whole
flow domain oscillates with the same global frequency and its
harmonics and, because the oscillation is spatially evolving,
it can be characterized through the evolution of its envelope
or global mode of the instability as a function of the flow
parameters [10,11].

The cylinder wake has also been widely used to test methods
of flow control using dynamic actuation, either in an open-
loop sense [12] or with a feedback loop closed by the signal
taken by a flow sensor [13] and within an optimal control
scheme [14]. A large subset of the existing literature about
control strategies on the cylinder wake concerns the use of
imposed oscillations, the case of in-line oscillations [15] being
intimately related to the problem of vortex-induced vibration
(see an extensive review by [16]). For rotational oscillations,
from the first visualizations of [17] and the experimental work
of [18], to the numerical [19–21] and experimental works
[22] that have followed, it has been shown in particular that
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the imposed rotational oscillation can significantly modify the
geometry of the cylinder wake and hence the drag coefficient.
The stability properties of the forced wake have been studied
by [23] using experimental measurements of the velocity field.
They described in terms of the (f,A) parameter space (the
frequency f and the amplitude A of the oscillations) the two
qualitatively different states that arise in the wake: a spatial
mode dominated by the BvK vortex street, meaning that the
wake is globally unstable; and the so-called lock-in regime,
where the frequency is imposed by the forcing in the near wake,
the amplitude of the oscillation rapidly decaying downstream
with the characteristics of a convective instability.

The first goal of the present work is to refine the description
of the transitions between the locked regime and the global
instability, which have been described in previous works
on this setup (see [24] for a review), especially for forcing
frequencies lower than the natural frequency. Particle image
velocimetry (PIV) measurements allow us to study the spatial
development of the forced flow, in particular the modification
of the global mode represented by the velocity fluctuation
envelope. Scaling laws in the forcing parameter space that
universally describe the evolution of the global modes in
the vicinity of the critical lines separating the lock-in and
the globally unstable regions are derived from this data.
A spectral analysis of the velocity fluctuations gives an
alternative procedure to define the critical lines and confirms
previous linear stability studies. The drag forces for each case
are estimated from the PIV measurements using the so-called
flux equation (see [25]). These results allow us to relate the
resulting force on the body to its wake properties.

II. EXPERIMENTAL SETUP AND PARAMETERS

The experimental setup shown in Fig. 1 is the same used
by [22]. A circular cylinder of diameter D = 5 mm and
span of ≈20D is placed in a low-speed hydrodynamic tunnel
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FIG. 1. (Color online) Top: Experimental setup and definition
of the forcing parameters. Bottom: Vorticity field calculated from
PIV measurements for the nonforced case showing the Bénard–von
Kármán vortex street.

with a 100 × 100 mm cross section. The cylinder span thus
practically covers the whole height of the tunnel and the ratio
of the cylinder diameter to the tunnel section width is 1/20.
The cylinder can perform rotational oscillations driven by a
stepper motor placed below the platform of the test section
on a submerged “technical section” of the tunnel, imposing
a controlled forcing on the flow. The Reynolds number is set
to 100, defining it using the up-stream velocity in the center
of the tunnel as U0. The measured natural vortex shedding
frequency was f0 = 0.63 Hz, so the Strouhal number St =
f0D/U0 is approximately 0.15. Quantitative measurements
were performed using 2D particle image velocimetry (PIV)
on a horizontal plane placed at midspan of the cylinder [see
the vorticity field for the nonforced case which corresponds
to the well known Bénard–von Kármán (BvK) vortex street in
Fig. 1]. Image acquisition and PIV calculation were done using
a LaVision R⃝ system composed of an ImagerPro 1600 × 1200
CCD camera with a 12-bit dynamic range recording double-
frame images at 11 Hz and a two rod Nd:YAG (15 mJ) pulsed
laser synchronized by a customized PC using LaVision DaVis
7.1 software. Laser sheet width was about 1 mm in the whole
100 × 80 mm imaging region. The time lapse between the two
frames of each image pair used for PIV was set to "t = 12 ms
and sets of 500 snapshots give a frequency resolution of
"f = 0.02 Hz.

The rotational oscillation of the cylinder is prescribed by
a forcing function of frequency f and amplitude θ0 that can
be written as θ (t) = θ0 cos(2πf t), which allows the forcing
to be unequivocally described using two independent nondi-
mensional parameters as did [17]: the forcing amplitude A =
uθmax/U0, where uθmax = Dπf θ0 is the maximal azimuthal
velocity of the rotational oscillation; and the ratio f/f0. We
explore 100 forcing cases and they are represented in Fig. 2.
We define Ac as the value of the amplitude for the transition
between lock-in and nonlocked state (critical lines). These
values are obtained from spectral analysis developed in Sec. V
and Fig. 2 compares them with previous works based on linear
stability from [23] at Re = 150. In order to compare the lock-in
region with drag force estimation (Sec. IV), we include in the

FIG. 2. (Color online) Forcing parameter space. The points
represent experiments where " no lock-in is observed; ⋆ lock-in
is observed. The blue (solid) line is the lock-in threshold estimated
from the present experiments. The red (dashed) line stands for
the observations of [23]. Striped region indicates a maximum drag
reported by [26].

figure the maximum drag found in [26] numerical work for
Re = 200.

III. REVISITING VORTEX PATTERNS AND GLOBAL
MODES IN THE WAKE

A first step to characterize a regime that arises under forcing
is by identifying its vortex patterns, as initially done in the early
works of [15]. In Fig. 3 we show the wake patterns for two
different forcing frequencies and various amplitudes. In the
left column of Fig. 3, ff = 0.69f0 and Ac ∼ 0.3. We observe
at low amplitude (a) A = 0.10 that the flow is not entirely
synchronized with the natural frequency but the formation
region is modulated by the forcing frequency. Increasing the
amplitude to (b) A = 0.40, the flow is locked on the forcing
frequency and vortices are shed in a shorter distance. The
vortex structure remains the same as the nonforced case as each
half a cycle of vortex is fed into the wake. For A = 1.00 the
convective character of the instability is clearly evidenced by
the intense vortices shed in the vicinity. For A > 1 two vortex
rows form as the vortex cores move away from the cylinder.
Once this pattern is attained, under further augmentation of
the amplitude forcing, the vortex structures start splitting
in a cascade-like pattern as can be seen in Fig. 3(d). The
spectral analysis performed below gives more insight on this
phenomenon. The right column of Fig. 3 corresponds to
the case of ff = 2.40f0 and Ac ∼ 1, and the evolution of
the wake pattern under forcing develops in a different way.
For A = 0.40 [Fig. 3(e)] the wake aspect does not differ
from natural BvK vortex shedding except that in the near
wake the forcing wavelength slightly modulates the vortex
formation. As the forcing amplitude increases the shedding,
distance from the cylinder also grows: in Fig. 3(f) it is ∼10D
for A = 0.80 < Ac, that is, approximately twice of what is
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FIG. 3. (Color online) Vortex structures from vorticity contours
for ff = 0.69f0 (left) and ff = 2.40f0 (right): (a) A = 0.10 < Ac,
(b) A = 0.40 > Ac, (c) A = 1.00 > Ac, (d) A = 3.2, (e) A = 0.40 <

Ac, (f) A = 0.80 < Ac, (g) A = 1.60 > Ac, and (h) A = 4.00.
(See the text.)

observed at A = 0.40. Indeed, vortices of the same sign
coalesce in the near wake constituting a long formation region
until they are shed in a BvK-like pattern farther downstream.
Once the lock-in threshold amplitude (Ac ∼ 1) is exceeded, the
coalescence pattern prevails and two vortex sheets are formed
stabilizing the wake [see Fig. 3(g)]. Higher forcing amplitudes,
for instance A = 4 in Fig. 3(h), destabilize again the wake and
a BvK-like pattern reappears in the far wake.

A. Global mode shape

Wake flows can be analyzed as a propagating wave with
an amplitude (determined by the fluctuating component of
velocity) that grows from the origin, reaches a maximum,
and decays afterwards. The spatial envelope of this coherent
oscillation gives the amplitude of the so-called global mode,
for which the dominant contribution is given by the first
harmonics. Previous works [10,11] studied scaling laws for
the global mode in wake flows near the threshold Rec. A
typical contour is presented in Fig. 4(a) where its maximum
amplitude amax at (xmax,ymax) coordinates is highlighted as
it represents an important parameter for scaling. A synthesis
for the global mode properties is represented by its envelope
[Fig. 4(a, inset)] that corresponds to the position of xmax the
maximum amplitude of the mode at y = ymax. The authors
proposed that both amax and xmax follow scaling laws such as
amax ∼ εβ and xmax ∼ εν in the vicinity of the bifurcation. As
ε represents a control parameter that measures the distance to
the threshold they determined that amax ≃ (Re − Rec)1/2 and
xmax ≃ (Re − Rec)−1/2.
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FIG. 4. (Color online) (a) Global mode spatial structure
(from [10]): isocontours of ⟨ux⟩ for the nonforced flow around a
cylinder and shape of the global mode envelope evaluated at the
maximum [blue (shaded) region] y = ymax in the inset (the solid line
is from the present experiments and the points from [10]). From the
present experiments: envelope of the global mode given by the ampli-
tude of the ux fluctuations as a function of the downstream distance
x to the cylinder and for different values of the forcing amplitudes A

for ff = 2.40f0 (c) and ff = 0.69f0 (d); and (b) scaling laws for the
spatial envelopes for ff > fo. Estimation of Ac from amax/xmax vs A

in the inset and scaled result for amax/xmax in (b).

056308-3



D’ADAMO, GODOY-DIANA, AND WESFREID PHYSICAL REVIEW E 84, 056308 (2011)

The existence of global modes is a consequence of the
existence of an absolute instability region, which is modified
by the forcing. The region disappears after lock-in is attained.
For f > f0 this is discussed in [23] and revisited in the
present experiment. Figure 4(c) shows the vanishing of the
global mode as its envelope broadens and its maximum
diminishes. Once the lock-in threshold amplitude is exceeded,
the mean energy of the fluctuations urms =

∫ T

0 u′2
x dt/T is

driven exclusively by the forcing, the curve strongly decreases
from the cylinder to the wake. This observed envelope is
expected to decay exponentially with the form Aex/ξ , where
ξ has the same critical behavior as xmax but with |ϵ|, as it was
studied in early works by [27].

The picture is less clear for the cases where ff < f0 [shown
in Fig. 4(d)]. While small forcing amplitudes determine the
global mode maximum to decrease, for A > 0.15 the envelope
increases, and it does it significantly after the lock-in threshold.

B. Scaling laws

The evolutions of the maximum of the global mode
envelope amax and its position xmax can be used to define the
critical lines that bound the lock-in state in the (ff ,A) space.
For a given frequency, the critical amplitude A = Ac can be
determined by inspecting the evolution of the ratio amax/xmax in
Fig. 4(b, inset). As ff is fixed, the effective control parameter
changes with A, so we expect that amax ∼ (A − Ac)1/2 and
xmax ∼ (A − Ac)−1/2 which means that amax/xmax should
behave linearly with (A − Ac). We observe that the scaling
holds near the critical value, while far from the critical lines
it is modified by higher nonlinearities. We scale amax/xmax
and the forcing amplitude A to the distance to threshold with
the critical value for each forcing frequency (A − Ac)/Ac.
Figure 4(b) resumes the three cases and a single line represents
the linear behavior as amax/xmax → 0 for the control parameter
(A − Ac)/Ac as it attains the threshold.

IV. DRAG ESTIMATION

Previous works on this subject have addressed the problem
of estimating forces from velocity fields only, employing
different methods to include the contribution of the pressure
field in the momentum balance in a control volume equation
(a framework originally developed by [28]):

F = −ρ
D

Dt

∫

V

u⃗dv +
∫

S

(−pI + T) · n⃗ds, (1)

where V is a control volume, S is its boundary, ρ is the
fluid density, p is the pressure field, I is the unit tensor, and
T = µ(∇u⃗ + ∇T u⃗) is the viscous stress tensor. The pressure
field can be obtained either by means of the Poisson equation
(see, e.g., [29]), or integrating the Navier-Stokes (NS) equation
along the control surface [30]. Considering for the pressure
p along a s curve, p(s) = p(s − ds) + ∇p · d⃗s, the latter
idea was further refined by [31] who proposed using the NS
equation only in the wake region, while adopting the Bernoulli
equation in the surrounding slowly evolving potential flow
region. Thus, p(s) = ∂φ

∂t
+ p0 − 1

2ρ|u⃗|2 which reduces the
numerical error introduced by derivations.

Another approach has also been used to evaluate the force
using only velocity fields and their derivatives (see, e.g.,
[32,33]). It makes use of the the identities (see also [34]):

1
N − 1

∫

V

x⃗ × ω⃗=
∫

V

u⃗dv + 1
N − 1

∮

S

x⃗ × (n⃗ × u⃗)dS,

(2)
D

Dt

∮

S

n⃗ · -dS =
∮

S

n⃗ ·
[
∂-

∂t
+ u⃗s(∇ · -)

]
dS, (3)

where - = [(x⃗u⃗)I − x⃗u⃗], so that Eq. (1) leads to expressions
where p does not appear explicitly. For a 2D problem, the
mean flow drag forces becomes

⟨F ⟩ =
∮

S

n⃗ ·
{ 1

2 ⟨u2⟩I − ⟨u⃗u⃗⟩ − ⟨u⃗(x⃗ × ω⃗)⟩

+ [(x⃗ · ∇ · ⟨T⟩)I − x⃗∇ · ⟨T⟩] + ⟨T⟩
}
dS, (4)

where brackets indicate a time averaging procedure. We tested
both the mixed Bernoulli-NS scheme, and the expression
from Eq. (4) using the present experimental velocity field
measurements. The drag coefficient CD = 2Fx/ρU 2

0 D shown
in Fig. 5(top) was determined for the volume around the
cylinder limited by x = −2D, x = 3D, and y = ±4D. For
the nonforced case, the reference value CD0 = 1.53 is in
reasonable agreement with the literature (confinement effects
on the U0 value have been taken into account in the calculation
of CD0). The error was estimated from the rms value of CD

FIG. 5. (Color online) Top: Drag coefficient for ff = 0.69 for
Bernoulli-NS evaluation of pressure and for the flux Eq. (4). CD0

corresponds to the nonforced flow and fit curves show the general
behavior for this case. Bottom: Drag coefficient for ff = 0.69 and
for ff = 2.40.
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for a variation of 1D on the control volume boundaries. The
error is slightly lower for the impulse equation, so we adopted
it to estimate the drag on the cylinder for different forcing
parameters.

Figure 5(bottom) shows the evolution of the drag force as
we increase the forcing amplitude A for two cases ff = 0.69f0
and ff = 2.40f0, representative of forcing below and above
the natural frequency, respectively. For frequencies ff < f0
the drag force increases strongly after the lock-in threshold.
Qualitatively different for f>f0 the force decreases only when
we are sufficiently near the threshold, attaining its minimum
not far passed from Ac. The maximum drag reduction of
around 20 is consistent with what has been reported in other
experimental works [18,22] as well as numerical simulations
[12,26]. Comparing the drag chart in the (ff ,A) space obtained
by [26] from numerical simulations with Fig. 2 suggests that
for ff > f0 the drag minimizes for regions close to the lock-in
threshold, where the global fluctuations are reduced. On the
other hand, maximum drag is obtained well inside the lock-in
region for ff < f0 as in [26] (see Fig. 2).

FIG. 6. (Color) Spectrograms for (top) ff = 0.69f0 and (bottom)
ff = 2,40f0. The power density spectra are represented as color
levels (in a log scale) on a frequency content, forcing amplitude
(nonlinear scale) map.

V. SPECTRAL ANALYSIS OF THE FORCED WAKE

The lock-in threshold can be explored by inspecting the
power spectral density on the flow domain. For each point in
the parameter space we calculate the spectrum of ux for every
point in the domain. The global spectrum is then obtained as
the sum of all points spectra. In addition to this global spectrum
that contains all frequencies present in the flow, we define two
“spectral probes” in two regions chosen considering the spatial
development of the flow: one in the cylinder vicinity, and the
second one in the location of the maximum strength of velocity
fluctuations. A synthesis of all the global spectra is represented
in the spectrograms shown in Fig. 6 for the same two forcing
frequencies that have been analyzed in the previous sections.
The spatial modification of the wake structure caused by the
forcing is presented alongside the corresponding spectra in
Figs. 7 and 8. For each forcing amplitude the root mean square
of ux is displayed by its contour levels.

Figure 6(a) corresponds to a forcing frequency of 0.69f0
and represents the characteristic behavior for ff < f0. The
first rank (A = 0) is the nonforced case where only the peaks
on the natural frequency and its harmonics are observed.
Next, under forcing, even for amplitudes a low as A = 0.05,
the spectrum is modified by the appearance of the forcing

FIG. 7. (Color online) Left: Power spectrum for a forcing fre-
quency of 0.69f0 for three forcing amplitudes. Black (solid) line:
Global spectrum; blue (dashed) line: spectrum around the global
mode maximum; green (dash-dotted) line: Spectrum in the cylinder
vicinity. Right: Contour levels of rms(ux) with the positions of the
spectral probes marked in blue (dark shaded) and green (light shaded).
The parameters of the forcing for each case are indicated in the lock-in
diagram.
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FIG. 8. (Color online) Left: Power spectrum for a forcing fre-
quency of 2.40f0 for three forcing amplitudes. Black (solid) line:
Global spectrum; blue (dashed) line: spectrum around the global
mode maximum; green (dash-dotted) line: Spectrum in the cylinder
vicinity. Right: Contour levels of rms(ux) with the positions of the
spectral probes marked in blue (dark shaded) and green (light shaded).
The parameters of the forcing for each case are indicated in the lock-in
diagram.

frequency, its harmonics and linear combinations of forcing
and natural frequencies, k1ff + k2f0 (where k1 and k2 are
integers). Figure 7(a) shows a typical power spectral density
for this regime. We observe also in Fig. 6(a) that the
natural frequency value increases when the forcing amplitude
approaches the lock-in threshold. The peak for f0 decreases
its intensity as the forcing amplitude increases, until the
forcing frequency peak and its harmonics are the only ones
present on the flow (A > 0.3 for this case). As the global
mode vanishes, the flow is locked on the forcing frequency
[see Fig. 7(b)]. The peak on the forcing frequency continues to
grow and its amplitude reaches about 10 times the nonforced
case. For higher amplitudes (A > 2 for this case) the spectrum
becomes continuous [see Fig. 7(c)], with the forcing peaks
distributed over a slope that clearly links higher energetic
scales (low frequencies) to smaller scales (high frequencies).
A −2 slope fits the curve, as it occurs in flows under strong
rotational forcing [35], unlike isotropic turbulence that fits
with a −5/3 slope. This state is attained at high amplitudes for
all forcing frequencies ff < f0 for high amplitudes and is, to
our knowledge, an observation in the context of open flows.
The spectrogram in Fig. 6(b) represents the spectrum variation
for a forcing frequency ff = 2.40f0. Again, for amplitudes
lower than those near the lock-in threshold, the flow presents
a spectrum with discrete peaks k1ff + f2f0 [Fig. 8(a)].
The natural frequency peak decreases its energy as the

forcing amplitude increases. When approaching the threshold
(A > 1.1 for this case) the natural frequency diminishes
its value to 0.88f0. This has been discussed by [24] as a
consequence of the wake restabilization that changes the
linear global frequency selected by the base flow. Above
the lock-in threshold, like in Fig. 8(b) for A = 1.60 > Ac,
the flow contains only the forcing frequency and its harmonics,
and the energy level of the fluctuations is much lower, about
10 times smaller than the corresponding for the nonforced case.
Another threshold appears as for A > 3.2 where the spectrum
becomes continuous [Fig. 8(c)], but this is owing to strong
fluctuations that come from the far wake, unlike the precedent
case where they were generated directly by the forcing so
the phenomenon is qualitatively different. We notice from the
spectrogram of Fig. 8(b) that a peak on ∼ff /2 first emerges
prior to the transition to a continuous spectrum for higher
amplitudes.

It is worth mentioning that similar dynamics have been
reported in the case of enclosed swirling flows under harmonic
forcing [36] as well as on other forced systems [37]. Indeed,
the quasiperiodic behavior for ff and f0 that characterizes
the transition to lock-in has been reported by [36], who
have described in detail the period doubling process. Further
investigations on Re < Rec may shed more light on the
mechanisms of the transition process and the similarities of
enclosed swirling flow studied by [38].

VI. CONCLUSIONS

Spectral analysis was shown to be a useful tool for the
analysis of PIV experimental data from a forced cylinder
wake. Lower Reynolds number than previous works allow
us to characterize the flow’s critical behavior more accurately.
In addition to refining previous studies on the global mode
properties of forced wakes and revisiting their scaling proper-
ties, the present results have in particular allowed us to shed
new light on previously unexplored phenomena related to the
transitions between globally unstable and locked-in states in
the parameter space of the forcing (f,A). The appearance
of a continuous spectrum for large forcing amplitudes was
observed in two different situations with presumably two
different physical explanations: for f < f0, the large forcing
amplitude determines each vortex shed in the near wake
to be very intense and thus to be destabilized, split, and
mixed rapidly giving rise to a turbulence-like window in the
parameter space. This regime is very easy to obtain and can
be used extensively to generate turbulent behavior at moderate
Reynolds numbers. On the other hand, for f > f0, passed the
lock-in threshold, under increasing forcing amplitude, the flow
is subject to large fluctuations coming from the far wake.

Finally, we have evaluated the drag force from the velocity
field bringing experimental evidence to suggest a relationship
between the drag minimum and the lock-in threshold.
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