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Wing flexibility governs the flying performance of flapping-wing flyers. Here, we use a self-propelled
flapping-wing model mounted on a “merry go round” to investigate the effect of wing compliance on the
propulsive efficiency of the system. Our measurements show that the elastic nature of the wings can lead not
only to a substantial reduction in the consumed power, but also to an increment of the propulsive force. A
scaling analysis using a flexible plate model for the wings points out that, for flapping flyers in air, the
time-dependent shape of the elastic bending wing is governed by the wing inertia. Based on this prediction, we
define the ratio of the inertial forces deforming the wing to the elastic restoring force that limits the deforma-
tion as the elastoinertial number Nei. Our measurements with the self-propelled model confirm that it is the
appropriate structural parameter to describe flapping flyers with flexible wings.
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Flapping flight is probably the way of locomotion using
the most complex dynamics in the animal realm #1,2$. Struc-
tural properties of animal wings, together with wing kine-
matics, constitute the basic elements of a tough problem:
being able to stop, accelerate, execute sharp turning, hover,
etc. However, flapping costs a large amount of energy due to
the perpetual cycle of acceleration and deceleration involved
in the process of generating useful aerodynamic forces #3$.
As a means of minimizing this cost, natural systems have
presumably optimized animal wings by tuning their flexibil-
ity, which enhances not only their mechanical resistance, but
also the animals’ flight efficiency. The crucial nature of the
elastic response of the wings in the propulsive performance
of a flapping flyer has been made clear not only by observing
natural systems #3$, but also by investigating simplified mod-
els where wing compliance determines drastic changes in
thrust production and efficiency !see #4–8$". A few ways by
which wing flexibility is favorable for both flying animals
and manmade devices have recently been proposed #9–11$
!see also extensive review by Shyy et al. #12$". However,
although a common hand waving argument is that wing com-
pliance can be beneficial for the flapping flyer if elastic po-
tential energy can be stored when the wings bend and re-
leased in a favorable part of the flapping cycle, the details of
the balance of fluid dynamical, structural, and inertial forces
and moments that govern these mechanisms remain not well
understood. Experimentally, one has to note that most studies
do not consider self-propelled objects but the interaction be-
tween flapping bodies held static and an oncoming uniform
flow that is driven independently of the flapping motion. If
one thinks of cruising flapping flight, the very fact of decou-
pling the flapping dynamics and the forward speed makes it
difficult to extrapolate any conclusions about flight perfor-
mance to the case of a free-flying animal or machine. A
notable exception is the experiment by Vandenberghe et al.
#13$, where a heaving wing mounted on an axis free to rotate
was shown to spontaneously give rise to a cruising speed
perpendicular to the direction of the heaving motion. This
work has been recently extended by introducing a pitching
degree of freedom to mimic wing compliance #14$. Here, we
use an experimental self-propelled flapping-wing model to

study the effect of wing flexibility on its propulsive perfor-
mance. The setup has been designed to enable measurements
of the cruising speed, the thrust force, as well as the con-
sumed power as functions of the imposed wing motion !flap-
ping frequency" and wing design. It is shown that increasing
wing flexibility leads to a substantial reduction in the con-
sumed power as well as an increase in the thrust power, with
both quantities being directly dependent on the flexural prop-
erties of the wings.

The experimental setup consists of a flapping-wing device
that is allowed to turn on a merry-go-round-type base !in the
spirit of le petit manège from Marey, see, e.g., #15$". The
two-wing flapper is attached to a mast that is ball bearing
mounted to a central shaft in such a way that the thrust force
produced by the wings makes the flapper turn around this
shaft !see Fig. 1". For the chosen wing geometry !half disk of
diameter S=2L=6 cm", the control parameters of the experi-
ment are the flapping frequency !f" and the foil chordwise
flexibility !governed by its thickness h". Four pairs of wings
were tested, of thicknesses 0.15, 0.23, 0.25, and 0.4 mm that
correspond to masses per unit area !"s" of 0.20, 0.30, 0.33,
and 0.53 kg m−2 and bending rigidities !B" of 6, 25, 34, and
120 mN m, in the range of the flexural stiffness of real in-
sect wings #16$. The natural frequencies of oscillation of the
wings measured with relaxation tests are 71, 111, 125, and
166 Hz, respectively. The measured quantities are the power
consumption !Pi, computed from voltage and current mea-
surements in series !see also #17$"" from which the power of
the system running with no wings has been subtracted, the
cruising speed of the device !U obtained using the measured
time per revolution T=2#$−1", and the thrust force FT. The
force measurement was performed by holding the flapper in
a fixed station using a string attached through a pulley to a
calibrated weight as shown in Fig. 1 !top right" and monitor-
ing the weight deficit on a tabletop balance as a function of
the flapping frequency. The experiments reported here were
performed with flapping frequencies ranging from 10 to 30
Hz, which drove cruising speeds between 0.2 and 1.5 m s−1.
Thus, the chord-based Reynolds number Re=Uc /% !where c
is the maximum chord and % is the kinematic viscosity"
ranged between 1000 and 3000, whereas the amplitude-
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based Strouhal number usually used to characterize flapping-
based propulsive systems StA= fA /U ranged between 0.3 and
0.9 !using the flapping amplitude at midspan to define A".
These values of Re and StA are in the ranges that correspond
to flapping flight in nature.

The measurements are summarized in Fig. 2. First, the
electrical power consumed by the motor Pi as a function of
the flapping frequency f is shown in Fig. 2!a". As can be
observed, keeping the system at a certain frequency requires
less power as the wings become more flexible. It is also
worth noting that the consumed power Pi as a function of the
forcing frequency does not change whether the system is
running !lines" or not !points", i.e., whether we are measur-
ing the thrust force or the cruising speed. This suggests that
the modification of the aerodynamic forces due the cruising
motion does not play a crucial role in the energy needed to

perform the flapping. We note that the most flexible wing
tested can save up to 60% in consumed power with respect to
the most rigid one in the 25–30 Hz frequency range. Figures
2!b" and 2!c", respectively, show the cruising forward flight
velocity U=R$ and the thrust force FT as functions of the
input power. Again, for the wing rigidities tested here perfor-
mance increases with increasing flexibility. In a general way,
the present results show that the passive mechanisms associ-
ated with wing compliance can increase flight efficiency by
increasing the thrust force and the cruising velocity while
spending less energy. This efficiency enhancement is sum-
marized in Fig. 3, where the ratio of thrust power PT=FTU to
input power Pi is displayed. All measurements are thus com-
bined in this efficiency factor &̃= PT / Pi, which has been nor-
malized in the plots with respect to its maximum value for
the most rigid wing as &= &̃ /max &̃rigid. Figure 3!a" shows
that each wing has an optimum flapping frequency beyond
which the efficiency starts to decrease. It is worth noting that
this optimum occurs significantly below the natural relax-
ation frequency, so that any conclusion on the role of a reso-
nance to minimize the cost of bending !as discussed, for
instance, in the case of undulatory propulsion by #18$" is not
applicable !see also #19$". The same efficiency factor is plot-
ted in Fig. 3!b" with respect to the Strouhal number StA,
where now the position of the optimum decreases with wing
flexibility. It occurs on a range between 0.3 and 0.45, which
is consistent with the range of optimal Strouhal numbers
observed in nature #20$. The & vs StA curves show different
behaviors depending on the bending rigidity of the wing and
prompt us to look for a new scaling including not only aero-
dynamical variables but also the wing structural parameters.

The first point to address when considering the effect of
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FIG. 1. !Color online" Experimental setup. !a" Sketch of the
merry go round. The wings are mounted perpendicular to the radial
mast !length R=0.5 m". !b" Force measurement with a tabletop
balance. !c" Close-up view of the flapping device. !d" Superposed
pictures of the flexible flapping wing showing the chordwise
deformation. The semicircular poly-vinyl-chloride wings had a
c=30 mm maximum chord !at midspan". A fiber glass structure
attaches each wing to the flapping mechanism and rigidifies the
leading edge. The peak-to-peak flapping amplitude A at the span
position of the maximum chord was set to A=30 mm.
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FIG. 2. !a" Electrical power consumed by the motor, !b" cruising velocity, and !c" thrust force as functions of the flapping frequency for
the four tested pairs of wings. In !a" the points correspond to the force measurements with the system held at a fixed station, whereas the lines
are the measurements taken with the system turning at its cruising speed.
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FIG. 3. Normalized efficiency factor & as a function of !a" fre-
quency and !b" Strouhal number StA= fA /U. The efficiency factor
&̃= PT / Pi has been normalized as &= &̃ /max &̃rigid.
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wing flexibility is to identify the main force that will bend
the wing. In the dynamic regime, an elastic flapping wing is
subjected to both the fluid dynamic pressure acting on the
surface of the wing and the inertial force due to the oscillat-
ing acceleration. A measure of the importance of these two
bending forces can be given using a simplified model for the
flapping wing as a plate of length L, mass surface density "s,
and bending rigidity B !for a plate of thickness h and
Young’s modulus E, B%Eh3" whose leading edge is heaving
sinusoidally with frequency ' and amplitude A. The
moment of the mean fluid pressure force scales then as
Mf %( fuf

2L3=( f'
2A2L3, where ( f is the fluid density and

uf =A' is the maximum flapping velocity, whereas the mo-
ment of the inertial force scales as Mi%"sL3A'2. The ratio
of these two moments Mi /Mf is actually a mass ratio "s /( fA,
which is greater than 10 for all the wings tested in the present
case. The main bending factor in this case is thus the inertial
force, which will be counterbalanced by the elastic restoring
force produced by the bent wing. This is consistent with the
analysis in #21$ which concluded for most wings moving in
air that the feedback between fluid pressure stresses and the
instantaneous shape of the wing is negligible with respect to
the inertial-elastic mechanisms. The results in Fig. 2!a" also
support this assumption since the change in the aerodynamic
forces in the cruising regime with respect to the fixed station
operation of the system is undetectable in the consumed
power vs frequency curves. We therefore proceeded to com-
paring the moment of the inertial force Mi to that of the
elastic restoring force that scales as Me%B. The ratio
Mi /Me, which we define as the elastoinertial number

Nei =
"sA'2L3

B
= & L

Lb
'3

, !1"

in terms of the bending length Lb= !B /"sA'2"1/3, measures
thus to what extent the inertial force due to the oscillating
acceleration will be balanced by the elastic resistance to
bending !analog definitions of this bending length arise in
problems where other forces drive the bending; see, for in-
stance, #22,23$ for capillary and hydrodynamical forces, re-
spectively". This definition determines, for instance, that for
Nei)1 the wing is too rigid for the inertia of the oscillating
wing to have an observable effect, or in terms of the bending

length, Lb*L, so that no deformation can be observed over
the length scale L of the wing chord.

Physically, the form of the bending wing can be seen as a
“shape factor” that redistributes the contribution of the aero-
dynamic forces in both directions—of the flapping motion
normal to the wings FD #26$ and of the forward
displacement—as sketched in Fig. 4. During the flapping
motion, the wings experience strong drag as they push fluid
up and down during a stroke cycle. Because of the flexibility
of the wing, the experienced drag scales on a length depend-
ing on Lb #23–25$, instead of L as it would for the rigid case.
On the other hand, the change in shape induces a contribu-
tion of the aerodynamic pressure load in the forward direc-
tion that is also dependent on the wing bending. The two
forces FD and FT, respectively, normal and in the direction of
the cruising speed, should therefore be directly dependent on
the wing shape that is determined by the nondimensional
number Nei defined in Eq. !1". This is clearly shown in Fig.
5!a", where the useful thrust power and the input power are
plotted as functions of Nei. The thrust power is defined by

FIG. 4. Schematic diagram of the redistribution of aerodynamic
forces by a bending plate model !top" with respect to a rigid plate
!bottom". FTr is the thrust force and FDr is the drag force for a rigid
wing, respectively. 10
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FIG. 5. !a" Nondimensional thrust power pT !and input power pi
in the inset" and !b" efficiency factor as functions of elastoinertial
parameter Nei. The arrows in !b" indicate for each wing the value of
Nei where the trend of the efficiency curve changes. The error in the
Nei measurements is of 5% due to the uncertainty in the measure-
ments of B.
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the product of the cruising speed and the thrust force #shown
in Figs. 2!b" and 2!c", respectively$, which are rendered non-
dimensional using the scalings fT=FTL /B and u=U /A'. The
nondimensional thrust power is thus defined as
pT=UFTL /BA'. Figure 5!a" clearly shows that all the mea-
sured data collapse onto a single power law with Nei. The
input power #shown in the inset of Fig. 5!a"$ is nondimen-
sionalized using the same scaling pi= PiL /BA' and gives a
measure of the work of the drag force experienced by the
flapping !i.e., %FDu'". This quantity also scales with the
elastoinertial number Nei. The efficiency #plotted in Fig. 5!b"
as a function of Nei$ that we have defined previously as
PT / Pi is thus a ratio of works: the work of the useful thrust
force FT over the work of the drag force experienced by the
flapping wing FD. A salient feature of the & vs Nei plots in
Fig. 5!b" is that the main trend followed by the experimental
points over different sets of wings is valid only up to a cer-
tain threshold for each wing after which the measured data
show a change of regime. We have noted in Fig. 3 that a
simple resonance at the relaxation frequency cannot explain
the observed behavior. The possible role of subharmonic
resonances in the efficiency curves involving a detailed study

of the phase dynamics is the subject of ongoing work.
In summary, the effect of wing flexibility on the efficiency

of flapping flyers can be thought of as a two-step process: a
solid mechanics problem, where the balance between inertial
and elastic forces determines the instantaneous shape of the
flexible wings, followed by a fluid dynamics problem, where
the boundary conditions set by the previous step govern the
distribution of aerodynamic forces. This simple passive
mechanism, shown here to be well described using the elas-
toinertial number Nei, can bring a twofold advantage: de-
creasing the energy cost while enhancing the thrust power.
The self-propelled system described here gives a framework
that should be useful to pursue further studies on the effect of
structural and geometrical properties of the wings in the per-
formance of flapping-based propulsion.
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