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Abstract

Performance of wave-energy devices of the oscillating water column (OWC) type is greatly enhanced when a resonant condition with
the forcing waves is maintained. The natural frequency of such systems can in general be tuned to resonate with a given wave forcing
frequency. In this paper we address the tuning of an OWC sea-water pump to polychromatic waves. We report results of wave tank
experiments, which were conducted with a scale model of the pump. Also, a numerical solution for the pump equations, which were
proven in previous work to successfully describe its behavior when driven by monochromatic waves, is tested with various polychromatic
wave spectra. Results of the numerical model forced by the wave trains measured in the wave tank experiments are used to develop a
tuning criterion for the sea-water pump.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Conversion of ocean wave energy into a useful form has
been studied intensely during the past two decades,
particularly regarding generation of electricity (e.g. Ross,
1995; Clément et al., 2002). Special attention has been
given to one class of wave energy converters based on an
oscillating water column (OWC) (see Falnes, 2002, for a
review of the OWC physics). In such systems, seawater is
forced by incident waves to oscillate inside a partially
submerged chamber or duct. The free surface within this
chamber compresses a volume of air which is, in most
cases, directed to flow through a turbine thus driving an
electric generator (e.g Falcão et al., 1996; Heath et al.,
2000). Most R&D efforts on the subject have been focused
on the wave energy absorption efficiency optimization (e.g.
Evans, 1981; Korde, 1999; Perdigão and Sarmento, 2003).

An OWC wave energy device intended for seawater
pumping, involving no generation of electricity, has been
described by Czitrom et al. (2000a,b). The system has
potential for various coastal management purposes, such
as aquaculture, flushing out of contaminated areas or the
recovery of isolated coastal lagoons as breeding grounds.
The seawater pump (shown in Fig. 1) is composed of: a
resonant duct, in which the wave oscillation, compared to
the wave motion, is magnified and rectified by overtopping
of the water column; an exhaust duct, through which water
flow resulting from wave rectification is channeled to a
receiving water body; and a variable volume air compres-
sion chamber coupling the two ducts. The wave-induced
pressure at the mouth of the resonant duct drives an
oscillating flow that spills water into the compression
chamber, and thence through the exhaust duct, with each
passing wave. Air in the chamber behaves like a spring
against which water in the resonant and exhaust ducts
oscillates. Maximum efficiency is attained at resonance
when the system natural frequency of oscillation coincides
with the frequency of the driving waves (see e.g Lighthill,
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1979). A resonant condition can be obtained for different
wave frequencies by means of a variable volume compres-
sion chamber that adjusts the hardness of the air spring.
Response of the system to monochromatic waves has been
previously studied by Czitrom et al. (2000b). They
developed a tuning algorithm that predicts the optimal
volume of air for the compression chamber, for given
values of wave period and amplitude and tidal elevation. In
this paper we address the problem of tuning the wave
pump when forced by polychromatic waves. We report on
wave tank experiments with a scale model of the pump as
well as on the results of numerical simulations driven by
real wave tank data. A tuning criterion is derived to
optimize the system performance in these conditions.

This paper is organized as follows: in Section 2 we recall
the equations describing the seawater pump as well as
previous results on the tuning to monochromatic waves.
Results of the experiments with a scale model and
polychromatic forcing are reported in Section 3. Tuning
to polychromatic waves using experimental data and a
numerical model of the pump is discussed in Section 4
followed by concluding remarks in Section 5.

2. Background

2.1. System equations

The hydrodynamic theory for the OWC seawater pump
studied here is based on what has been referred to as a
heaving rigid-piston model (Evans, 1981; Brendmo et al.,
1996; Falnes, 2002), where the free surface inside the
resonant duct is assumed to behave as a massless rigid
piston. When the incoming waves are long with respect
to the interior cross-section of the resonant duct, the
deformation of the internal free-surface is negligible and
the OWC is well described by the heave velocity of the
‘rigid-piston’. The prediction of the system behavior is thus
equivalent to that of more general models (e.g. Evans,
1982; Sarmento and Falcao, 1985) that take into account
the deformation of the internal free-surface. The pumping

system was shown by Czitrom et al. (2000a) to be
accurately described by Eqs. (1) and (2) for the evolution
of the water surface elevation inside each duct, when there
is no spilling in the compression chamber. These equations
were derived applying the time-dependent form of Ber-
noulli’s equation to streamlines that join the free surfaces
inside the resonant and exhaust ducts with the surfaces of
the forcing and receiving water bodies, respectively (see e.g.
Falnes, 2002, chapter 4). Terms were added to account for
viscous losses due to friction (see also Pérez et al., 1996)
and vortex formation (see also Knott and Mackley, 1980),
which are not considered in Bernoulli’s equation, and
radiation damping (see also Knott and Flower, 1980).
At the time of pumping, fluid surges from the resonant
duct and spills into the exhaust side of the compression
chamber. The fluid surface above the resonant duct bulges
upward inducing a back pressure on the fluid in the duct,
proportional to the bulge height. This effect has to be taken
into consideration when solving the equations throughout
the full cycle (Czitrom et al., 2000a).
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Eqs. (1) and (2) are written in non-dimensional form by
scaling length and time with the amplitude A and
frequency O of an average forcing wave so that the forcing
in Eq. (1) reads

WðtÞ ¼
g

AAf 1O2
sinðOtÞ. (5)

A magnifying factor Af for the oscillation amplitude in
each duct, with respect to the forcing wave, is considered.
Subscripts 1, 2 and c in Eqs. (1) and (2) correspond to the
resonant and exhaust ducts and compression chamber,
respectively. w is the surface displacement, in either duct,
relative to its equilibrium position in the compression
chamber, and L and A are lengths and areas, respectively.
L1 and L2; the resonant and exhaust duct lengths,
correspond to the physical length of the ducts plus an
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Fig. 1. Schematic diagram of the seawater pump (from Czitrom et al.,
2000b).
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added length due to edge effects at the mouths (see Czitrom
et al., 2000b). In addition, PA is the atmospheric pressure,
r is the seawater density, g is the gravitational acceleration,
g ¼ Cp=Cv ¼ 1:4 is the ratio of the specific heat capacities
of compressed air, Td is the height of sea level above
the receiving body of water (including tides), V 0 is the
compression chamber volume, H is the height of the
equilibrium position of the free surface in the compression
chamber above the receiving body of water and cD1;2 is a
coefficient of nonlinear losses including vortex formation,
friction and radiation damping. L1 and Td are referred
to the equilibrium position on the exhaust side of the
compression chamber.

The inertial term is first in both Eqs. (1) and (2), where
the water masses in the ducts are written in terms of the
duct lengths—Eq. (3). The second and fifth terms come
directly from Bernoulli’s equation whereas the third term is
added to represent the nonlinear losses due to vortex
formation at the duct mouths, friction and radiation
damping. Coupling of the two equations occurs through
the air compression term (fourth in both equations) and
the wave forcing is included on the right-hand side of the
resonant duct equation (1). A dimensional analysis of the
pump equations performed by Czitrom et al. (2000a) for a
full-scale oceanic application shows that the nonlinear
terms in Eqs. (1) and (2) are relatively small, and that their
main contribution is to limit flow through the pump. They
showed that the pump behaves basically like a two-mass
two-spring linear system (Fig. 2), where the two masses
correspond to the water in the two ducts and the springs
represent gravity and the air compression chamber. The
restoring force on the oscillating system is thus provided by
the compression of the air chamber and by the gravita-
tional force. Nonlinear losses, albeit small, are represented
by the pistons.

2.2. Numerical model

A numerical model based on a finite-difference integra-
tion of the pump Eqs. (1) and (2), was thoroughly tested by
Czitrom et al. (2000b) for monochromatic forcing waves.
They compared output from numerical model runs for the
free surface position in the ducts and flow through the
pump, with experimental results obtained in wave tank
experiments with a physical model of the pump. They used
the pressure signal measured at the duct mouth as forcing

instead of the sinusoidal wave of Eq. (5) and the system
behavior was very well predicted (see Fig. 3).

2.3. Tuning to monochromatic waves

An expression for the natural frequencies of oscillation
of the seawater pump when there is no spilling in the
compression chamber can be derived from the linearized
version of Eqs. (1) and (2). It reads (Czitrom et al., 2000b)
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The two frequencies in Eq. (6) correspond to different
modes of oscillation of the water masses in the ducts. The
higher frequency oþ0 , is associated to a synchronous
oscillation of the two free surfaces that compresses and
decompresses the air chamber, and is the natural frequency
excited for pumping. The second mode, with the lower
frequency o%0 , corresponds to a bodily oscillation of the
two masses about their center of mass.
Since expression (6) was derived from non-dimensional

equations, the resonant condition useful for pumping
occurs at oþ0 ¼ 1; and the forcing wave frequency appears
as O in coefficients A and B. Solving for V 0 provides the
following simple analytical algorithm for tuning the system
for resonance at the given wave frequency (Czitrom et al.,
2000a):

V0Lin ¼ a
Ar

L1O2 % g
þ

Acam

L2O2

$ %
. (10)

This tuning algorithm, however, is not completely
adequate when there is spilling in the compression chamber
and the system is fully operational. During pumping, the
fluid that spills from the resonant duct ceases to weigh on
the rest of the fluid in that duct, so that the gravitational
spring restoring force becomes constant. This is equivalent
to a softening of the combined air-cushion-gravity restor-
ing force, since springiness is now only provided by the
compression chamber. Pumping thus decreases the natural
frequency of oscillation of the system so that, in order to
maintain a resonant condition at the driving wave
frequency, the compression chamber spring must be
hardened, by decreasing its volume. That is, resonance
occurs at a volume of air smaller than the linear prediction
V0Lin when there is pumping.
The numerical model was used by Czitrom et al. (2000b)

to obtain a tuning algorithm for monochromatic waves for
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Fig. 2. Representation of the pump as a damped two-mass two-spring
oscillator (from Czitrom et al., 2000b).
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the fully operational system. This algorithm renders an
optimal volume of air for the compression chamber (V 0),
in terms of the wave period and amplitude and the tidal
elevation. The resonant air chamber volume (V0) was thus
found to increase with increasing wave period and
decreasing tidal height. They also showed that the flow
rate through the pump at resonance (Q0) increases with
increasing wave period and wave amplitude.

3. Experiments

In this section we describe wave tank experiments
conducted with a scale model of the pump driven by
polychromatic waves. The model was designed on a 1:20
scale with respect to a full-scale oceanic application and is
similar to that used for the monochromatic wave experi-
ments reported in Czitrom et al. (2000b). A schematic
diagram of the experimental setup is shown in Fig. 4.

The mouth of the resonant duct (A) was placed in the
wave tank exposed to the passing waves, while the exhaust
duct (B) was placed in a bucket of water (C), which was
leveled flush with the surface of the tank. Water spilt from
the bucket was collected in a recipient (D). The pump was
primed at the start of the experiments by creating a partial
vacuum that brought water up from the tank and bucket,
to a working level in the compression chamber (E). We
define the portion of resonant duct extending above this
level as the sill height. The volume of air in the compression
chamber was modified by changing the level of water in the
connecting chamber (F); through interchange with the
storage tank (G). The model was fully instrumented with
water height sensors of the capacitance type in the resonant
and exhaust ducts, as well as in the water deposit (D), used
to monitor flow through the pump continuously. A water
height sensor was also placed at the wave tank surface,
above the resonant duct mouth, to measure the driving

wave height. The sensors were sampled at 0.1s intervals.
Dimensions of the various components are explicited in
Table 1.
The model pump was driven with waves of various

spectra, which were designed to mimic real sea surface
waves and also to allow for differentiation of the response
of the system to each frequency component. For the data
shown in this paper, the wave generator was programmed
to include four different wave periods (1.8, 2, 2.2 and 2.4 s)
while keeping the amplitude at 0.04 m for all components.
Traces in time obtained from the different sensors for one
of the experiments are shown in Fig. 5. It can be seen in this
figure that the pulsating forcing wave drives the response in
the resonant duct and in the flow. The regions with largest
slope in the flow trace lag behind the largest oscillations in
the resonant duct which in turn lag behind the driving wave
pulsations. From this phenomenon we can characterize a
response time for the experimental system, between the
largest wave oscillations and the largest observed flow rate,
of approximately 12 s. It can also be seen that the events of
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Fig. 4. Schematic diagram of the scale model tested in the wave tank (see
text).
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large oscillations in the resonant duct, which produce
pumping, are associated initially with an increased water
level in the exhaust duct side of the compression chamber,
which subsequently oscillates with a period greater than the
driving wave. This lower frequency is related to the second
natural frequency of oscillation of the sea-water pump,
identified as o%0 in expression (6), and is excited by the
change in level which results from spilling in the compres-
sion chamber.

In Fig. 6, fast Fourier transforms (FFT) of 1024 data
points of the forcing wave signal and the oscillations within
the ducts are shown. Comparing Figs. 6a and b, it can be
seen that, for the resonant duct, the main driving wave
frequencies are transformed so that the resonant frequency
peak is clearly larger than the others for that particular
experiment. The lower frequencies also present in the
resonant duct response correspond, on the one hand, to
the second natural frequency of oscillation noted in the
previous paragraph, and to combination frequencies
nf i %mf j where n and m are integers (n ¼ m ¼ 1 most

important) and f i and f j are any of the main driving
frequencies. These combinations are to be expected
considering that the frequency of the pulsations in the
driving wave must correspond to differences between the
main forcing frequencies. In the exhaust duct (Fig. 6c),
these low frequency components are the most important
part of the oscillation.

4. Tuning to polychromatic waves

4.1. FFT analysis

In Fig. 7, we show FFTs of the forcing wave signal and
of the oscillations in the two ducts measured in four
different cases. These four experiments were conducted in
the same wave conditions (a polychromatic wave with four
components Tpoly ¼ 1:8; 2; 2:2 and 2.4) and only the
volume of air in the compression chamber had a different
value in each case, corresponding to the prediction V0Lin of
Eq. (10) for each period component. Also shown in these
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Table 1
Dimensions of the various components of the model pump

L1 D1 A1 L2 D2 A2

5.25m 0.056m 0:00985m2 16m 0.036m 0:00407m2

Dc Ac V 0 Sill height

0.145m 0:06605m2 0:03320:073m3 0:00520:03m
Wave tank depth Resonant duct mouth depth

0.86m 0.279m

Fig. 5. Time series of the water height measurements in the wave tank, the resonant and exhaust ducts (in metres) and the flow recipient (in cubic metres).
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figures are the two natural frequencies of oscillation (f þ

and f % ¼ 1=T) obtained from Eq. (6) for each volume of
air in the compression chamber. The energy in the forcing
wave ('’s in Fig. 7), which is injected mainly in the four
principal peaks of the signal, is redistributed in the
response of the system. The frequency content in the
resonant duct signal (&’s in Fig. 7) is clearly different for
each case and it can be seen that the largest peak occurs
near the natural frequency of oscillation f þ predicted by
the linearized model. It is apparent that the system
responds with greater strength to the frequency nearest
its natural frequency of oscillation, despite the polychro-
matic nature of the forcing wave.

4.2. Tuning from the experimental data

The air chamber volume for which flow through the
pump is greatest for each particular configuration (hence-
forth referred to as the resonant volume) can be determined

from the experimental flow data. Plots of average flow rate
as a function of the volume of air in the compression
chamber for various sill heights are shown in Fig. 8, for the
same 4-component forcing wave of Fig. 7. The long vertical
lines show the linearized model prediction of the resonant
air volume (VoLin) for each forcing wave frequency
component (the prediction for the 1.8 s component lies
below the range covered in this plot). The vertical line
furthest to the right corresponds to the largest wave period
present (2.4 s). If we consider the monochromatic re-
sponses, according to the algorithm for resonant flow ðQ0Þ
mentioned above and given that all four main components
had essentially the same amplitudes, we should expect the
response to the component of the largest period to produce
the greatest pumped flow. In Fig. 8, the observed maximum
flow rates occur for volumes of air in the compression
chamber bounded by the linearized model predictions
(VoLin) for the two largest periods. This suggests that the
components of larger periods determine the collective
resonant response of the system to polychromatic waves. It
can also be seen in Fig. 8 that the resonant volume, as
defined by the maximum average flow rate is, for all sill
heights, always smaller than the VoLin for the maximum
period component. This is consistent with the monochro-
matic experiments of Czitrom et al. (2000b) who observed
that pumping shifts the actual resonant volume to smaller
values than the linearized model prediction. Similar to the
monochromatic case, greater pumping induces a greater
shift towards smaller resonant air chamber volumes. The
short vertical lines in Fig. 8 are the values for the resonant
volume obtained from monochromatic numerical model
experiments with the greatest period and six sill heights.
These were obtained by running the model for a series of
compression chamber air volumes covering the range
shown in Fig. 8. It is clear that the resonant air chamber
volume predicted by the monochromatic model closely
resembles the observed volume that produces maximum for
each case. This result encourages us to build a tuning
criterion for waves with various frequency components
based on the numerical monochromatic algorithms for V 0

and Q0.
It should be noted that a forcing wave with the same

amplitude for all of its components is, of course, unlikely a
common real sea-surface wave. Thus, the greatest pumping
can occur when the system is tuned to a component that is
not necessarily the one with the largest period. In the next
section we use the flow prediction obtained numerically for
monochromatic waves (Q0), which takes into account the
wave amplitude for a given frequency, and use it to choose
an optimal tuning condition.

4.3. Numerical experiments with polychromatic waves

We performed a series of numerical simulations using the
same configuration of the wave tank experiments, but
driving the model with different synthetic waves of multiple
frequency components. The mathematical expression of the
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Fig. 6. Fast Fourier transforms of (a) the driving wave height, water
height in the (b) resonant duct and (c) exhaust side of the compression
chamber. These FFTs correspond to the time series shown in Fig. 5 and
are all normalized to the maximum of (a).
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forcing waves used in the numerical experiments was

X

i

Ai sin
2pt

Ti
. (11)

We report on two particular cases that let us discuss the
basic features of the polychromatic response: In the first
case, the forcing signal was a two-component wave (of
T1 ¼ 2 and T2 ¼ 2:6 s) whose FFT is shown in a heavy line
in Fig. 9. We used a greater amplitude for the higher
frequency deliberately A2 ¼ 0:6A1, to show that the wave
amplitude must also be used in determining the maximum
flow through the pump. The light line in the same figure is
the monochromatic flow prediction Q0, calculated with the
frequency f ¼ T%1 and corresponding amplitude values
from the FFT. It can be seen that, in contrast with the
experimental observations which were conducted with the

same amplitude for all frequency components, here we find
that the smaller period produces a greater flow. Clearly, the
amplitude of each component must be taken into account
to choose the most efficient tuning condition. We remark,
however, that the ratio between the expected maximum
flows (Q0 in Fig. 9) for the two frequencies is noticeably
closer to 1 than the ratio between the amplitudes of each
component in the FFT of the forcing wave. This shows that
energy from components with larger periods is used more
efficiently by the system.
Once we have chosen the wave frequency component

which produces the greatest flow, the appropriate air
chamber volume can be calculated using the monochro-
matic numerical algorithm for V 0. In order to test the
effectiveness of this criterion as a selection tool for the
optimal volume of air of the compression chamber, in
Fig. 10 we show the flow rate through the pump plotted
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Fig. 7. Fast Fourier transforms of experimental data of the forcing wave ð'Þ and the oscillations in the ducts (&: resonant duct signal; þ: exhaust duct
signal, very weak with respect to the driving wave and the resonant duct). The same driving wave of four period components Tpoly ¼ 1:8; 2; 2:2 and 2.4 was
used in all cases. The volume of air in the compression chamber V0 was varied in the four cases shown to match the value determined by each value of
V0LinðTpolyÞ (see text). Its value in m3 was (a) 0.0058, (b) 0.0074, (c) 0.0091 and (d) 0.011. The two natural frequencies of oscillation for each configuration
are shown as vertical lines.
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against volume of air in the compression chamber,
computed with the numerical model forced by the wave
signal shown in Fig. 9 ðQðT1;T2ÞÞ. Also shown in this
figure (QðT1Þ and QðT2Þ) are the flow rates obtained by
forcing the numerical model with monochromatic waves of
frequencies and amplitudes corresponding to each one of
the components in Fig. 9. The abscissa in Fig. 10 is
normalized with the optimal volume of air predicted by V 0

for the higher frequency. The flow response for the
polychromatic forcing (QðT1;T2Þ) has two maximums,
which correspond to the resonant volumes for each

frequency component. It is confirmed that the absolute
maximum corresponds to the one predicted by Q0 in Fig. 9
(1 in the horizontal scale). The correspondence of the
maximum flows in the poly and monochromatic wave
forcings in Fig. 10 shows that the attainable flow with one
frequency is essentially not affected by the presence of the
other. That is, for this separation between frequencies, the
pump behaves similar to a flute which amplifies each
frequency distinctly, depending on the natural frequency of
oscillation to which it is tuned.
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Fig. 8. Average flow rate obtained in the experiments vs. volume of air in the compression chamber for the same forcing wave of Fig. 7. The long vertical
lines show the linearized model prediction VoLin for each component. The short vertical lines show the numerical model prediction V0 for the greater
period and each sill height (given in meters).

Fig. 9. Fast Fourier transform of the forcing wave signal and the
corresponding graphic for Q0ðTÞ for a two-component forcing wave (of 2
and 2.6 s periods). Each curve is normalized with respect to its maximum.
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We now analyze another case in which the forcing wave
has four components of periods Ti ¼ 2; 2:6; 2:75 and 2.9 s.
As it can be seen in Fig. 11, the signal is composed of a
block of three frequencies close to each other (correspond-
ing to the wave periods of 2.9, 2.75 and 2.6 s) plus a fourth
frequency, slightly more separated, corresponding to
T1 ¼ 2 s. As with the previous case, we attempt using the
Q0 curve to determine which component we should choose
for tuning the system. If we guide ourselves only by the
maximum flow value, we would again choose the 2 s
component that is separated from the block. Similar to
Fig. 10, we used the numerical model to test the validity of
this tuning criterion as shown in Fig. 12. Here it can be seen
that, while the absolute maximum flow rate in the
polychromatic response (QðT1; . . . ;T4Þ) is correctly identi-
fied with the corresponding monochromatic response
ðQðT1ÞÞ, the flow values QðT1; . . . ;T4Þ for the air volumes
resonant with the lower frequencies are clearly higher than
the maxima of the monochromatic responses (QðT2Þ,
QðT3Þ and QðT4Þ). This shows that the responses to the
three lower frequencies in the forcing wave interact to give
a larger flow than expected from each component
separately and indicates the existence of a bandwidth of
resonance. The bandwidth in oscillating systems is related
to damping (see e.g. Falnes, 2002). For the seawater pump
damping is dominated by the pumping process itself: when
the amplitude of oscillation increases in the resonant duct,
water is spilt at the sill during a larger part of the period.
This determines that, in the pumping regime, the limit
imposed on the amplitude by the pumping process
dominates over other damping mechanisms such as friction
or vortex formation. The resonance bandwidth of the
pumping system can be defined using different norms. We
choose it to be the period interval for which flow through
the pump is at least 80% its maximum value, and estimate
it using flow data (not shown here) from the scale model
experiments with different monochromatic forcing periods.
For the experimental configuration of Fig. 12, a resonance

bandwidth covering a broad period interval between 1.5
and 3 s is obtained. This rather large bandwidth can explain
the previously observed fact that the polychromatic
response QðT1; . . . ;T4Þ in Fig. 12 shows greater pumped
flow, at the air volumes resonant with the lower
frequencies, than any of the monochromatic responses
(QðT2Þ, QðT3Þ and QðT4Þ).
In real sea-surface waves, some or all of the frequencies

present in a block are more likely to persist in time, than a
single frequency on its own. Furthermore, because of the
resonance bandwidth discussed in the previous paragraph, a
better pump performance can be expected when exploiting the
collective response of the system to various peaks of a block.
An ultimate tuning criterion for irregular sea waves should
therefore take into account information on the frequency-
domain distribution of the forcing. We propose using a
running mean of a given FFT as a method of pondering the
relative importance of blocks of frequencies versus single
frequencies. Such a running mean would diminish the ampli-
tude of single peaks, while allowing blocks to better retain their
relative weight. As an example of how this procedure could
work, in Fig. 13 a running mean of the FFT in Fig. 11 with a
width of 0.04Hz is shown (we choose the width for the filtering
as 10% of the estimated bandwidth, which was ( 0:4Hz for
this case). As expected, the reduction of the single frequency
peak is noticeably greater than that of the three frequency
block. Also shown in this figure is the expected flow Q0 as
calculated using the filtered FFT amplitudes. It is clear that a
somewhat greater flow is now associated to the block of
frequencies than to the single frequency peak.
Using this type of filtering of the frequency content of

the forcing wave signal can be an important tool in the
design of the tuning algorithm for the seawater pump
because, as mentioned before, in a constantly changing sea,
blocks of frequencies in the forcing spectrum have the
added convenience of a likely greater persistence in time
than single frequency peaks.
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Fig. 11. Fast Fourier transform of the forcing wave signal and the
corresponding graphic for Q0ðTÞ for a four-component wave (of 2.9, 2.75
and 2.6 and 2 s). Each curve is normalized with respect to its maximum.
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Fig. 12. Flow vs. volume of air in the compression chamber obtained with
the numerical model forced by: a signal with components of Ti ¼
2; 2:6; 2:75 and 2.9 s (solid line, QðT1; . . . ;T4Þ) and four series obtained
with monochromatic forcings for each component (QðTiÞ).
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5. Conclusions

The response of an oscillating-water-column (OWC)
seawater pump to polychromatic waves was studied using
wave tank tests with a scale model and numerical
simulations. We show that, in spite of being driven by
polychromatic waves, the system responds mainly in a
monochromatic way, amplifying a selected frequency from
the wide spectrum present in its forcing. The measured flow
through the pump as a function of the experimental tuning
parameter (the volume of air in the compression chamber)
retrieves thus the same basic qualitative features that were
reported by Czitrom et al. (2000b) for experiments with
monochromatic waves. The main observations are that the
natural frequency of oscillation of the OWC decreases due
to the overtopping associated with the pumping process,
and that greater pumping is obtained when tuning the
system to wave components of lower frequencies, given
equal amplitudes. For the experiments reported here, the
observed resonant volume, defined as the volume of air in
the compression chamber for which flow through the pump
is greatest, is predicted remarkably accurately by mono-
chromatic algorithms using the lowest frequency peak
present in the forcing spectrum. Numerical experiments
with synthetic forcing waves showed nonetheless that the
polychromatic response of the system is not always merely
a superposition of monochromatic responses. A coopera-
tive interaction between the responses to slightly different
frequencies present in the forcing wave was evidenced,
confirming the existence of a resonance bandwidth and
hinting to the use of a frequency-space-averaged signal as
input of the proposed polychromatic tuning algorithm. The
latter is based on the monochromatic algorithms for
resonant volume of air in the compression chamber (V0)
and resonant flow rate (Q0).

The tuning process proposed for the sea-water pump
in an irregular sea consists of various steps that can be
easily performed by a pre-programmed microchip and is

summarized in Fig. 14. First, the FFT analysis would be
performed on a series of measurements taken with a wave
sensor, and the resulting spectrum would be filtered to
ponder the frequency content of the signal. The maximum
expected flow would then be identified using the Q0

calculation from the filtered amplitudes and corresponding
frequencies and, finally, the resonant volume of air for
optimal seawater pump performance would be computed
using the V 0 algorithm with the appropriate frequency and
unfiltered amplitude of the chosen component. This tuning
procedure thus outputs the volume of air in the compres-
sion chamber that will give the best pump performance. An
actual control system modifying the volume of air in the
compression chamber could then perform its task at any
given time taking only as input a series of measurements of
the wave signal at the resonant duct mouth.
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