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The vortex streets produced by a flapping foil of span to chord aspect ratio of 4:1
are studied in a hydrodynamic tunnel experiment. In particular, the mechanisms
giving rise to the symmetry breaking of the reverse Bénard–von Kármán (BvK)
vortex street that characterizes fishlike swimming and forward flapping flight are
examined. Two-dimensional particle image velocimetry (PIV) measurements in the
midplane perpendicular to the span axis of the foil are used to characterize the
different flow regimes. The deflection angle of the mean jet flow with respect to
the horizontal observed in the average velocity field is used as a measure of the
asymmetry of the vortex street. Time series of the vorticity field are used to calculate
the advection velocity of the vortices with respect to the free stream, defined as the
phase velocity Uphase , as well as the circulation Γ of each vortex and the spacing ξ
between consecutive vortices in the near wake. The observation that the symmetry-
breaking results from the formation of a dipolar structure from each couple of
counter-rotating vortices shed on each flapping period serves as the starting point to
build a model for the symmetry-breaking threshold. A symmetry-breaking criterion
based on the relation between the phase velocity of the vortex street and an idealized
self-advection velocity of two consecutive counter-rotating vortices in the near wake
is established. The predicted threshold for symmetry breaking accounts well for the
deflected wake regimes observed in the present experiments and may be useful to
explain other experimental and numerical observations of similar deflected propulsive
vortex streets reported in the literature.

1. Introduction
Flapping-based propulsive systems, either natural or man-made, are often discussed

in terms of the Strouhal number, defined as the product of the flapping frequency f
and amplitude A divided by the cruising speed U0, i.e. StA = f A/U0 (Anderson et al.
1998; Taylor, Nudds & Thomas 2003). Another crucial parameter in these problems
is the aspect ratio of the flapping body, because it determines to what extent a quasi-
two-dimensional (Q2D) view can capture the main elements needed for an adequate
description of the real three-dimensional flow. In particular, in the case of a flapping
body propelling itself in forward motion, at least two qualitatively different situations
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Figure 1. Transitions in the wake of a flapping foil in the AD versus St map for Re = 255
(from Godoy-Diana et al. 2008). Experimental points are labelled as: !, BvK wake; ", aligned
vortices; +, reverse BvK wake; #, deflected reverse BvK street resulting in an asymmetric
wake. Solid line: transition between BvK and reverse BvK. Dashed line: transition between
reverse BvK and the asymmetric regime. Typical vorticity fields are shown as inserts on each
region.

have been evidenced from flapping-foil experiments and numerical simulations: high
span to chord ratio foils produce a propulsive vortex street, the reverse Bénard–von
Kármán (BvK) wake (see e.g. Koochesfahani 1989; Anderson et al. 1998), where the
most intense vortices are aligned with the foil span and turn in opposite senses with
respect to the natural BvK vortices behind a two-dimensional cylinder. A Q2D analysis
accounts for the key dynamical features in this case in which the mean flow has the
form of a jet and results in a net propulsive force. As the span to chord ratio decreases
towards unity, three-dimensional effects come into play and modify dramatically the
structure of the wake. In this case a series of vortex loops (or horseshoe vortices) are
engendered from the vorticity shed from all sides of the flapping foil (see e.g. von
Ellenrieder, Parker & Soria 2003; Buchholz & Smits 2006, 2008). The experiments
reported here were performed with a 4:1 aspect ratio foil, which is high enough to
produce Q2D regimes in the near wake. A two-parameter description that permits
to vary independently the frequency and amplitude of the oscillatory motion has
been shown recently (Godoy-Diana, Aider & Wesfreid 2008) to be the optimum
framework to fully characterize the Q2D regimes observed in the wake of a pitching
foil. The transition from a BvK vortex street to the reverse BvK street characteristic
of propulsive regimes and the symmetry breaking of the reverse BvK street reported
in Godoy-Diana et al. (2008) are summarized in the (St, AD) phase space shown in
figure 1. The Strouhal number and a dimensionless amplitude have been defined using
a fixed length scale (the foil width D) as St = f D/U0 and AD = A/D, respectively.
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Figure 2. Fluorescein dye visualization of the typical reverse BvK vortex street that
characterizes flapping-based propulsion (top), and an asymmetric wake (bottom) that is
produced by some flapping configurations even when the flap motion is symmetric.

Note that the product of these two parameters gives the flapping-amplitude-based
Strouhal number that is often used, i.e. St × AD = f A/U0 = StA.

In this paper we focus on the reverse BvK regime, attempting to shed some light
on the physical mechanisms that determine its symmetry breaking (the dashed line in
figure 1). Asymmetric vortex streets arising in the wake of a flapping foil have been
observed in many experimental (Jones, Dohring & Platzer 1998; Buchholz & Smits
2008; von Ellenrieder & Pothos 2008; Godoy-Diana et al. 2008) and numerical studies
(Jones et al. 1998; Lewin & Haj-Hariri 2003) even when the geometry of the problem
and the flapping motion are symmetric. Other configurations of forced wakes have
been shown to produce asymmetric flows that arise from the interaction of natural
and forced vortex shedding – see for instance the soap-film experiments with forced
cylinder wakes in Couder & Basdevant (1986). The deflection of the propulsive vortex
street determines that the net force generated by the flapping motion is not aligned
with the foil symmetry plane or in other words that a mean lift force accompanies
the production of thrust. A qualitative explanation of the process that determines the
symmetry breaking can be given analysing the structure of the wake: the deflection
of the vortex street that signals the symmetry-breaking results from the formation
of a dipolar structure from each couple of counter-rotating vortices shed on each
flapping period (see figure 2). Above a certain threshold, the self-advection of the
dipolar structure formed over one flapping period is strong enough to decouple
from the subsequent vortex in the street and generate a deflection of the mean flow.
These asymmetric wakes occur in a region of the parameter space that overlaps the
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Figure 3. Schematic diagram of the experimental set-up in the hydrodynamic tunnel.

highefficiency Strouhal number range used by flapping animals, which makes the
precise definition of the symmetry-breaking threshold potentially important for the
design of artificial flapping-based propulsors and their control. This is the goal of the
present work, where we study in detail the spanwise vorticity field in the near wake
of the flapping foil in order to characterize all the basic features of the reverse BvK
vortex streets. Relying on a hypothesis of quasi-two-dimensionality of the flow in the
near wake, we propose a predictive symmetry-breaking criterion based on the phase
velocity of the vortex street.

2. Experimental set-up
The set-up is the same described in Godoy-Diana et al. (2008) and consists of a

pitching foil placed in a hydrodynamic tunnel (see figure 3). The foil chord c is 23 mm,
and its span is 100 mm which covers the whole height of the 100 mm × 150 mm
section of the tunnel. The foil profile is symmetric, opening at the leading edge as a
semicircle of diameter D = 5 mm which is also the maximum foil width. The pitching
axis is driven by a stepper motor. The control parameters are the flow velocity in the
tunnel U0, the foil oscillation frequency f and peak-to-peak amplitude A, which let
us define the Reynolds number, the Strouhal number and a dimensionless flapping
amplitude as, respectively

Re = UD/ν , St = f D/U0 , AD = A/D , (2.1)

where ν is the kinematic viscosity. In the strongly forced regimes produced by the
flapping foil, the flapping frequency used to define St is equivalent to the main vortex-
shedding frequency. The boundary layer thickness on the tunnel walls at the position
of the flap is approximately 10 mm for the present experiments. Measurements were
performed using two-dimensional particle image velocimetry (PIV) on the horizontal
midplane of the flap. PIV acquisition and post-processing was done using a LaVision
system with an ImagerPro 1600 × 1200 12-bit charged-couple device (CCD) camera
recording pairs of images at ∼15 Hz and a two-rod Nd:YAG (15 mJ) pulsed laser.
Laser sheet width was about 1 mm in the whole 100 mm × 80 mm imaging region. The
time lapse between the two frames (dt) was set to 12 ms. Additional post-processing
and analysis were done using MATLAB and the PIVMat Toolbox (Moisy 2007).
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3. Observations
3.1. The vorticity field

The ωz vorticity field is calculated from the ux and uy fields obtained from PIV,
using second-order centred differences. Two sequences of vorticity fields are shown in
figure 4: the left column corresponds to a reverse BvK street and the right column
to an asymmetric wake. The Reynolds number and flapping amplitude are the same
in both cases, and only the Strouhal number has been increased from 0.15 for the
reverse BvK to 0.27 for the asymmetric wake. The positions of two consecutive (and
counter-rotating) vortices are followed for each experiment, using a search of local
maxima (Xmax(t), Ymax(t)) and minima (Xmin(t), Ymin(t)) in the ωz field. These are the
coordinates of the centre of the rectangles in figure 4.

3.2. The circulation Γ

An area of integration that encompasses each vortex needs to be defined in order to
calculate its characteristic features such as circulation and size. We use Gaussian fits
exp(−x2

i /σ
2
i ) along the vertical and horizontal axes centred on the positions of the

maxima and minima of vorticity and define the sizes of the vortex along the x- and
y-direction as 2σi . These are the horizontal and vertical sizes of the rectangles in the
time sequences of figure 4. The choice of rectangular integration contours (instead
of the elliptical ones that would have better followed the vortex shape) was made in
order to avoid introducing error from interpolation of the PIV data. Since the vortex
cores are nearly circular we define a single vortex radius a as the mean of the sizes
calculated along the two principal axes. The circulation Γ can be then calculated
from either a line integral of the velocity field on each contour or a surface integral
of the vorticity field over each rectangle. Although in theory the two definitions of Γ
are equivalent, the two calculations from the experimental fields are slightly different
mainly because, vortices in the wake being not too far from each other, the contour for
the line integral calculation sometimes passes through a neighbouring vortex having
the opposite sign (see figure 4, right column) and gives thus a spurious contribution
to the total circulation. The circulation plotted in figure 5 is the mean value between
the two different methods of calculation, the difference giving the error bars. When
the integration regions for the two counter-rotating vortices do not overlap, as is the
case in the left column of figure 4, the difference in the two calculations is small (see
figure 5a). On the contrary, the error bars are larger when the two rectangles overlap,
as in the case of the asymmetric wake depicted in the right column of figure 4. This
can be seen in figure 5(e), where the spurious effect due to having the neighbouring
vortex partially overlapping the integration region appears as a decreasing trend (in
absolute value) in the time evolution of Γ . We also plot in figure 5 the time evolution
of the vortex radii and positions. It can be seen in figure 5(h) that the deflection of
the wake is correctly captured by the time evolution of the y-coordinate. The time
axes in all these plots are non-dimensionalized by the advection time scale τ = D/U0.

3.3. The asymmetric wake

The domain of existence of the reverse BvK vortex street is bounded on the upper-
right zone of the (St, AD) phase space by a transition to an asymmetric regime
(figure 1). In order to characterize this transition we define an angle of asymmetry
θ using the direction of the jet observed in the mean velocity field (see figure 6). Of
the three series with different flapping amplitudes studied here (see figure 7 in the
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Figure 4. Three consecutive snapshots of the vorticity field in the wake of the flapping foil
at Re = 255 and AD = 1.42 for two different flapping frequencies. Left column: St = 0.15,
reverse BvK wake; right column: St = 0.27, asymmetric wake.
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Figure 5. Circulation (a,e), radius (b,f ), x-position (c,g) and y-position (d,h) of two
consecutive (and counter-rotating) vortices in the wake of the flapping foil as functions
of time. The top figures (a–d ) correspond to the reverse BvK wake and the bottom figures
(e–h) to the asymmetric wake shown in figure 4 (left and right columns, respectively).

next section), the smallest one (AD = 0.7) does not produce an asymmetric wake, so
only the cases of AD = 1.4 and 2.1 are reported in figure 6. These measurements
show that the transition is rather abrupt and support the idea of the existence of a
symmetry-breaking threshold.
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Figure 6. (a) Definition of the asymmetry angle θ from the deflected mean jet flow and (b)
θ as a function of the Strouhal number for AD = 1.4 and 2.1. The circles shown in (a) plot
are the maxima of cross-stream profiles of the average horizontal velocity field. A linear fit
over these points in the near wake gives the dotted line that defines θ . The error bars in (b)
represent a constant ±1.5◦ that was the maximum deflection angle measured with the previous
method for a wake in the symmetric reverse BvK configuration.
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Figure 7. (a) Circulation Γ0 and (b) distance between two consecutive vortices ξ0 as
functions of St and AD: !, △ and ! correspond respectively to AD = 0.7, 1.4 and 2.1.

4. Discussion
4.1. Back to the (St, AD) phase space

Thinking from the (St, AD) phase space perspective, we use the ‘initial’ values of the
circulation and the positions of the maxima and minima of ωz, defined as the values
measured when the positive vortex crosses a reference frame fixed at Xref = 2.5D,
in order to compare the vortices produced by different flapping configurations. We
thus plot in figure 7 the initial value of the circulation Γ0 and the distance between
the two consecutive counter-rotating vortices ξ0, as functions of St for three series
with different values of AD . The definition of ξ in terms of the positions of two
counter-rotating vortices shown in figure 5 is, as shown graphically in figure 9(a),
ξ =

√
(Xmax − Xmin)2 + (Ymax − Ymin)2. The main observation is that, for a given

amplitude, the circulation increases, and the distance between consecutive vortices
decreases with increasing flapping frequency. Although this is not surprising, it is an
important point because it lets us ascertain that a threshold curve determining the
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Figure 8. (a) Phase velocity Uphase of the vortex street normalized with respect to the free
stream U0 and (b) translation speed of the initial dipoles Udipole calculated using (4.1). Both
quantities are plotted as functions of St and AD: !, △ and ! correspond respectively to
AD = 0.7, 1.4 and 2.1. Asymmetric wakes are marked with a dark dot.

symmetry breaking of the reverse BvK wake can be traced in a (Γ0, ξ0) space and
also that a model containing the basic physics of the problem could be tested using
experimental measurements.

4.2. Phase velocity

The advection velocity of the vortices with respect to the free stream can be calculated
from the x-position measurements Xi(t) in figures 5(c) and 5(g). We define this phase
speed Uphase as the slope dXi/dt evaluated at the initial reference time. Vortices
slightly accelerate in the initial part of the wake so that the wavelength measured
in a snapshot of the vorticity field over the vortices nearest the flap is shorter than
the wavelength measured farther in the wake (see also Bearman 1967). Here we
deliberately define Uphase as the advection speed at the initial reference time because
we are interested in the near wake mechanism that triggers the symmetry breaking.
The phase velocity for the present experiments is plotted in figure 8(a). The propulsive
nature of the reverse BvK wake appears clearly in the fact that Uphase >U0.

4.3. The dipole model

The physical mechanism giving rise to a deflected wake is based on the formation of
a dipolar structure on each flapping period (Godoy-Diana et al. 2008), a feature that
has also been observed in forced wakes in soap films (Couder & Basdevant 1986),
supporting the idea of a mainly two-dimensional phenomenon. The initial condition
sets the choice of the side on which the asymmetry develops: the first dipole that is
formed entrains fluid behind it, deflecting the mean flow in the wake and forcing the
subsequent dipoles to follow the same path. This initial perturbation exists for the
entire (St, AD) parameter space; however, after a few periods of symmetric flapping
motion, only in a region above a certain threshold (see figure 1) the wakes remain
asymmetric. The two quantities (Γ0, ξ0) plotted in figure 7 can be used to give a
measure of the strength of the dipolar structures that are formed for each flapping
configuration. The simplest model that contains Γ and ξ is to consider a dipole made
of two point vortices of circulations ±Γ separated by a distance ξ . In this case, the
translation speed of the dipole (determined by the effect of each vortex over the other)
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proposed symmetry-breaking condition U ∗
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is given by (see e.g. Saffman 1992)

Udipole =
Γ

2πξ
. (4.1)

The values of Udipole calculated using the data from figure 7 are shown in figure 8(b).
As a direct consequence of the behaviour of Γ0 and ξ0 in figure 7, for each flapping
amplitude, the self-induced speed of the dipolar structure increases with the Strouhal
number. It is remarkable that Udipole can reach values up to almost 50 % of U0.
The two plots in figure 8 show that a correlation exists between Udipole and Uphase.
This can be easily understood considering that the flow field produced by each
vortex, and hence Udipole, contributes to the overall advection velocity in the vortex
street.

Thinking about the definition of a criterion for the symmetry breaking, it seems
evident from figure 8 that no single threshold can be established for Udipole or Uphase

that accounts for all observations of asymmetric wakes (which have been marked in
figure 8 with black dots). Because we have observed that the symmetry breaking is
related to the ability of a given dipolar structure to escape from the ‘symmetrizing’
effect of the subsequent vortices in the wake, it is useful to find a quantitative
measurement of the velocity at which vortices are moving in the direction defined by
the dipole. In order to do so we define the effective phase velocity, in terms of the
angle α between the horizontal (the streamwise direction) and the direction of Udipole

(see figure 9), as

U ∗
p = (Uphase − U0) cos α − Udipole . (4.2)

Recalling that the measured phase velocity Uphase results from the superposition of
the free-stream velocity and all the velocities induced by the vortices in the wake, the
effective phase velocity defined in (4.2) is actually the component along the dipole
direction of the velocity induced by the vortex street, excepting the contribution of
the dipole being considered and not including the free-stream velocity. Within the
limits imposed by the experimental uncertainty, it can be seen in figure 9 that a fair
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prediction of the observed behaviour can be given by saying that the reverse BvK
vortex street will be prone to breaking symmetry if the effective phase velocity U ∗

p is
positive, which is when the vortex street downstream of the dipole being considered
enhances the dipole velocity.

5. Concluding remarks
Reverse BvK vortex streets are a fundamental feature of fishlike swimming and

forward flapping flight, and their symmetry properties are intimately related to the
cycle of thrust and lift production. Although the deflection of these propulsive wakes
has been observed and characterized in various flapping-foil experiments (Jones et al.
1998; von Ellenrieder & Pothos 2008; Godoy-Diana et al. 2008) and numerical
simulations (Lewin & Haj-Hariri 2003), the model proposed in the present paper is,
to our knowledge, the first attempt to produce a quantitative threshold prediction
based on the observed physical mechanism underlying the symmetry breaking. In
spite of the strongly idealized dipolar model used in (4.1) as a fundamental element
of the model, the predicted threshold accounts reasonably well for the experimental
reality and should be useful to rationalize the similar observations reported in the
literature.

We gratefully acknowledge Maurice Rossi for fruitful discussions on the dipole
model.
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