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An experimental study on the interaction of the internal wave field generated by
oscillating cylinders in a stratified fluid with a pancake dipole is presented. The
experiments are carried out in a salt-stratified water tank with constant Brunt–Väisälä
frequency (N). Experimental observations of the deformation of the wave beams
owing to the interaction with the dipole are presented. When the wave and the dipole
propagate horizontally in opposite directions (counterpropagating case), the phase line
of the gravity wave beam steepens towards the vertical as it enters the dipolar field
and it may even reach a turning point where the wave is reflected. When the dipole
and the wave propagate in the same direction (copropagating case), the wave beam is
bent towards the horizontal and may be absorbed by the dipole. These observations
are in good agreement with a two-dimensional ray-theoretic model, even if the flow is
fully three-dimensional and, the vertical shear induced by the dipole being too strong,
the hypothesis of slow variation assumed in the WKB approximation is not verified.
When the waves encounter a critical layer, we show by rigorous measurement that
momentum is transferred to the dipole. New three-dimensional effects of the dipolar
velocity field on the propagating internal waves are also discussed. In particular,
focusing and refraction of a wave beam occurring because of the horizontal structure
of the background dipolar flow allow us to explain some of the observed features
that cannot be accounted for through the two-dimensional ray theory.

1. Introduction
Stably stratified fluids are often encountered in the atmosphere and ocean. Owing to

the inhibition of vertical motions, they give rise to layered flows that can be described
by potential vorticity modes (Riley, Metcalfe & Weissman 1981; Lilly 1983; Riley &
Lelong 2000). On the other hand, the restoring force that flattens isopycnal surfaces
also allows the propagation of internal gravity waves. The time scales relevant to
these two types of motion separate when the stratification is strong; internal waves
evolve on a fast time scale based on the buoyancy frequency (TN =N−1) and are
associated with zero potential vorticity, whereas the quasi-horizontal motions that
possess potential vorticity (PV modes, using the terminology of Riley & Lelong 2000)
evolve on a slower time scale in terms of the horizontal advection (TA =Lh/U , where
Lh and U are the characteristic horizontal length and velocity scales). An illustration
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of the difference between these two modes can be observed when the motion is
initially confined to a particular region of space; as vertical motions are strongly
constrained, energy is either radiated as internal waves, which propagate away from
the initially turbulent region, or transferred to horizontal advective motions which are
eventually organized as quasi-two-dimensional vortices. The creation of these patches
of potential vorticity has been widely observed in laboratory experiments (e.g. Lin &
Pao 1979; Bonneton, Chomaz & Hopfinger 1993; Fincham, Maxworthy & Spedding
1996) and numerical simulations (e.g. Métais & Herring 1989; Majda & Grote 1997).
The so-called pancake vortices appearing late in the evolution of stratified flows have
also been intensively studied (Flór & van Heijst 1996; Spedding, Browand & Fincham
1996; Bonnier, Eiff & Bonneton 2000; Beckers et al. 2001; Godoy-Diana & Chomaz
2003).

The horizontal Froude number Fh = U/NLh compares the horizontal advection
time scale Lh/U to the Brunt–Väisälä frequency. When Fh is small, the theory first
proposed by Riley et al. (1981) predicts no interaction at leading order between the
wave modes and the PV modes. Because of the time-scale separation, the interaction
between internal gravity waves and PV modes has usually been studied as a multiple-
scale problem (the wave phase varies on a fast time scale while its amplitude and the
PV mode depend only on a slow time scale) and weakly nonlinear interactions have
been predicted theoretically (see e.g. Riley & Lelong 2000). These are resonant triad
interactions as those first studied by Phillips (1966) for internal waves, but involving
one or two PV modes in the triad. In the case of a single PV mode and two wave
modes, no wave-PV transfer is predicted and the PV mode only provides a way for the
energy exchange between the two wave modes (Lelong & Riley 1991; Godeferd &
Cambon 1994), on the contrary, when the triad is formed by one wave mode and
two PV modes, a near-resonant PV-wave transfer can be expected (Bartello 1995).
Additionally, PV modes can act as a source of internal waves through adjustment of
unbalanced isopycnal surfaces to an equilibrium state (see e.g. Beckers et al. (2001)
for numerical simulations of the wave emission by an unbalanced monopole and
Afanasyev (2003) for experimental results of the emission by an adjusting dipole). An
unbalanced vortex can be treated as an initial disturbance to the stratified fluid and
the internal wave emission described as in Lighthill (1996). The permanent internal
wave emission by a balanced but elliptical vortex has been analysed as a radiation
problem by Plougonven & Zeitlin (2002) allowing for changes in the source vortex
induced by wave radiation.

Internal waves are known to have a fundamental role in the momentum transfers in
the atmospheres and, through turbulence induced by wave breaking, in the diapycnal
mixing in the oceans (see reviews by Staquet & Sommeria 2002; Fritts & Alexander
2003). The internal wave energy transfer to PV modes has been invoked thinking
of breaking internal waves which may cause strong mixing and result in a three-
dimensional turbulent region from which a PV component can emerge (Staquet,
Bouruet-Aubertot & Koudella 2001; Lelong & Sundermeyer 2005). These dissipative
mechanisms are generally the only wave–mean flow interaction considered in the
gravity-wave parameterizations used in global atmospheric circulation models, assum-
ing that other interactions occurring without wave breaking (or other dissipative
mechanism allowing a suitable representation as a mean force) are not significant.
Bühler & McIntyre (1998, 2003) put a question mark on these assumptions through the
analysis of model examples showing that cumulative deformation of PV components
(the mean flow) owing to non-dissipative gravity waves may occur and name this
reaction effect to wave refraction a remote recoil.
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Figure 1. Schematic diagram of the internal waves generated by an oscillating cylinder in a
sheared flow. Critical points are reached at zC and zT .

The effect of a background mean flow on the waves is usually understood by
referring to the Doppler shifting of the wave frequency. The Doppler shift of waves
owing to a shear flow has been the subject of many theoretical studies (e.g. Bretherton
1966; Booker & Bretherton 1967), laboratory experiments (e.g. Koop 1981; Thorpe
1981) and numerical simulations (e.g. Winters & D’Asaro 1994; Javam, Imberger &
Armfield 2000; Sutherland 2000; Staquet & Huerre 2002; Edwards & Staquet 2005).
The case where the background shear is a vortical flow has also been studied by
Moulin (2003); Moulin & Flór (2004, 2005) experimentally and theoretically using a
ray-tracing code that describes the wave distortion by a vortex. According to linear
theory, critical levels exist where the shifted frequency reaches one of the cutoff values
imposed by the stratification (0 and N in the absence of rotation) and the waves
are either absorbed by the mean flow in a critical layer or reflected at a turning
point (figure 1). In the linear analysis of Booker & Bretherton (1967), plane internal
waves of small amplitude are completely absorbed by the mean flow in the vicinity
of a critical layer. They showed an exponential attenuation of the waves across
the critical layer of order exp[−2π(Ri − 1/4)1/2] in terms of the local Richardson
number Ri = N2/|du/dz|2, meaning that, for Ri > 1/4, no part of the incoming wave
is transmitted through the critical layer and all the wave energy is transferred to the
mean flow. The linear inviscid prediction of complete absorption at the critical level
may not be fully accomplished in real flows because finite-amplitude effects may lead
to a partial reflection (e.g. Winters & D’Asaro 1994) or to wave breaking (McIntyre
2000). In reality, spatially localized wave packets should be considered instead of
plane waves. As a result, the dispersion of the different components in a wave packet
induces a spreading of the critical levels (see e.g. McIntyre 2000) and some waves
are transmitted carrying a significant fraction of the incoming wave energy through
the critical layer (Javam & Redekopp 1998). A three-dimensional background shear
may also reduce the magnitude of critical-level effects with respect to the predictions
of the usual models that consider unidirectional parallel shear (Staquet & Sommeria
2002). Additionally, as pointed out by Broutman et al. (1997), the time-dependence
of the background shear may change significantly the Doppler spreading of internal
waves observed in a stationary shear.

In this paper, we study experimentally the interaction between the internal wave
field produced by an oscillating cylinder in a strongly stratified fluid and a pancake
dipole, representing a prototype PV mode. The observations are first interpreted in
terms of two-dimensional ray theory for waves in a shear flow (e.g. Bretherton 1966).
The internal wave beams are refracted by the dipole (which constitutes the horizontal
background flow) and the existence of critical levels for the wave propagation is
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verified by the experiments. A particle image velocimetry (PIV) measurement set-
up gives access to the velocity vector fields in vertical (x, z) and horizontal (x, y)
planes and permits the calculation of the theoretical predictions for the critical
levels using experimental data. The linear inviscid Wentzel–Kramer–Brillovin (WKB)
approximation at the base of ray theory assumes waves propagating in a slowly varying
background flow (meaning that variations occur on much larger length and time scales
than the wavelength and wave period). This scale separation assumption implies that,
at leading order, the dispersion relation for internal waves in a steady medium is locally
valid. Although the assumption of weak variation is not verified for the vertically
sheared flow produced by the pancake dipole of the present experiments, especially
regarding the ratio of wavelength to vertical length scale of the vortical flow, which
are of comparable order, the location of a critical layer and a turning point observed
in the experiments are predicted surprisingly accurately by the two-dimensional ray-
theoretical model. The two-dimensional model considered is strictly valid only in the
vertical symmetry plane (x, z) of the dipolar field, where the dipole induces motion
only in the x-direction and the internal gravity wave vector is always in that plane.
Because of the three-dimensional nature of the dipole field, additional features are
observed in the wave propagation which cannot be explained by the two-dimensional
model. The initially straight phase planes of the waves (which are generated by a
cylinder with axis in the y-direction, i.e. orthogonal to the two-dimensional plane used
for the ray model) are deformed in the horizontal planes by the dipole. Refraction and
focusing effects, which are inherently three-dimensional, occur on the internal wave
beams. A defocusing effect is observed when the wave and the dipole propagate
horizontally in the same direction and it may limit the extent of wave–vortex
momentum transfer due to critical-layer type interactions in the present experiments.

The present paper is organized as follows. A brief review of the linear theory of
internal gravity waves is presented in § 2. The experimental setup is described in
§ 3 followed by the presentation of the basic states for the experimental waves and
dipoles in § 4. Section 5 is devoted to the observations and discussion. Concluding
remarks appear in § 6.

2. Linear theory for internal waves
In this section, we review briefly some standard results of the linear theory for

internal gravity waves in a continuously stratified fluid with a background sheared
flow as discussed by Lighthill (1978) and Gill (1982). Consider sinusoidal waves of
frequency ω and wavevector k = (kx, ky, kz) such that all fields associated to their
motion can be written as ∝ exp [−i(k · x − ωt)]. The well-known dispersion relation
for internal waves in a medium at rest of constant buoyancy frequency N ,

ω2 = N2 cos2 θ = N2
k2

x + k2
y

k2
, (2.1)

where θ is the angle of the wavevector k with respect to the horizontal and k = |k|, is
obtained from the Boussinesq equations linearized about a background hydrostatic
equilibrium. We remark that the phase velocity c =(ω/k2)k is orthogonal to the group
velocity cg = ∇kω, and energy therefore propagates perpendicular to the wavevector,
i.e. in the phase plane. An energy flux vector can be written as

I = Ecg, (2.2)

in terms of the wave energy density E and the group velocity.
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When N is not constant or a background shear U(x, t) is considered, the WKB
approximation can be used if N(x, t) and U(x, t) vary on a time scale and length
scale much larger than the wave period and wavelength, respectively. In such case,
the waves obey locally the dispersion relation (2.1) in the reference frame moving
with the fluid. If we now think of waves propagating through a mean flow U(x, t),
the absolute wave frequency ωa (measured in the fixed frame of reference) is Doppler-
shifted with respect to the relative frequency ωr (measured in the frame moving with
the background velocity) according to

ωa = ωr + k · U, (2.3)

where ωr is given by equation (2.1) substituting ω by ωr , pointing out the fact that
in the frame of reference moving with the fluid, the waves are dispersed in the same
manner as in a fluid at rest. Similarly, the absolute group velocity in the fixed frame is
cga = cgr + U , where cgr is the group velocity in the frame moving with the mean flow.
It should be noted that the absolute phase velocity ca = cr + (k · U)k/k2, where cr is
the phase velocity in the frame moving with the fluid, is no more orthogonal to the
absolute group velocity. The phase velocity does not transform as a usual vector in a
change of reference frame because it characterizes only the apparent displacement of
isophase surfaces and should therefore stay normal to the isophases in any frame.

Because of the non-homogeneity, the wave energy that propagates at the group
velocity cg is refracted following paths usually known as rays. These rays can be
traced in the absolute frame of reference by a position vector x that moves with the
absolute group velocity, i.e. obeying

dx
dt

= cga = U + cgr , (2.4)

while the changes in the wavevector along these rays are given by (see Lighthill 1978,
for details)

dk
dt

= −∇ωa = −∇(k · U) − ∇ωr . (2.5)

In this equation the time derivative should be considered along a ray and is equivalent
to the rate of change with time at a position that moves with the group velocity, i.e.
d/dt = ∂/∂t + (cga · ∇). Using these ray tracing equations (2.4) and (2.5), we can show
that the time derivative of ωa = ωa(k, x) is zero, i.e. that the frequency is constant along
a ray. Because ωa remains constant, any changes in k · U are accompanied according
to equation (2.3) by a change in ωr which in turn modifies the wave vector direction
according to equation (2.1). Equation (2.4) states that the wave propagates with the
absolute group velocity equal to the sum of the mean flow velocity vector and the
relative group velocity. In addition to the evolution of the wavevector due to changes
in the local dispersion relation (i.e. changes in N), second term in equation (2.5), we
must add the changes due to the background shear, first term in equation (2.5).

In contrast to the absolute frequency, the frequency in the moving frame ωr is
not conserved, nor is the mean wave energy along a ray Er (because energy can be
exchanged between the waves and the mean flow). A useful conserved quantity along
rays is the wave action Ar = Er/ωr , which obeys:

∂Ar

∂t
+ ∇ · [(U + cgr )Ar ] = 0. (2.6)

The conservation of wave action determines a synchronized behaviour of the relative
frequency and wave energy density: Er increases (decreases) when the ray passes
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through a region of higher (lower) ωr . The change in wave energy is provided
(absorbed) by the mean flow. Equation (2.6) is simplified for waves of fixed frequency
and for a steady base state, corresponding to the approximation that we will make
throughout this paper, giving

∇ · [(U + cgr )Ar ] = 0. (2.7)

This means that the flow of wave action along a ray tube is constant, i.e. that the
magnitude of the wave action flux (U + cgr )Ar changes along a ray tube in inverse
proportion to the area of its cross-section.

2.1. Critical levels for two-dimensional waves

Two limit cases of particular interest can be illustrated considering the simple case of
waves in a vertically sheared horizontal background flow U = U(z) and linear back-
ground stratification, that is, of constant N . Together with ωa , in such a configuration
kx and ky are also constant along a ray since the flow is invariant by translation
in time and in the x and y directions. In that case, the Doppler shift of ωr can be
determined solely by equation (2.3) which can be rewritten as ωr = ωa − kh · U , where
kh ≡ (kx, ky, 0) is the horizontal wavevector. If kh and U point in opposite directions,
equation (2.3) determines that an increase in kh · U increases the intrinsic frequency
ωr . Using the relative dispersion relation (2.1), this results in a decrease of θ , i.e. a tilt
towards the horizontal of the wavevector k. A turning point exists at z = zT where

ωr = ω + |kh · U(zT )| = N (2.8)

(and kz = 0) since waves are not allowed by the stratification beyond that point and
the wave beam is reflected. The other limit case appears when kh points to the same
direction of U . A critical layer exists at z = zC where ωr vanishes:

ωr = ω − |kh · U(zC)| → 0 (2.9)

and, kh being constant, kz → ∞ as θ → π/2. The linear inviscid analysis is singular at
this point, but, relaxing the WKB approximation, the wave energy at the critical
level is found to be attenuated and an energy transfer from the wave to the mean
flow is predicted (Booker & Bretherton 1967). This is actually a consequence of the
conservation of the wave action, which implies that where ωr → 0 all the wave energy
is lost to the mean flow.

Both cases are illustrated schematically in figure 1, where the beams emanating
from an oscillating horizontal cylinder in a vertically sheared background flow are
represented (see also Koop 1981). The time evolution of the vertical component of
the wavevector is obtained from equation (2.5), it reads:

dkz

dt
= −kh · ∂U

∂z
. (2.10)

This equation shows that changes in kz are linear with time, which means that the
turning point where kz =0 can be reached in a finite time whereas the time to reach
the critical layer where kz → ∞ is infinite. The latter means that rays are asymptotic
to the critical layer. The amplitude variations can be inferred from equation (2.7)
for the wave action flux. Together with the fact that sections of a ray tube by each
horizontal plane have the same area – because kh is constant along a ray (Lighthill
1978) – this equation implies that the vertical component of the wave action flux is
also constant along a ray. For the internal waves of the present case, using (2.1) and
the third component of the group velocity (i.e. ∂ωr/∂kz), this vertical component of
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Figure 2. Experimental set-up used to produce a pancake dipole. At time t0, a columnar
vortex pair is created by closing the vertical flaps on the right-hand side. At time t1, the
pancake dipole emerges from the open region of the screen. Dimensions of the tank and a
qualitative plot of the linear density gradient are also shown. (From Godoy-Diana et al. 2004)

the wave action flux Ar∂ωr/∂kz is found to be proportional to W 2 tan θ , where W is
the amplitude of the vertical velocity (and hence Er ∝ W 2). This result implies that
wave amplitudes diminish when the rays approach the critical layer, whereas they are
increased on bending towards the vertical prior to reaching the turning point.

3. Experimental set-up
The experiments are conducted in a salt water tank of 1m × 2 m base and 0.6 m

height filled with a linear stratification. Internal waves are generated by means of either
one or an array of oscillating horizontal cylinders, which can be placed at different
heights and horizontal positions. For frequencies below N , each cylinder generates the
well-known St Andrew’s Cross pattern of wave beams (see e.g. Mowbray & Rarity
1967) with directions of propagation depending on the oscillation frequency of the
cylinders ω according to the dispersion relation (2.1), cos θ = ω/N . The width of each
wave beam is comparable to the source size (i.e. the cylinder diameter) and grows
very slowly with distance from the source, whereas the amplitude of the wave motions
is determined by the amplitude of the cylinder oscillations (see e.g. Sutherland et al.
1999, for a detailed study of the structure of the internal wave beams generated by a
vertically oscillating cylinder).

A pancake dipole is generated in two steps as shown schematically in figure 2
(Godoy-Diana, Chomaz & Billant 2004): first, a pair of vertical flaps placed on
one side of the tank and spanning its whole height close to form a columnar dipole
(Billant & Chomaz 2000). The upper and lower layers of the initial dipole are blocked
by a vertical screen placed perpendicularly to its moving path. The screen acts as a
diaphragm which allows the evolution of only a horizontal slice of the original dipole.
This method renders repeatable structures and ensures a unique propagation direction
of the dipole, an advantage over the usual set-ups where the path followed by dipoles
generated after the collapse of an initially turbulent jet is less predictable. Three non-
dimensional control parameters can be defined for the dipole coming out of the screen:
the Reynolds number Re0 = U0Lh0/ν, the horizontal Froude number Fh0 = U0/NLh0

and the aspect ratio α0 = Lv0/Lh0, where U0, Lh0 and Lv0 are, respectively, the initial
translation speed and the horizontal and vertical length scales, and ν is the kinematic
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viscosity. In practice, we define the horizontal length scale Lh0 as the dipole radius,
which is initially determined by the size of the flaps. The dipole translation speed U0

can be controlled by the closing speed and final angle of the flaps while the initial
vertical length scale Lv0 is determined by the height of the gap on the screen. For
the present experiments these parameters were kept within the ranges of Fh0 = 0.06–
0.18, Re0 = 131–182 and α0 = 0.4–1.2. All observations are made after the dipole has
crossed the diaphragm, so t = 0 is defined when the maximum velocity region at the
core of the dipole is out of the screen (t1 in figure 2, defined as 30 s after the closing
the flaps).

Two different configurations were used in order to allow for interaction of the
dipole with: (a) waves with horizontal component of the wave vector kx pointing in
the opposite direction of the translation velocity of the dipole (counterpropagating
case, figure 3a) and (b) with kx pointing in the same direction (copropagating case,
figure 3b). Only one cylinder is depicted in these schematic diagrams for clarity. In the
actual set-up of case (a) an array of three identical cylinders separated horizontally
from each other by a distance of six times their diameter was used to create a more
extended wave field (figure 3c). In case (b), a single cylinder was used because of
the lack of space owing to the presence of the screen. Several beams are nonetheless
present in the test section due to the multiple reflections on the screen and the free
surface (figure 3d).

A two-dimensional particle image velocimetry (PIV) system (FlowMaster 3S manu-
factured by La Vision) was used to measure the velocity field. The image acquisition
is made by a double-frame camera with resolution of 1280 × 1024 pixels and a 12-bit
dynamic range. The light flashes were generated by chopping a continuous beam 5 W
argon laser with an optoacoustic switch. The laser beam was spread into a sheet by an
array of cylindrical lenses at the end of an optic fibre. The thickness of the light sheet
was approximately 5 mm at the region of interest. Two measurement set-ups were
used in order to look at vertical and horizontal planes. The vertical plane was aligned
with the propagation direction of the dipole, passing through the velocity maximum
and cutting the dipole symmetrically into two halves. The horizontal plane was placed
at the position of the maximum velocity, i.e. at the midplane. In both cases, titanium
dioxide (TiO2) particles are used as flow seeding (sizes ∼1–100 µm). These particles
are slightly heavier than the salt-water at the bottom of the stratification, but they
sediment very slowly (in several hours) so that, for the time scales used for the PIV
shots, they can be reasonably regarded as neutrally buoyant. The wide variation
in particle size of the TiO2 powder allows particles to be uniformly distributed
throughout the whole height of the experimental tank. The choice of the optimal time
(&t) between each pair of images used for calculating the correlation and from that
the velocity field, had to be done carefully since the characteristic velocities associated
to the waves and the vortex differ considerably (from ∼10−3 m s−1 for the wave
motions to ∼10−2 m s−1 for the initial dipole). Two acquisition schemes were used in
order to have an appropriate resolution for both velocity scales. Most image series
were taken using a single-frame mode and &t =200 and 250 ms, allowing for the
identification of the internal wave velocity field. Additionally, double-frame sequences
with &t = 50 and 100 ms were used in order to measure the dipole velocity field at
the initial stages which could not be resolved with the former acquisition scheme.
The need for such different schemes is illustrated in figure 4, where the velocity field
of the dipole at t = 0 on the vertical symmetry plane is shown as measured with
acquisitions where &t = 50 ms (figure 4a) and &t = 500 ms (figure 4b). In the former,
the dipole field is fully recovered, but no waves can be seen, whereas in the latter no
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Figure 3. (a, b) Schematic diagrams of the position of the oscillating cylinder with respect to
the path of the dipole. Two cases are shown where the horizontal projection of the wavevector
kx of the relevant ray and the translation direction of the dipole ud are (a) antiparallel and
(b) parallel. (A side view of the vertical symmetry plane of the dipole is shown where ud

represents a profile of the dipole velocity.) (c) Diagram of the actual set-up used with an array
of three identical cylinders. (d) PIV measurements showing the horizontal vorticity field in
grey scale and the velocity vectors as arrows on a vertical plane of the internal wave pattern
after reflection of the direct beams of a single cylinder on the screen and the free surface. The
paths followed by the reflected beams are drawn schematically.

valid correlation peak could be calculated at the centre of the dipole, but the internal
wave pattern produced by the adjustment of the initial dipole is clearly retrieved.

4. Basic states
The initial state for the pancake dipole after it has come out of the diaphragm en-

tirely is presented in figure 5. Velocity vector fields calculated from PIV measurements
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(a) (b)

Figure 4. Horizontal velocity field at the vertical symmetry plane of the dipole at t = 0
calculated from PIV images with (a) &t =50ms and (b) &t = 250 ms. The field of view in the
(x, z)-plane is 49 × 39 cm2. The velocity grey scale goes from 0.001 m s−1 to −0.01 m s−1.

(a) (b)

Figure 5. Velocity vector fields calculated from PIV measurements in the (a) horizontal
midplane and the (b) vertical symmetry plane passing through the moving direction of the
dipole. (a) Vertical and (b) horizontal vorticity fields are shown as background images. Fields of
view and greyscales: (a) 31×24 cm2 in the (x, y)-plane and a ±1 s−1 grey scale; (b) 49×39 cm2

in the (x, z)-plane and a ±0.5 s−1 grey scale.

in the horizontal midplane and the vertical symmetry plane passing through the
moving direction of the dipole are shown. The calculated vorticity fields are also
shown as background images. The horizontal structure of the dipole closely resembles
a Lamb–Chaplygin dipole. Dipolar vortices in stratified fluids were compared for the
first time with this theoretical model by van Heijst & Flór (1989) and Flór & van
Heijst (1994). The Lamb–Chaplygin dipole also modelled well the horizontal structure
of the columnar vortex pair studied by Billant & Chomaz (2000). The vertical struc-
ture can be fitted accurately by a Gaussian variation. The vertical and horizontal
characteristic length scales that can be defined from these images (e.g. the dipole
radius for the horizontal and the Gaussian half-width for the vertical) grow slowly
as the dipole decays by the action of viscosity (see Flór, van Heijst & Delfos 1995;
Beckers et al. 2001; Godoy-Diana et al. 2004), but the structure form is maintained.
Their initial values Lh0 and Lv0 together with the initial translation velocity U0 are
used to calculate the control parameters Fh0, Re0 and α0 defined in the previous
section.

The basic internal wave field in the present experiments follows the well known
St Andrews cross pattern emitted by an oscillating cylinder. The control parameters
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Figure 6. (a) PIV measurements on a vertical plane for one of the wave beams produced
by an oscillating cylinder. Sets of vectors are shown with horizontal vorticity as background
image. (b) Spatio-temporal diagram of a single horizontal line of (a) plotted in the abscissa
versus time in the ordinates. The horizontal phase velocity is the slope of the dark and light
stripes. (c) Plots of the phase function sampled on a horizontal line at a fixed height and
different times throughout the wave cycle permit us to visualize the wave packet. (d) Dots and
their mean value plotted in the solid line represent the spatial frequency content of the phase
functions in (c). The vertical dashed line marks the value of kx = ω/cx with cx obtained from
the slope of the fringes in the spatio-temporal diagram (b).

for each wave beam (figure 6a) are the cylinder oscillation frequency ω and the
wavenumber. In practice, the wavenumber can be characterized by the horizontal
wavenumber and measured in different manners: a first calculation can be obtained
using the horizontal projection of the phase velocity as kx = ω/cx . The horizontal phase
velocity cx can be measured as the slope of the stripes that appear in a spatio-temporal
diagram (figure 6b). This calculation gives the most accurate measure of the dominant
wavenumber, however, since the beam is spatially localized and narrow, it cannot
be appropriately represented by a single wavenumber. The continuous wavenumber
spectrum contained in a wave beam can be estimated using Fourier transforms in
space of a time series of measurements on a horizontal line (figure 6c, d). The vertical
dashed line in figure 6(d) corresponds to the value of kx calculated with the phase
velocity from the spatio-temporal diagram.

Various wave fields were used to observe different configurations of wave–vortex
interaction. As hinted in the previous section, the basic design parameter was the
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(a) (i) (ii)

(ii)

(iii)

(iii)(b) (i)

Figure 7. Velocity vectors and vertical velocity field obtained from PIV measurements on the
vertical symmetry plane of the dipole for the counterpropagating configuration. The cylinder
generating the waves is out of the viewing field at the top left-hand corner and the oscillation
has been started at t = 30 s after the dipole was formed. The wave frequency is (a) ω = 0.2 s−1

and (b) ω =0.13 s−1. In both cases (i) was taken at t = 80 s and (ii) at t = 115 s. (iii) is the
same as (ii), but only the vertical velocity field is drawn. Each frame shows an area in the
(x, z)-plane of 38 × 36 cm2. The same grey scale is used for the three frames of each case so
that black and white represent ±0.003m s−1 in (a) and ±0.0012m s−1 in (b).

choice of the direction of the horizontal wave vector of interest with respect to
the translation velocity of the dipole, in practice, determined by the position of
the oscillating cylinder with respect to the screen that cuts the dipole. The control
parameter was then the wave frequency, which was varied up to values allowing
us to see either a critical layer in the copropagating case or a turning point in the
counterpropagating case.

5. Interactions
5.1. Waves in the dipole field

In figure 7, we examine measurements on the vertical symmetry plane of the
dipole for two cases with the set-up described in figure 3(c), that is, with waves
counterpropagating with respect to the dipole. All parameters are the same except
for the internal wave frequencies of figure 7(a) ω = 0.2 s−1 and figure 7(b) ω = 0.13 s−1

which determine the different angles of propagation with respect to the horizontal.
The initial dipole parameters are Fh0 = 0.06, Re0 = 131 and α0 = 0.4. In both cases,
the vertical velocity uz field and the velocity vectors are shown for times t = 80 s
(before the interaction) and t = 115 s (after the waves have encountered the dipole).
The second time is reproduced in a third frame without the vectors to allow for a
clearer picture of the uz field. The vertical velocity field uz is particularly appropriate
for revealing the internal wave pattern because, even though the velocity associated
with the dipole is approximately five times larger than the velocity associated with
the wave, the low-Froude-number dynamics determine that the vertical component
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Figure 8. Horizontal vorticity field for t = 115 s and the same view as figure 7.

of velocity is more than an order of magnitude smaller in the dipole than in the
wave. In figure 7(a) at time t = 80 s, the wave field emitted by the cylinder farthest
to the right-hand side can be seen on the top-left-hand corner (we will refer to it
hereinafter as the first beam) while the vector field reveals the core of the dipole at
the centre of the image. At time t = 115 s, the first beam has encountered the dipole
core and, remarkably, a reflection of the wave is observed. The wave beam produced
by the middle cylinder (the second beam) is also visible on the bottom left-hand side
of the frame and it is barely starting to be affected by the dipole. The absence of
waves from the first beam in the layers where the dipole core is passing indicates
an episode of total reflection. (We recall that we are looking at the wave field in the
vertical symmetry plane so that the reflection episode is total only in this midplane.
As will be discussed in the following, the wave beam in other vertical planes may
not be reflected.) The wave train reappears below the dipole, but it is distorted with
respect to the original wave. It exhibits a wider beam and a larger amplitude when
compared to the waves of the second beam to its left which did not interact with the
dipole field. (A slight bending of both beams can be observed near the bottom of
the image. This is due to a distortion of the linear background stratification caused
by the proximity of the tank floor.) The reflected wave is best seen on the horizontal
vorticity field (figure 8) where it can be seen that the reflected beam width (i.e. the
dominant wavelength) is smaller than that of the direct beam.

A radically different situation is observed in the case with a lower frequency
(figure 7b). The waves are not reflected, but a strong bending of the beam towards
the vertical results when it passes through the dipole field. The beam under the dipole
recovers the same direction as it had before interacting with the dipole field, but
it should be noted that the wave amplitude is intensified (as shown by the higher
contrast between the dark and light parts of the beam in the dipole and below it than
those over it).

We now examine the case of waves where the horizontal component of the wave
vector is in the same direction as the dipole velocity field, i.e. the copropagating
configuration of figures 3(b) and 3(d). In figure 9, the sequence presents both the
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(a) (i) (ii)

(ii)

(ii)

(ii)

(b) (i)

(c) (i)

(d) (i)

Figure 9. Vertical velocity field of internal waves of frequency ω = 0.2 s−1 in the copropagating
configuration (i.e. with the horizontal component of the wave vector in the same direction as
the dipole velocity field) on the vertical symmetry plane for times 6, 34, 45 and 53 s, from
top to bottom. Vertical sets of velocity vectors on the left-hand images show the position of
the dipole, which moves from right to left. The oscillating cylinder is out of view near the
top right-hand corner and the most visible wave beams are the one coming directly from
the cylinder and another one that is reflected at the surface. Each frame shows an area in the
(x, z)-plane of 44 × 29 cm2. The same grey scale is used for all frames and the vertical velocity
range is ±0.003m s−1.

velocity vector field as arrows and the vertical velocity in grey scale on the vertical
symmetry plane of the dipole. The initial control parameters were Fh0 = 0.18, Re0 = 182
and α0 = 1.27 which describe a taller and faster dipole than the case described
above. The experimental protocol was also different since the wave field was first
established to give time for the reflected waves to reach the test section. This has the
disadvantage of producing residual wavy motions in the background owing to the
multiple reflections, which results in a noisier measurement. The wave field prior to
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the launching of the dipole is shown in figure 9(a). The frequency of the waves in
this case was ω = 0.2 s−1. The main beams in the field of view are the direct beam
emanating from the upper right-hand corner of the image (the cylinder was placed
out of view of the frames shown), and the reflection on the surface of the beam going
up and to the left of the cylinder. In figure 9(a)(i), the former appears as a mainly
white slanted stripe, whereas the latter is a parallel stripe mainly dark because of the
quadrature phase shift due to reflection. Black and white in the grey scale represent,
respectively, negative and positive vertical velocities associated to the wave motion.
The evolution of the dipole can be monitored throughout the sequence by the sets
of velocity vectors drawn over each image. We may point out that the effect of the
vertically sheared motion produced by the dipole induces first a deformation of each
wave beam, which are slightly bent following the advective background motion, and
subsequently it ‘erases’ the beam in and, more remarkably, under the dipole (see for
instance the reflected beam in figure 9(c)(i)).

5.2. Two-dimensional rays

The experimental observations of figures 7 and 9 show the deformation of internal
wave beams that propagate through a background flow and motivate the interpreta-
tion in terms of ray theory. Particularly interesting is the confrontation of a theoretical
prediction for the critical levels with the experimental observations of the critical
behaviours. We start from the simplest approach that consists in looking at the
vertical symmetry plane of the dipole, forgetting its three-dimensional structure. The
application of equations (2.8) and (2.9) is straightforward using the experimental
values for ω, kx , U and N . The location of critical levels for a wave of frequency
ω and horizontal wavenumber kx can be calculated for each background velocity U
field using the relative frequency ωr that is a function of space and time:

ωr = ω − kx |U |, (5.1)

where ωr = 0 identifies the theoretical prediction for the location of a critical layer
while ωr = N corresponds to that of a turning point. Given the time-dependence of
the background velocity field, it should be noted that we will calculate snapshots of
the ωr fields. In figure 10, we show contour levels of a ωr − N field that corresponds
to the counterpropagating case of figure 7. The vertical velocity fields corresponding
to figures 7(a) and 7(b) are reproduced in figures 10(a) and 10(c) while the respective
ωr − N fields are shown in figures 10(b) and 10(d). These fields were computed
using the horizontal velocity U (x, z) measured in an experiment of a dipole with no
waves. The horizontal wavenumber in (5.1) was calculated as kx = ω/cx , using the
phase velocity cx measured on spatio-temporal diagrams as shown in figure 6 (this
corresponds to the dashed vertical line in figure 6d). Regions where ωr >N exist only
for the first case, and the contour where ωr = N is traced in figures 10(a) and 10(b)
as a solid line. A critical band instead of a single contour can be estimated if we
take into account that the wave packet is not monochromatic but corresponds to a
wavenumber interval that can be defined from the spectral content of the wave packet.
The two dashed lines plotted on figure 10(a) correspond to the limits of this band,
calculated using the kx interval (kx MIN, kx MAX) defined through figure 6(d) as the values
where the spectrum mean curve is half its maximum value. The agreement between
the observation and the theoretical prediction for the turning point is satisfactory,
and this is quite surprising because the hypothesis of slow variation in space and
time of the background flow at the base of ray theory is not actually respected, the
velocity field of the dipole varying vertically as fast as the wave field. The space and
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Figure 10. (a, c) Vertical velocity and (b, d) ωr −N fields corresponding to the t = 115 s frames
of figure 7. (a) and (b) show the case of figure 7(a) where ω = 0.2 s−1 and (c) and (d) that of
figure 7(b) where ω = 0.13 s−1. The location of the ωr = N contour is drawn in solid line in (a).
Dashed lines show the limits of the critical band (see text.)

time dependence of these contours results from the evolution of U (x, z; t) so that, as
the dipole translates, the contours move and eventually the critical reflection of one
particular ray stops.

Figure 11 is the equivalent of figure 10 but for the copropagating configuration of
figure 9. The critical contours ωr = 0 are traced in figures 11(a), 11(c) and 11(e) on
top of the vertical velocity fields that correspond, respectively, to the observations
in figures 9(b), 9(c) and 9(d). For clarity, only the boundaries of the theoretical
critical band calculated with the horizontal wavenumber spectrum limits are drawn
in solid lines. While in figure 11(a) both limit calculations lead to a critical contour,
in figure 11(c) the background velocity of the dipole has diminished enough to erase
the inner contour and in figure 11(e) the critical band has entirely disappeared. The
corresponding ωr (x, z) fields are plotted in figures 11(b), 11(d) and 11(f ). As in the
previous case, these fields were calculated using U (x, z) data of a control experiment
without waves. The location of the theoretical critical layer in figure 11(a) coincides
with the maximum deformation of the wave beam evidenced by the vertical velocity
field. In contrast with the case of the turning point where the wave is totally reflected,
in a critical layer all the wave energy is transferred to the background flow.

Going further on the two-dimensional interpretation, we could expect the waves
that reach a critical layer to transfer momentum to the dipole and consequently retard
its decay. An estimate of the transfer can be made using a simple momentum balance
where all the wave momentum flux is thought to be transferred to the dipole at the
critical level. The change in kinetic energy Ed per unit mass of the dipole owing to
the interaction in a control volume of dimensions given by the horizontal (Lh) and
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Figure 11. (a), (c) and (e) vertical velocity and (b), (d), and (f ) ωr (x, z) fields corresponding
to figure 9. The limits of the ωr (x, z) = 0 critical band (see text) are drawn by a dashed line
in (a), (c) and (e). Only the outer bound appears in (c) and no theoretical critical band exists
in (e).

vertical (Lv) length scales of the dipole can be written as

πL2
hLv

dEd

dt
= SI, (5.2)

where S is the horizontal surface through which the wave energy flux on the vertical
per unit mass I enters the control volume. From equation (2.2), the wave energy flux
can be written as I = ⟨E⟩cgz where the wave energy per unit mass averaged over a
wave period ⟨E⟩w = ⟨|u|2⟩w is obtained from the two-dimensional measurements on a
vertical plane and the magnitude of the vertical component of the group velocity cgz

computed from the measured wave frequency and wavenumber. The average kinetic
energy per unit mass of the dipole during the time of the interaction is also obtained
from the experimental data as ⟨E⟩d = ⟨|u|2⟩d in the control volume. Two parameters
to be estimated carefully are the surface S and the time &T during which the transfer
occurs. In the experiment, the actual transfer is not only limited by the ‘spanwise’
variation (i.e. in the y-direction, perpendicular to the two-dimensional measurements
in the vertical midplane) of the dipolar field, which limits the extent of the critical
condition, but also owing to the finite extent of the interaction region in the x (or
streamwise) direction. The latter determines, for instance, that the transfer may be
limited because the waves leave the critical region before complete absorption. In
the present order of magnitude calculation, we define S = λx(Lh/2), i.e. a rectangle of
sides the horizontal ‘wavelength’ λx , equivalent to the beam width, and a fourth of
the dipolar horizontal length scale Lh. The latter being the ‘unit width’ in which the
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Figure 12. Evolution of the dipole for experiments with copropagating waves of frequency
ω =0.2 s−1 (!) and without any waves ("). (a) Position of the maximum velocity vs. time and
(b) circulation of a dipole half vs. time. Each point is the mean value of four experiments and
the error bars represent the standard deviation. The experiments with waves correspond to the
case shown in figures 9 and 11.

two-dimensional critical condition is assumed to be approximately valid. Additionally,
the time of interaction &T = Lh/Ud , where Ud is the mean translation velocity of the
dipole, was estimated using the lapse during which the position of the beam overlaps
with the critical region described by the outer dashed line in figure 9. The order of
magnitude of the dipolar flow energy increase owing to the absorption of wave energy
is thus estimated, upon substitution of the previous assumptions in equation (5.2), as

&Ed ∼ λxcg

2πLvUd

⟨|u|2⟩w. (5.3)

Computing this prediction for the experimental data corresponding to figure 9 and
comparing it with the mean kinetic energy of the dipole during the interaction
⟨E⟩d = ⟨|u|2⟩d gives a &Ed/⟨E⟩d ratio of 1/20. This corresponds to a small value of
the predicted change in the dipolar translation velocity due to the waves. Although
the wave–vortex interaction is thus expected to be weak, it should nonetheless be
observable through the analysis of the dipolar field evolution.

5.3. Dipole evolution in presence of waves

To measure the effect of the waves on the dipole, we compare the evolution of the
dipole passing through the internal wave field with that of a freely evolving dipole (i.e.
with no waves). In figure 12, we look at the evolution of the dipole of the experimental
configuration in figure 11 through plots of (a) dipole displacement (horizontal position
of the horizontal velocity maximum measured on the dipole axis, defined by the
crossing of the vertical and horizontal symmetry planes, versus time) and (b) dipole
circulation versus time (defined from the horizontal velocity field integrated on the
dipole axis). Experiments with copropagating waves (!) and without any waves (") are
plotted together. The displacement of the dipole is almost identical for the experiments
with and without waves, a fact coherent with the maximum energy transfer estimated
above, the limitation being the difficulty in generating intense and homogeneous wave
fields in the experiment. In order to make the difference significant compared to the
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variability of the measurements, each experiment was repeated four times. (To avoid
biasing due to eventual residual motion in the experimental tank, a 4 h rest time has
been respected between two experiments. Also, to minimize any dissipating effect (due
eventually to diffusion of salt or heat, or any other uncontrolled small forcing such as
evaporation or wind stresses at the surface) experiments alternately with and without
waves have been carried out, taking care also to alternate the time of the day when
the experiments were performed.) The standard deviation of each measurement on
figure 12, reported as error bars, are remarkably small, demonstrating the high degree
of repeatability of our experimental procedure to create a pancake dipole. With such a
sharp measurement, the systematically faster propagation of the dipole in the presence
of the wave is significant in spite of its being very weak. The maximum displacement
difference between the propagation with and without waves is at maximum equal to
a standard deviation of each single measurement. The average of four independent
events has a standard deviation approximately equal to half the standard deviation
of a single realization. In the analysis of figure 12, this means that from time t = 55 s
to t = 70 s the mean displacement of the dipole in presence of waves is significantly
larger than its counterpart without waves. The difference is even more significant
when considering the dipole circulation on the axis that is higher by 10 to 20 % in
the presence of gravity waves compared to the reference case without waves. The
equivalent analysis for the counterpropagating experimental configuration of figure 10,
i.e. for the case where the turning point and reflection of the wave were observed,
is not presented here because it gives no measurable modification of the dipole
displacement and vortex circulation, as expected from two-dimensional theory. This
is confirmed by the plots in figures 13(a) and 13(b).

In figure 13, we compare contour plots of the horizontal velocity on a vertical
plane and vertical profiles passing through the point of maximum velocity in cases
without and with gravity waves and in both counterpropagating and copropagating
configurations. In figure 13(a), the dipole without any wave field is traced as a
solid line. The dashed line shows the dipole with the counterpropagating wave of
frequency ω = 0.2 s−1 corresponding to figure 7(a) for t = 115 s. The dashed contours
are perturbed by the presence of the waves. Figure 13(b) shows the corresponding
vertical profile at the dipole centre of the horizontal velocity. Almost no difference
can be seen in the profiles between the cases without and with counterpropagating
waves. This confirms that when reflection takes place it imposes no modification on
the vortex motion. The same comparison between the horizontal velocity field (and
respective profiles) of the dipole without and with copropagating waves is presented
in figures 13(c) and 13(d). Strikingly, the velocity profile shows a systematic larger
velocity on the upper part of the dipole that corresponds to the region where the
wave, coming from above, is absorbed in a critical layer. Although modest (less than
10 %), this increase is significant, in particular, when compared to the lower part of
the dipole not reached by the wave, which is strictly identical to the reference velocity
profile in the absence of waves.

5.4. Horizontal plane measurements: three-dimensional ray refraction

Up to now we have presented a two-dimensional view of the wave–vortex interaction
based on measurements on the vertical symmetry plane of the dipole. In this section,
we examine the three-dimensional structure of the dipolar field and the wave beams
using PIV measurements on horizontal planes. In figure 14, measurements on the
horizontal midplane of the dipole are shown for both (a) the counterpropagating and
(b) the copropagating configurations during the interaction. Both cases correspond
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Figure 13. Contour plots and vertical profiles of the horizontal velocity field for (a) and
(b) the dipole of figure 7 and (c) and (d) the dipole of figure 9. Dashed lines and ! symbols
correspond to experimental configurations with waves of frequency ω =0.2 s−1. Solid lines and
" symbols are the control case without waves. Note that a different aspect ratio has been used in
the copropagating and contrapropagating cases explaining the difference between (a) and (c).

to parameter values for which no critical conditions are verified so that the wave
beam traverses the dipole layers downwards. In each case, (i) and (ii) show velocity
vectors traced, respectively, over fields of the vertical vorticity (∂ux/∂y − ∂uy/∂x) and
the divergence of the horizontal velocity field (∂ux/∂x + ∂uy/∂y). While the velocity
vectors let us visualize the position of the dipole, the waves cannot be distinguished
owing to the smallness of the velocities associated to the waves compared to those
associated to the dipole. The waves are only visible looking at the divergence field
where the lines of constant phase appear as dark and light stripes. (The wave/vortex
decomposition of the flow in a non-divergent vortex mode containing vertical vorticity
and a wave mode that contains all the vertical velocity (as discussed e.g. by Staquet &
Riley 1989; Riley & Lelong 2000) is found to be very useful in the analysis of the
flow in a horizontal plane because, while the dipole can be observed through the
vorticity field (that for the Froude numbers used here is, in practice, identical to
the potential vorticty), the vertical velocity associated to wave motion induces by
conservation of mass a non-zero divergence of the horizontal flow that, although
small, is measurable in the experiment.) The divergence fields are noisy because
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(a) (i) (ii)

(ii)(b) (i)

Figure 14. PIV measurements on the horizontal midplane for waves interacting with a dipole
in the (a) counterpropagating and (b) copropagating configurations. The wave frequencies are
(a) ω = 0.11 s−1 and (b) ω = 0.13 s−1. (i) Vertical vorticity; (ii) divergence of the horizontal
velocity field. Velocity vectors measured are shown in all frames. Field of view: 16.5×25.5 cm2

in the (x, y)-plane. Grey scales: (a) ±0.5 s−1 for vorticity and ±0.06 s−1 for divergence;
(b) ±0.6 s−1 for vorticity and ±0.05 s−1 for divergence.

they require the evaluation of derivatives that are dominated by the vortex motion.
Therefore, the absolute noise level on the derivative owing to the PIV technique
are about 10 % of the maximum vorticity. The absolute error on the divergence is
then also about 10 % of the maximum vorticity. Since the wave field is weak, the
associated maximum divergence is about 1/5 of the vorticity and the relative noise
on the divergence field is typically about 50 %. In order to obtain a clearer signal, the
divergence fields shown in figures 14(a)(ii) and 14(b)(ii) are the average of three fields
separated by half a wave-period (the divergence of the second field being multiplied
by −1 in order to compensate its phase opposition with the two other fields). In both
counterpropagating and copropagating cases, the effect of the dipolar field on the
wave beam is readily identified as a deformation of the phase lines (which are straight
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(a) (i)

(b) (i)

(ii) (iii)

(ii) (iii)

Figure 15. PIV measurements on the horizontal midplane for waves interacting with a dipole
in the (a) counterpropagating and (b) copropagating configurations during a critical interaction.
The wave frequency is ω = 0.17 s−1 in both cases. (i) Vertical vorticity; (ii) divergence of
the horizontal velocity field; (iii) critical contours of the (a) ωr = N and (b) ωr = 0 fields
drawn over filled contour plots of the divergence field. The continuous contours represent the
predictions using the phase velocity calculation and the dotted contours are the upper and
lower bounds of the critical band (see also discussion of figures 10 and 11). In (i), (ii) the velocity
vectors measured are shown. Fields of view: 16.5 × 25.5 cm2 in the (x, y)-plane. Grey scales:
(a) ±0.8 s−1 for vorticity and ±0.05 s−1 for divergence; (b) ±0.75 s−1 for vorticity and ±0.06 s−1

for divergence.

when there is no dipole). The phase lines marked by a dark stripe in figures 14(a)(ii)
and 14(b)(ii) are deformed as they are advected by the dipole in the central region
that corresponds to the location of maximum velocity of the background dipolar
velocity field. The wave beam deformed by the passing dipole nearly conserves its
horizontal ‘wavelength’, defined as the horizontal beam width.

Figure 15 is equivalent to figure 14, but for cases corresponding to parameter values
for which the critical conditions for (a) a turning point and (b) a critical layer are
verified. A third frame is added in both cases (a) and (b) with the calculation of critical
contours where ωr = N and ωr = 0, respectively (the horizontal counterpart of those
shown in figures 10 and 11 for the vertical plane measurements). For the computation
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Figure 16. Schematic diagram of the internal wave phase lines deformed by the dipolar field
showing the refraction of the wave vector. In (a) the critical-layer case where the horizontal
wave vector kh points in the direction of the mean dipolar field U (y) (copropagating case) and
the defocusing effect occurs owing to diverging horizontal wave vectors. The opposite picture
is true for the turning point case (b) where the isophases move opposite to the dipolar mean
velocity (counterpropagating case) and wave focusing is produced as a result of converging kh.

of the relative velocity, the variations in the modulus and orientation of the horizontal
wavevector have been neglected, as it should in the first-order approximation. In
the counterpropagating case (figure 15(a)), the wave signal vanishes in the central
region that corresponds to the maximum dipolar velocity. This is the ‘forbidden
zone’ below the turning-point layer where the waves are not allowed because their
relative frequency would be higher than N . It compares favourably with the critical
contours ωr (x, y) = N (figure 15a(iii)). The copropagating case is similar, as shown in
figure 15(b), where the wave almost vanishes in the forbidden region where ωr < 0.
The ωr (x, y) = 0 contours give a quantitative measure of the horizontal extent of
the critical wave-vortex interaction and were used as the characteristic ‘spanwise’
horizontal length scale for the energy transfer estimation made in equation (5.3).

The deformation of the phase lines demonstrated by the observations on the
horizontal plane determines a three-dimensional effect not yet discussed: the refraction
of the wave vector. We recall that for internal gravity waves, the horizontal projections
of the phase velocity and the group velocity are parallel and therefore orthogonal
to the horizontal phase lines. The observed bending of the phase lines, represented
schematically in figure 16, implies that the horizontal wave vector field diverges in
the case of copropagating waves, whereas it converges for counterpropagating waves.
Wave energy propagating with the group velocity thus diverges or converges implying,
respectively, a defocusing or focusing of the wave beam. The wave defocusing that
accompanies the copropagating interaction explains the fact that the waves ‘disappear’
in the vertical plane view of figure 9 below the layers where the dipole passes even in
the absence of a critical layer (figures 9(d) and 11e). The inverse effect is observed
in the counterpropagating case where the wave beam is focused, as represented in
figure 16(b). A confirmation of this focusing effect can be found in a further analysis of
figures 7(a) and 7(b). In figure 7(a), the reappearance of waves below the dipole after
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Figure 17. (a) Schematic view of the vertical plane showing the location of the horizontal
measurements. (b) Horizontal velocity field in the plane below the dipole. (c, d) Profiles of
horizontal velocity taken at the line shown in (b) before and during the focusing event,
respectively. The four profiles shown in each of plots (c) and (d) correspond to four snapshots
separated by 1/16 of the wave period. The field of view in (b) is 31×25.5 cm2 in the (x, y)-plane.
The x-axis in (c) and (d) spans the whole horizontal dimension of (b).

the episode of total reflection in the vertical midplane can be understood thinking
of vertical planes parallel to this midplane where the measurements are made. In
these off-centre planes, the maximum velocity is smaller than on the axis and, for a
sufficient shift, the wave rays initially in these outer planes will not encounter the
critical level and will pass through the dipole. However, because of the deformation
of the isophase lines, the rays are no more in the off-axis plane after traversing
the dipole, but focus towards the midplane, explaining the reappearance of waves
below the dipole observed in figure 7(a). The same mechanism occurs in the case of
figure 7(b). There, the wave frequency is not high enough for a reflection of the wave
to be achieved, but the incoming beam is also deformed by the dipole and observation
shows that the wave that traverses the dipolar field is intensified.

The issue of wave focusing by a dipolar field merits a further comment. An
illuminating picture of this effect can be obtained using horizontal plane measurements
below the dipole in the counterpropagating configuration (see figure 17). In
figure 17(a), a schematic diagram of the vertical plane shows the location of the
horizontal measurements shown in figure 17(b). The latter shows the x-component of
the velocity field in the plane below the dipole during the focusing event. In this lower
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plane, the velocity due to the dipole is very small so that the horizontal velocity field
can be used to visualize the waves, hence avoiding the use of the noisier divergence
field. The wave amplitude is readily seen to be magnified in the region that crossed
the core of the dipole. The experimental parameters used in this case are the same
as in the case shown in figure 14(a) so that only the observation plane has been
lowered. A comparison of velocity profiles taken at the horizontal line in figure 17(b)
before (figure 17c) and during (figure 17d) the passing of the dipole gives evidence of
intensification linked to the focusing event. The two sets of profiles were chosen at the
same phase so that the different peaks of the wave-induced velocity can be compared
directly. The focused wave amplitude is thus, in that particular plane, in average
about 50 % larger than the wave amplitude before the wave–vortex interaction.

6. Conclusions
The experimental study of wave–vortex interaction in a stratified fluid presented

in this paper gives new evidence that three-dimensional effects may play a significant
role in the occurrence of critical levels in wave propagation. Internal gravity waves
are produced in the laboratory by oscillating either a single cylinder or a set of
cylinders in a salt-stratified water tank. The waves interact with well-controlled free
vortices produced by a gate of variable height placed in front of a double-flap
mechanism Godoy-Diana et al. (2004). Different configurations of interaction permit
us to observe waves that are shifted towards either a turning point, where the wave
frequency ωr in the frame of reference of the fluid tends to the buoyancy frequency
N , or a critical layer, where ωr → 0. Measurements of the velocity field on a vertical
plane perpendicular to the wave surfaces of constant phase and aligned with the
moving direction of the dipole give a picture of the deformation of the wave beams
that encounter the dipolar field and allow us to identify waves that reach both
singularities: a turning point and a critical layer. A two-dimensional analysis built
on a classical ray-theory for internal gravity waves in a shear flow predicts the
location of critical levels in good agreement with the observations (see figures 10 and
11 depending on the relative direction of the horizontal phase velocity of the wave
component to the translation direction of the dipole). That the two-dimensional model
succeeds in predicting the critical levels is remarkable, not only because, as discussed
in § 5.2, the shear flow produced by the dipole does not satisfy the hypotheses of slow
variation underlying ray theory, but also because both the basic flow and the ray
propagation should be considered three-dimensional.

Two questions arise in regard to the critical layer predicted by the two-dimensional
model; On the one hand, what changes with respect to the two-dimensional
interpretation should be expected as a result of the three-dimensional nature of the
dipolar field? On the otherhand, can the wave energy transferred to the background
flow at the critical layer induce an observable change on the dipole? The latter question
was addressed using a simple energy balance in a control volume, assuming that all
the wave energy on a beam that is bent towards a critical layer is transferred to the
background flow (see § 5.2) and a weak modification of the vortex flow was predicted
owing to the limited amplitude of experimentally achievable internal gravity waves.
By a rigorous and systematic experimental protocol, this momentum transfer was
observed, the dipole evolution being monitored through its position and circulation
versus time (figure 12) and through profiles of the horizontal velocity field in the
vertical plane (figure 13). On the contrary, in the counterpropagating case, the same
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experimental procedure demonstrated the absence of retro effect on the vortices and
so, even in cases of total reflection in the midplane.

Three-dimensional effects on the wave propagation were discussed exploiting
measurements of the velocity field on horizontal planes (§ 5.4). These revealed a
deformation of the wave phase lines that are advected by the velocity field of
the dipole, evidencing a phenomenon of wave refraction. The refraction of a wave
beam leads to opposite effects when the wave and the dipole are copropagating
or counterpropagating. In the copropagating case the horizontal wave vector field
diverges, together with the horizontal group velocity vectors (figure 16a), determining
the wave field to be defocused. This phenomenon determines as a first consequence
that the horizontal extent of the critical-layer interaction is drastically limited. On
the other hand, it might explain the disappearance of the wave beam below the
dipole in figures 9(d) and 11(e) where the dipole velocity is not sufficient to bring the
wave to a critical layer. In the counterpropagating case, the horizontal wave vector
field converges (figure 16b). The expected focusing of the waves was confirmed firstly
by re-examining the vertical plane observations for waves counterpropagating with
respect to the dipolar velocity field (figure 7). In that case, a noticeable amplification
of the wave amplitude in the part of the beam distorted by the dipolar field is
observed. Also, even when total reflection occurs in the midplane, the focused wave
reappears under the dipole. A second confirmation of the wave beam focusing by the
dipolar field was obtained looking at PIV measurements on a horizontal plane below
the dipole layers (figure 17). There, a 50 % wave amplitude magnification occurs in
the part of the wave that goes through the dipole core.

The ubiquitous presence in a geophysical context of internal gravity waves
propagating through three-dimensional vortical flows renders the consideration of
the three-dimensional effects studied here indispensable to an adequate modelling.
Because of the strong limitation on the Reynolds number of low-Froude-number
experiments, when critical layers occur in the laboratory they are of a viscous nature
and, similarly, focusing points for waves are smoothed out by diffusion. This is
unlikely to be the case in geophysical flows where Reynolds numbers are enormous.
In that case, only nonlinearity, instability and turbulence associated to wave breaking
may desingularize critical layers or focusing points. The focusing effects discussed
here can radically change the conditions for wave breaking, for instance, the fact that
a critical level need not be attained for a wave to break, and thus play an important
role in the control of mixing and dissipation in atmospheric and oceanic flows.
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