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Université Paris Diderot (Paris 7), 10 rue Vauquelin, 75231 Paris, Cedex 5, France

Swimmers in nature use body undulations to generate propulsive and man-
oeuvring forces. The anguilliform kinematics is driven by muscular actions
all along the body, involving a complex temporal and spatial coordination
of all the local actuations. Such swimming kinematics can be reproduced arti-
ficially, in a simpler way, by using the elasticity of the body passively. Here, we
present experiments on self-propelled elastic swimmers at a free surface in the
inertial regime. By addressing the fluid–structure interaction problem of angu-
illiform swimming, we show that our artificial swimmers are well described by
coupling a beam theory with the potential flow model of Lighthill. In particu-
lar, we show that the propagative nature of the elastic wave producing the
propulsive force is strongly dependent on the dissipation of energy along
the body of the swimmer.

1. Introduction
Undulatory propulsion is a means of locomotion shared by living organisms over
a wide range of scales and in many different media [1]. From snakes [2] to sandfish
[3], from eels [4] to spermatozoa or motile bacteria [5], net forward motion is
achieved by propagating waves along a deformable body. In fluids, the anguilli-
form swimming dynamics was first addressed in pioneering studies during the
1950s and 1960s by Taylor [6], Gray & Hancock [7], Machin [8] and Lighthill [9].
They established that the propulsive force originates from either viscous friction
(the so-called resistive theory) or inertial momentum transfer (Lighthill’s reactive
model), depending on the regime of Reynolds number, which measures the
importance of inertial to viscous actions in a given flow. In both cases,
the characteristics of the propagating wave (phase velocity, wavelength and
amplitude) are crucial in determining the swimming performance [9,10].

A vast amount of theoretical and numerical works has followed [10–14],
from Stokes or viscoelastic flows related to microorganism propulsion [5] to
inertial regimes [15,16] or three-dimensional geometries [17]. This research
shed light on various undulatory swimming modes, and not only provided
the basis for a broad spectrum of applications in robotics and engineering at
the macroscale, but also in the public health domain where, for instance,
sperm swimming speed is significantly related to fertilization success [18].

In the inertial regime, the most relevant analytical model of fish swimming
is Lighthill’s reactive theory. Based on a potential flow approximation, Lighthill
showed that the estimation of the thrust force requires only the knowledge of
the local kinematics at the tail of the deformable body [10]. Thus, calling y,
the local deflection of the slender body with respect to the axis of swimming
(x-axis), and U the swimming velocity, the average total thrust force, kTl,
reduces, in the limit of small lateral displacement, to

kTl ¼ 1
2
rS½kð@tyÞ2l%U2kð@xyÞ2l&r; ð1:1Þ

where rS is the added mass of fluid (with r the fluid density and S the swim-
mer cross section). The subscript r refers to the location of the tail where @xy and
@ty are estimated. This expression of the force is obtained writing that the swim-
ming power kTlU (i.e. the product of the thrust force times the swimming
velocity) corresponds to the rate of working done by the fish, kWl, minus the
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rate of shedding of the kinetic energy associated with lateral
fluid motion, say kTlU ¼ kWl% 1=2rSkð@tyþU@xyÞ2r lU. The
part corresponding to the energy transferred to the fluid
can be seen as a source of dissipation for the mechanics of
the swimming fish, as this energy is lost into the flow. In
the case of passive swimmers that rely on elasticity to propa-
gate the undulating motion, this dissipated energy will not be
available to sustain the body deformation (see [19] in the con-
text of energy harvesting). The value of the thrust force
depends thus on the nature of the near- body flow field,
which is extensively discussed in this work.

For living animals, the kinematics of the propagating
wave is obtained by local contractions of the muscles all
along the body. The phase velocity, wavelength and wave
amplitude are therefore set separately in order to select a
specific regime. However, in the case of artificial mimics of
real swimmers, a mechanical model of fish-muscle action
would require a continuous distribution of actuators [20].
Such a design is not only complicated, but also difficult to
scale down in size. Another approach is to consider a local
actuation and use the elasticity of the body to propagate the
wave [16,21–23]. The implementation of the forcing that will
provide the necessary energy to create the anguilliform kin-
ematics is therefore much simplified.

Here, we present a full description of the mechanics of such
self-propelled swimmers using a careful experimental set-up
and solving the complete fluid–structure problem of a forced
beam in a fluid in the inertial regime. The challenge in the
latter is to obtain an estimation of the tail kinematics as a func-
tion of the forcing, using a coupled fluid–elasticity approach.
The average swimming velocity, along with an estimation of
the swimming efficiency, is predicted afterwards by balancing
the thrust from Lighthill’s prediction and the drag force.
We also address the more general problem of wave propaga-
tion in bounded media, using a local energy injection. The
dynamics of the propagating wave that drives the anguilliform
locomotion is shown, in particular, to have a crucial depen-
dence on energy dissipation along the body of the swimmer.
Furthermore, we show that in the inertial regime, self-propelled
swimmers using passive elastic deformation verify Lighthill’s
reactive theory even at a free surface. From this work,
we confirm the potential of the present experiment to be of
importance in the future design of artificial swimmers.

2. Results
2.1. Swimming kinematics
The slender swimmer in the present experiment is actuated
on one extremity using magnetic interactions. The induced
motion of the head is a combination of heaving and pitching,
and the resulting body undulations propel the filament on
the surface of a water tank (see figure 1 and Material and
methods for details).

The present system differs from Lighthill’s configuration
in that the swimmer is not fully immersed in the fluid (it is
placed at the air–water interface to confine its displacements
into a two-dimensional plane). In particular, surface waves
generated by the moving cylinder radiate energy away
from it and may represent an extra source of drag [24–26].
However, this so-called wave drag can be neglected here as
the ratio of the wave drag to form drag, proportional to the
square of the Weber number [27], remains small (1026 to 0.1).

We vary the length of the swimmer, L, and the frequency of
the sinusoidal forcing, f, while the other parameters are kept
constant for simplicity (among them, the amplitude of the pre-
scribed displacement at the head, Af, and the flexural rigidity of
the body, B). The full kinematics of the swimmer as a function
of the experimental parameters is recovered from high-speed
camera recordings. From this, we extract the time evolution
of the local deflection y(s, t) (where s is the local curvilinear
abscissa along the centreline of the body), the wave speed yw,
and the cruising velocity U (figure 1).

The results are plotted in figure 2. Figure 2a shows the
evolution of the cruising velocity as a function of the beat fre-
quency for different lengths of the swimmer. U is found to be
an increasing function of the forcing frequency for all the
swimmers tested. It can also be seen that ‘short’ swimmers
are faster than ‘long’ swimmers in the range of parameters
tested. This can be understood by considering the results dis-
played in figure 2b: for a given forcing amplitude and forcing
frequency (Af, f ), the tail amplitude, Ar, is decreasing with L.
As thrust is based on the kinematics at the tail, and conse-
quently on Ar, short swimmers will therefore swim faster.
More generally, as illustrated in figure 2f, the overall shape of
the swimmers tends to decrease in amplitude along the
length. This characteristic shape is of course highly dependent
on the forcing parameters and the length of the swimmer and is
owing to the fact that the energy is not conserved along the
body. A further crucial information for the swimming effi-
ciency [9] that can be extracted from the kinematics of the
undulating filament is the phase velocity, yw, which is dis-
played in the inset in figure 2d. A first observation is that, as

(a) (b)
x x

y y

I

Uuj

z

(c)

B(t)

Figure 1. Experimental set-up: (a) Top-view snapshots of the swimmer pro-
pelling itself forward after the opening of the gates (that are visible at the
bottom of the images). (See the electronic supplementary materials, movie
S1, seeding particles have been added on the surface to visualize the
flow.) (b) Swimmer at the free surface of a water tank consisting of a flexible
cylindrical tail made of acrylic polymer. A magnet embedded in the head of
the filament is forced to oscillate using the time-varying magnetic field pro-
duced by a Helmholtz pair. (c) Successive pictures of a filament over a period
of undulation showing the forward swimming velocity, U, and the speed of
the travelling wave, yw.
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expected, the global behaviour is independent of the length of
the filament.

All the experimental observations can be collapsed
by plotting the data in a compact form using the characte-
ristic lengths and velocities of our system. We define v0 as
the natural relaxation frequency of the elastic filament:
v0 ¼ ð2p=L2ÞðB=ðmþ rSÞÞ1=2, with m its mass per unit length.
Figure 2c–e displays, respectively, the non-dimensionalized
swimming velocity !U ¼ U=fAf, phase velocity !yw ¼ yw=v0L
and amplitude !A ¼ Ar=Af, as a function of !vf ¼ vf=v0,
where !vf ¼ 2pf denotes the angular frequency. Note that !U
has the same form as the inverse of the Strouhal number, as
defined in the context of self-propelled swimmers (e.g.
[20,28]). !U, which compares the characteristic speed of the
imposed head oscillations to the cruising speed, decreases
and converges to an asymptotic value. Its decay has to be com-
pared and correlated with the decrease of !A with !vf, that is a
consequence of passive elastic propagation.

2.2. Fluid – structure model
In the following section, we aim to understand the mechanisms
involved in the motion of the filament, to be able to predict
what would be the output from a given forcing, and conversely
what would be the required forcing to achieve a given kin-
ematics. The filament is modelled as a forced slender beam
[29] of length L with circular cross section S ¼ pd2/4 (with d
its diameter), mass per unit length m and stiffness B. It is
immersed in a uniform fluid of density r, moving at velocity
U. We neglect, in the present model, any effect of the interface
by considering a filament moving in the bulk. The beam obeys
the Euler–Bernouilli equation

m@2
t rþ B@4

s r% @sðT@srÞ þ f n̂ ¼ 0; ð2:1Þ

with s the curvilinear coordinate, r(s, t) ¼ (x,y) the beam
position, f the fluid forces acting on the beam, T, a tension
in the plate that enforces the inextensibility condition
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Figure 2. (a) Swimming velocity, (b) amplitude of the oscillations at the tail and (inset in d ) phase velocity, as a function of the forcing frequency. Experimental
data plotted in a non-dimensionalized form, as a function of the non-dimensionalized angular frequency !vf ¼ vf=v0, with v0 ¼ ð2p=L2ÞðB=ðmþ rSÞÞ1=2:
(c) ratio of the cruising velocity and the characteristic actuation speed !U ¼ U=fAf , (d ) non-dimensionalized phase velocity !yw ¼ yw=v0L, (e) amplitude of the
oscillation at the tail normalized by that of the head !A ¼ Ar=Af . The solid lines correspond to the theoretical predictions of the model presented in the ‘Fluid –
structure model’ section. ( f ) Typical undamped (3 cm long filament forced at 10 Hz) and damped (4 cm long filament forced at 20 Hz) amplitude envelopes (see
the electronic supplementary material, movieS2 and S3).
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k@srk ¼ 1 and n̂ the unit vector normal to the beam (figure 3a).
The extremity of the beam in s ¼ L is free, that is
@3

s yðL; tÞ ¼ @2
s yðL; tÞ ¼ 0. The head of the filament (s ¼ 0)

is actuated with a prescribed periodic displacement and
rotation: y(0, t) ¼ Afcos(vft), @xy(0, t) ¼ ufcos(vft þ f), with
vf the angular frequency, uf the maximal rotation angle of the
head and f the phase shift between pitching and heaving
(see also [30]).

In the limit of slender structures (d=L( 1), and for
purely potential flow, Lighthill provided a leading order
expression of the fluid force acting on the beam [31]. This
so-called reactive force results from the reaction of the fluid
accelerated by the body movements and can be expressed
as [32,33]

fr ¼ %Mð@tun % @sðunutÞ þ
1
2
u2

nkÞ; ð2:2Þ

where M ¼ rS is the added mass per unit length owing to
the fluid, k is the beam curvature, ut and un are the longi-
tudinal and normal components of the beam velocity,
respectively, relative to the uniform water flow (so that
@tr%U ¼ ut t̂þ un n̂, with t̂ ¼ @r=@s the unit vector tangent
to the filament). Another contribution for the fluid force is
added to account for the loss of energy along the swimmer.
Considering that the transverse Reynolds numbers encountered

in the present experiment are Ret ¼ Af vf d/n ) 10–140, this
term is given the classic quadratic form (e.g. [6,34,35])

fd ¼ %
1
2
rdCdjunjun; ð2:3Þ

with Cd the drag coefficient associated to transverse motions.
Inserting f ¼ fr þ fd into equation (2.1) and projecting

the equation on the x- and y-axes gives two coupled dynami-
cal equations for x(s, t) and y(s, t). Following Eloy et al. [33],
the equations are decoupled by first using the x-projection to
evaluate the tension T, and then eliminating x(s, t) and its
derivatives using the inextensibility condition (see also [36]).
We assume that the lateral deflections are small (y( L and
@sy( 1) and discard the terms of order larger than y2. The cur-
vilinear coordinate s is approximated by its abscissa x, the first
corrections coming up through this substitution being of order
y3. This yields the weakly nonlinear dynamical equation

m@2
t yþ B@4

xy% fr % fd þOðy3Þ ¼ 0; ð2:4Þ

with

fr ¼ %Mð@2
t yþ 2U@t@xyþU2@2

xyÞ þOðy3Þ ð2:5Þ

and

fd ¼ %
1
2
rdCdj@tyþU@xyjð@tyþU@xyÞ: ð2:6Þ

Equation (2.4) is non-dimensionalized using L and L2
ffiffiffiffiffiffiffiffiffi
m=B

p

as characteristic length and time. It reads

ð1þ ~mÞ@2
~t ~yþ @4

~x~yþ ~m½2 ~U@~t@~x~yþ ~U
2
@2

~x~y&

þ~aj@~t~yþ ~U@~x~yjð@~t~yþ ~U@~x~yÞ ¼ 0:
ð2:7Þ

The dimensionless quantities are noted with tildes;
~U ¼ UL

ffiffiffiffiffiffiffiffiffi
m=B

p
is the reduced velocity, ~m ¼M=m the mass

ratio and ~a ¼ 1
2rdCdL=m the non-dimensionalized damping

coefficient. Note that ~a depends on L, which reflects the
increasing effect of damping when the filament is longer.
Equation (2.7) is solved numerically (see Material and
methods) using the experimental parameters. Here, the only
unknown parameter is the transverse drag coefficient Cd.
It is determined using a minimization approach (see Material
and methods). Figure 4 shows the experimental and
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Figure 3. (a) Definition of the coordinates and geometry of the beam
model considered. Simulated motion of the beam when implementing
equation (2.7) gradually: (b) with only the two first terms describing a classic
elastic beam (c) adding the ‘flag’ terms in brackets, (d ) adding the quadratic
fluid term. (Online version in colour.)
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Figure 4. (a) Successive computed shapes superimposed to pictures of a
4.5 cm long swimmer forced at f ¼ 19 Hz and (b) the corresponding
experimental and theoretical amplitude envelopes. (Online version in colour.)
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computed time dynamics of a 4.5 cm long filament, using the
obtained value of Cd.

The first two terms of equation (2.7) are the classic ingre-
dients of the beam equation: the inertia of the beam (with an
added mass effect owing to the surrounding fluid), balanced
by an elastic restoring force. The action of the fluid brings two
additional effects: a quadratic dissipation term (last term) and
a ‘flag’ term (in square braquets) which depends on the
swimming velocity U. The flag term is known to cause the
beam to flutter above a critical flow velocity (this is called
the flapping-flag instability, e.g. [29,37–39]). In the range of
parameters of the experiments ( ~m ) 0:96, ~U [ ½0:2% 4& and
~a [ ½50% 150&), the dissipative part has an order of magni-
tude 10–30 times greater than the other dimensionless fluid
term, which makes it the main fluid contribution in the
dynamical balance.

Interestingly, in our system, this term is also responsible
for the wave propagation along the beam, a specific feature
of anguilliform swimming; this is a non-trivial question as
such bounded elastic systems usually produce, by definit-
ion, standing waves. Indeed, the implementation of the first
two terms describing the elastic beam (i.e. without any
losses in transmission) yields a stationary wave (figure 3b).
When adding the ‘flag’ term, the obtained kinematics slightly
departs from a standing wave, but the velocities reached by
the swimmers are not sufficient to trigger propagation
(figure 3c). The flag forces related to the upstream velocity
U have thus a minor effect on the mechanism of propagation,
because our range of parameters lies below the onset of the
flapping [40]. This assertion is supported by the fact that,
experimentally, the kinematics of the filament is similar
when swimming behind the gates (U ¼ 0) and when moving
freely at its cruising velocity along the water tank (see the
electronic supplementary materials, movie S1). However,
including the quadratic fluid force does enable propagation
by drawing enough energy from the beam to prevent the
build-up of a standing wave (figure 3d). This dissipative
action of the surrounding fluid is thus decisive, in that it
allows the undulations to develop into a travelling wave.

It is important to note that, physically, the quadratic term
in equation (2.3) reflects the kinetic energy lost into the
fluid through transverse flow separation at each half-stroke
(e.g. [41]). In Lighthill’s theory, the estimation of the thrust
generated by the swimmer is based on considerations of
momentum and energy losses [9]. Our system differs from
this theory in that, energy is not only wasted from the tail,
but also from the sides. Dissipation thus contributes to the
energy balance through an additional wasted kinetic energy
term that can be written in a similar way to the kinetic
energy lost in the wake. The available energy to produce
thrust is hence reduced, but the global mechanism for pro-
pulsion remains unchanged. At first approximation, the
expression of the thrust, taking into account quadratic dissipa-
tion, has the form given by equation (1.1) but with a correction
factor depending on the transverse drag coefficient Cd. For the
determination of the cruising velocity and the swimming effi-
ciency, this correction is taken into account when balancing
the expression of the thrust force with the global drag of the
swimmer, through the adjustable coefficient CD. Transverse
flow separation impacts the performance of the swimmer
mostly by damping the body oscillations along its length
(owing to the fact that energy is extracted from the solid and
transferred univocally to the fluid).

The results of the numerical simulation are plotted in
figure 2 in solid lines. The phase velocity is computed a
posteriori from the simulated motion of the beam. The
measurement is performed in the same way as for experimen-
tal data, by tracking in time, the position of the points of the
swimmer crossing the body midline. Comparison between
experimental data and theoretical predictions shows a good
agreement, with a relative deviation of 22% for !yw and 29%
for !A. This confirms the ability of the present model to
describe our system and to predict the tail amplitude as
well as the phase velocity.

One should note that, despite the possible surface effects
mentioned previously, the model of a fully immersed swim-
mer described by equation (2.7) provides a good prediction of
the time–space dynamics of our surface swimmer. This leads
to the conclusion that surface effects may either be negligible
or already incorporated in the adjustable quadratic fluid dis-
sipation term (equation (2.3)). A detailed study of the surface
deformations is the subject of ongoing work.

3. Discussion
3.1. Swimming speed
Using Lighthill’s model (equation (1.1)), we obtain a predic-
tion for the thrust force. The swimming speed reached in
the steady-state regime is then determined by a balance
between the thrust generated and the drag experienced by
the filament. In the regimes encountered here, the swimmer
produces a significant wake whose width is set by the ampli-
tude of the tail displacement Ar; the drag is hence given the
form [41]

kDl ¼ 1
2
rU2CDS0; ð3:1Þ

where CD is a drag coefficient and S0 ¼ 2Ar * d the effec-
tive section. Using a simplified kinematics y(x, t) ¼
Arcos(2p( ft 2 x/l)) (with l, the wavelength), the equality
between equations (1.1) and (3.1) gives us a first-order
estimation of the swimming velocity

U ¼ Gðl;ArÞyw; ð3:2Þ

where Gðl;ArÞ ¼ ð1þ S0CDl
2=2SA2

rp
2Þ%1=2 is a function of

the spatial shape characteristics of the swimmer. Although
desirable, a robust measurement or prediction of CD for a
slender structure whose shape is changing in time is very dif-
ficult to perform, especially as the nature of this drag is not a
straightforward question.1 In the following, it has been used
as an adjustable parameter and its value of CD ) 0.23 is in
agreement with the order of magnitude of the drag coefficient
of streamlined bodies [42].

All data points from the present experiments are plotted
in the compact form of equation (3.2) in figure 5a. It is note-
worthy that, although the theory is based on relatively simple
arguments, the data collapse around a single linear relation-
ship. A slight deviation above the master curve is observed
for the longest filaments, meaning that the obtained value
of CD ) 0.23 overestimates the actual drag. This may be
related to the enhanced streamlining of the envelope of
oscillation observed for long filaments where the amplitude
at the tail Ar is significantly smaller than that of the head.

The estimate of U provided by Lighthill’s theory comple-
tes the beam model introduced previously in characterizing
our swimmer.
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3.2. Efficiency
Following Lighthill’s steps, one can then define an efficiency
(similar to the Froude efficiency of a propeller), h ¼ UkTl/kWl
that illustrates the ability of the swimmer to convert the work
done by its flexural movements into useful thrust. When the
undulation takes the form of a travelling wave of velocity yw,
this hydromechanical efficiency can be written (see [10])

h ¼ 1% 1
2
ðyw %UÞ=yw: ð3:3Þ

In other words, the swimming speed U should tend toward
yw to produce thrust efficiently; U cannot be too close to yw
though, or the thrust generated will not be sufficient to over-
come the drag resistance kDl (the limit case U ¼ yw
corresponding to a swimmer slipping into the water without
giving it any lateral displacement). Using equation (3.2), h

can be expressed as a function of the kinematic characteristics
of the swimmer:

h ¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðl;ArÞ

1þ gðl;ArÞ

s !

; ð3:4Þ

where g(l, Ar) ¼ p3dAr/4CDl
2. The efficiency, calculated

from equation (3.3), is plotted against g using experimental
data (figure 5b). The good agreement with the theoretical
g-function of equation (3.4), represented here by the dotted
line, confirms the ability of the expression to describe the
dependence of h on l and Ar. As both lengths result from

the elastic response of the filament, equation (3.4) thereby
describes how the cost of propulsion changes with the
imposed forcing.

In order to make the forcing dependency of the effi-
ciency more explicit and to understand the observed trend
in figure 5b, g(l, Ar) is rewritten by approximating the dis-
persion relation to that of a beam immersed in a still fluid
without any energy losses, l ¼ 4p2(B/(m þM )1/4f21/2. It
then reads g ) bArf, which is homogeneous with respect to
the speed of the lateral displacements of the tail, with b a con-
stant set by the characteristics of the fluid–solid system; this
g-form includes both the input ( f ) and the outcome (Ar) of
the ‘transfer function’ represented by the elastic system.
Injecting it into equation (3.4) and noticing that g is small
compared with unity, we get h ) 1=2ð1þ

ffiffiffiffiffiffiffiffiffiffi
bArf

p
Þ. As

observed in figure 5b, swimmers thus experience an
improved efficiency when increasing the forcing frequency.
Note that contrary to swimmers executing standing waves,
which cannot achieve efficiencies exceeding 1/2 [9], the pre-
sent system yields values of h systematically higher than 1/
2. This highlights the importance of developing travelling
waves along the beam. As mentioned previously, however,
passive propagation requires a source of dissipation. This
loss of energy causes a decrease in amplitude along the
swimmer that is especially pronounced for long filaments
or high forcing frequencies (figure 2f ). In the present exper-
iment, the fact that an increase in frequency cannot be
dissociated of a decrease in the amplitude Ar limits the effi-
ciency that can be reached, which consequently is reflected
by a saturation in the h(g) curve. This limiting effect of the
spatial damping also shows in figure 2c, where !U decays
with !vf. The crucial question for the present swimmers is
then to remove enough energy along the passive elastic
body to prevent the build-up of standing waves while main-
taining a substantial amplitude of oscillation down to the tail.
A key parameter is clearly the magnitude of the dissipative
term in equation (2.7), which is quite large in the present
experiment, but that will most likely to change for other
body shapes or fully submersed swimmers.

4. Conclusions
We have presented useful results for the design of an easy-to-
build model of a self-propelled swimmer, which could be
adapted to other environments and scales. These swimmers
differ from fishes in that they are locally actuated and use
their elasticity to passively propagate a wave. We fully
characterize the swimmer by first developing a model
giving a complete description of its dynamics under actua-
tion, and then showing that average swimming speed and
efficiency are well predicted by a potential flow theory as
introduced by Lighthill.

More precisely, we have shown that the production of
anguilliform kinematics is dependent on the ability of the
mechanical system to dissipate energy along the body of
the swimmer in order to prevent the build-up of stationary
waves. In return, this substantial amount of energy lost into
the fluid leads to a decrease of the undulations along the
length of the swimmer that limits its performance. This
non-trivial problem is the focus of oncoming works in
relation to previous studies on other passive fluid–elasticity
mechanisms relevant to bioinspired propulsion in the inertial
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Figure 5. (a) Implementation of equation (3.2) using experimental data. The
line of slope unity around which the data line up is the identity defined by
Lighthill’s theory. A single value of CD ) 0.23 was used, which is obtained as
an adjustable parameter giving the best fit of all points. (b) Hydromechanical
efficiency, calculated from equation (3.3), plotted against g which is a func-
tion of the kinematic characteristics of the swimmer. The dotted line
corresponds to the hðgÞ ¼ 1=2ð1þ
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regime [43,44]. Lastly, we have showed that a precise descrip-
tion involves a complete understanding of the nature of the
global drag acting against the forward motion. This point
will also be studied in near future by taking into account
the full kinematics of the swimmer’s shape and incorporating
viscous effects.

5. Material and methods
5.1. Experiments
The swimmers are composed of a slender cylindrical flexible
tail (diameter d ¼ 460 mm; flexural rigidity B ¼ 5.4 * 10210+
1.0 * 10210 N m2) made of acrylic polymer (polyvynil syloxane),
with a small embedded magnet constituting the head. They
float through capillary forces at the free surface of a water tank
(12 * 6 * 27 cm) which is placed between a pair of large coils
mounted in a Helmholtz configuration (figure 1b). A spatially
uniform magnetic field that actuates the head of the swimmer
is generated. Applying an AC voltage to the coils produces an
oscillating magnetic torque T(t) ¼m * B(t) (where m is the mag-
netic moment of the magnet and B(t) is the applied field) as the
permanent magnet attempts to align with the alternating field.
The rotational oscillations of the magnet generate a backward-
propagating wave along the flexible tail, causing it to swim
forward. On each run, the swimmer is first held still by a closed
gate (figure 1a), accelerates from rest when the gate opens and
reaches rapidly (in a typical time of order 0.5–1 s) a steady swim-
ming speed U determined by a balance between the forward thrust
generated by the body undulations and the drag experienced by
the filament. The Reynolds number based on the cruising speed
U and the length of the filament L, Re ¼ UL/n (n being the kin-
ematic viscosity of the fluid) ranges from 350 to 6100. Viscous
effects are thus negligible with respect to inertia.

5.2. Numerical solution of the fluid – structure model
The motion of the swimmer is assumed to be harmonic, the angu-
lar frequency vf being set by the forcing, ~yðx; tÞ ¼ Reð~YðxÞeivftÞ,
where ~YðxÞ is the dimensionless complex amplitude along the
beam. We neglected the higher harmonics appearing through the
nonlinear term (a time Fourier transform of the body motion

showed that they were indeed negligible). Inserting this form of
y into equation (2.7) yields the following amplitude equation:

%v2
f ð1þ ~mÞ~Yþ @4

~x
~Yþ ~m½2ivf ~U@~x ~Yþ ~U

2
@2

~x
~Y&

þ 8
3p

~ajivf ~Yþ ~U@~x ~Yjðivf ~Yþ ~U@~x ~YÞ ¼ 0:
ð5:1Þ

Care needs to be taken with the complex notations for the
nonlinear term. The 8/3p factor comes from the projection of
j@~t~yþ ~U@~x~yjð@~t~yþ ~U@~x~yÞ onto the harmonic eivft [32]. Equation
(5.1) is re-written in a matrix form using finite differences and
solved numerically in Matlab to obtain the complex amplitude
~YðxÞ, and subsequently the motion of the beam y(x, t). The beam
is discretized over 100 points, which is sufficient to account for
the spatial variations along its length. The actuation is imposed
through the implementation of the boundary conditions.

5.3. Estimation of Cd
We calculated the value of Cd that minimizes the square difference
between the simulated and experimental motion (denoted here
yt(x, t) and ye(x, t)) over a time period T,

Ð T
0 ½
Ð L

0 ðyt % yeÞ2dx&2dt.
Repeating the process on 27 videos (three different frequencies
and nine swimmers of different lengths) yielded mean value
Cd ¼ 2.2+0.8, which is consistent with the typical values of
order one obtained for bluff bodies [45].
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Endnote
1The drag balancing the thrust force could be a combination of form
drag and skin friction. Here, form drag is assumed to be dominant, so
that we define equation (3.1) with a drag coefficient CD that is
expected to be fairly constant in the range of Reynolds number
encountered for this ‘bluff body’ Reb ¼ 2ArU/n ) [40–103].
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