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We study experimentally the impulse response of a cylinder wake below the critical Reynolds
number of the Bénard–von Kármán instability. In this subcritical regime, a localized inhomogeneous
region of convective instability exists which causes initial perturbations to be transiently amplified.
The aim of this work is to quantify the evolution resulting from this convective instability using
two-dimensional particle image velocimetry in a hydrodynamic tunnel experiment. The velocity
fields allow us to describe the evolution of wave packets in terms of two control parameters: the
Reynolds number and the magnitude of the imposed perturbation. The temporal evolution of energy
exhibits a transient algebraic growth at short times followed by an exponential decay.
© 2011 American Institute of Physics. #doi:10.1063/1.3531724$

I. INTRODUCTION

Flow past a circular cylinder is a classic prototype for
studying hydrodynamic instabilities and bifurcations in sepa-
rated flows.1–7 Moreover, the academic case of a two-
dimensional cylinder wake can be used as a basic model for
many real situations, including the flow behind support
cables or around an airfoil. When the Reynolds number
Re=U0D /! !where U0 is the free-stream velocity, D is the
cylinder diameter, and ! is the kinematic viscosity" reaches a
particular critical value !Rec%47 for an infinitely long
cylinder1,2", a sustained periodic shedding of opposite-signed
vortices gives rise to the well-known Bénard–von Kármán
vortex street.

The transition to sustained oscillations can be described
locally, via wake profiles at different spatial stations, or glo-
bally, viewing the two-dimensional !2D" wake as whole. To
elaborate further, we first recall the standard distinction be-
tween convective and absolute instabilities in parallel flows
illustrated in Figs. 1!a" and 1!b". An instability is convective
if a perturbation grows but is simultaneously advected with
the flow such that the disturbance decays at any fixed point,
as in Fig. 1!a", while it is absolute if the perturbation grows
at a fixed spatial position, as in Fig. 1!b".8–10 A useful way to
distinguish convective from absolute instability is in terms of
propagating edge or front velocities: assuming a positive
leading-edge velocity V+, as is the case here, convective in-
stability corresponds to a positive trailing-edge velocity V−,
while absolute instability corresponds to a negative trailing-
edge velocity.9–13

Local analysis of wake profiles, i.e., a parallel flow ap-
proximation, gives a picture of the transition to sustained
oscillations as follows.4,13,14 Above Re&5 there is a local
region of convectively unstable flow in the wake. Above
Re&25 there is additionally a pocket of absolutely unstable

flow within the region of convective instability. Once the
pocket of absolutely unstable flow becomes sufficiently
large, the flow becomes globally unstable. Globally, how-
ever, one does not observe the onset of a locally absolutely
unstable region. Instead, one finds that below Rec the wake
responds to perturbations, but only transiently, as perturba-
tions are advected through the system. This is illustrated in
Fig. 1!c". Above Rec, as in Fig. 1!d", perturbations grow and
lead to a synchronized wake in the formation of what is
called a global mode.5,15 Hence, even though convective and
absolute instabilities are strictly defined for parallel flows
and streamwise periodic flows,9,10,16 inhomogeneous flows,
such as flow past a cylinder, may exhibit similar characteris-
tics. The transient response in the subcritical regime has the
hallmarks of convective instability while the global instabil-
ity above Rec has the hallmarks of absolute instability.

Despite the large body of work on the cylinder wake,
only a few experimental studies have examined the wake’s
subcritical behavior17 and none have quantitatively charac-
terized the transient dynamics in this regime. The goal of the
present paper is therefore to analyze quantitatively the sub-
critical regime using a well-controlled experiment.

After describing the experimental setup, we focus first
on the evolution of amplified wave packets and on obtaining
the leading-edge, trailing-edge, and group velocities in an
experimental setting. The decrease of trailing-edge velocity
toward zero when approaching the global instability thresh-
old confirms the transition to an absolute instability. The sub-
critical behavior is further characterized in terms of the evo-
lution of the maximum amplitude of the wave packet, and its
space-time position, as a function of the strength of the per-
turbation and the distance to the Bénard–von Kármán insta-
bility threshold. Finally, to quantify the transient growth phe-
nomenon due to the inhomogeneity of the media, we analyze
the temporal evolution of the energy of the perturbation.a"Electronic mail: ramiro@pmmh.espci.fr.
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II. EXPERIMENTAL SETUP

A cylinder of diameter D=5 mm is placed in a hydro-
dynamic tunnel of section 100 mm"100 mm !see Fig. 2"
with a nearly plug flow in the test section. The boundary
layer width in the tunnel walls is of '10 mm in the region
of interest. The cylinder span is 98 mm which covers prac-
tically the whole height of the tunnel. We use a Cartesian
coordinate system, placed in the cylinder center, with the
x-axis pointing in the flow direction and the z-axis running
along the cylinder centerline. The cylinder can be put into
rotation to provide impulse perturbations to the flow.
Measurements are taken in the horizontal midplane of the
channel.

We define and work with the reduced Reynolds number
#= !Re−Rec" /Rec, corresponding to the distance from the
global instability threshold. The critical Reynolds number
measured in this experiment is Rec%64, which is larger than
the ideal 2D case, primarily due to confinement and blockage
effects. We adjust the Reynolds number in the experiment by
controlling the flow rate in the tunnel. In the results that
follow, # varies from $0.30 to $0.04. For this range of
Reynolds numbers, the flow remains 2D over nearly the en-
tire cylinder span.

Impulse perturbations consist of applying very short ro-
tary motions to the cylinder. Rotation is controlled by a pro-
grammable microstepping electronic module which gives a
resolution of 1/256 per full step, allowing for a precise con-
trol of the cylinder motion. In the present work, we fix the
nondimensional time interval over which the cylinder is ro-
tated, and use the speed of rotation as the amplitude of the
perturbation. More specifically, the perturbation amplitude is
defined from the tangential speed of rotation at the cylinder
surface Up !see Fig. 2". We consider three perturbation am-
plitudes given by three values of the nondimensional rotation
speed: Up /U0=75, 100, and 125, which we refer to as small,
medium, and strong, respectively. U0 is the measured
velocity of the flat profile. The small-amplitude perturbation

is the smallest perturbation that produced an observable re-
sponse in the wake. For all applied perturbations, the cylin-
der is rotated for a fix dimensionless duration given by
%t /Tadv%0.2, where %t is the dimensional duration of the
perturbation and Tadv=D /U0. Note that since U0 varies with
Reynolds number, both the dimensional tangential speed Up
and the dimensional duration %t vary with Reynolds number.

The wave packet generated by the perturbation can be
observed qualitatively by visualizing streaklines, as in the
work of Ref. 17. Figure 3 shows this type of visualization
compared with snapshots of the cross-stream component of
the velocity field obtained by 2D particle image velocimetry
!PIV" in the horizontal midplane. This highlights a signifi-
cant difference between the present experiment and previous
studies of the subcritical wake response. Velocity field mea-
surements obtained by PIV permit one to study directly the
spatial structure of velocity perturbations as they evolve. The
velocity perturbations exhibit a well-defined maximum in the
wake. These are impossible to determine from streakline
records since the deformation amplitude of injected dye
never decays downstream, an artifact caused by mass conser-
vation of the dyed fluid. Therefore, streakline deformation
does not give information about the amplitude of the velocity
fluctuations Uy, and thus about the spatial evolution of the
impulse response. PIV acquisition and postprocessing have
been performed using a LaVision system with an ImagerPro
1600"1200 charge-coupled device camera with a 12-bit
dynamic range capable of recording double-frame pairs of
images up to 15 Hz and a two rod Nd:yttrium aluminum
garnet !15 mJ" pulsed laser. The time lapse between two
frames is set to 20 ms. Finally, additional postprocessing and
analysis have been carried out with MATLAB and the PIVMAT

TOOLBOX.

III. EVOLUTION OF THE WAVE PACKET

The convective nature of the impulsively perturbed cyl-
inder wake is clearly illustrated in the experimental data
shown in Figs. 4!a" and 4!b". In Fig. 4!a", cross-stream ve-
locity Uy profiles, measured at successive times along the
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FIG. 2. !a" Schematic diagram of the experimental setup in the hydrody-
namic tunnel. !b" Sketch showing a top view of the cylinder during an
impulsive rotation of intensity Up.

FIG. 1. Sketch of the space-time response of flows to infinitesimal pertur-
bations. !a" and !b" correspond to local analysis, i.e., parallel flows, illus-
trating the distinction between !a" convective and !b" absolute instabilities.
The leading-edge velocity V+ is positive in both cases. For convective in-
stability, the trailing-edge velocity V− is also positive, while for absolute
instability it is negative. !c" and !d" correspond to the global wake illustrat-
ing the distinction between the !c" subcritical, Re&Rec, and !d" supercriti-
cal, Re'Rec, cases. In the subcritical case, the perturbation reaches a maxi-
mum and subsequently decays. In the supercritical case the perturbation
continues to grow until it saturates nonlinearly. The edge velocities can be
obtained over finite times only in experiment !see Sec. III".
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wake symmetry axis y=0, are stacked up to form a spatio-
temporal diagram. The cross-stream velocity on the symme-
try axis is the ideal quantity to use to investigate the per-
turbed flow field because it is everywhere zero for the
unperturbed flow. Figure 4!b" is similar to Fig. 4!a" except
that the envelope #obtained through a Hilbert transform of Uy
as illustrated in Fig. 4!c"$ is plotted.

We measure a number of velocities associated with the
space-time evolution of the wave packets. From the Hilbert
transform of the cross-stream velocity we are able to extract,
at each time instant, the envelope of the wave packet as
illustrated in Fig. 4!c". Procedurally, we define the leading
and trailing positions as the inflection points of hyperbolic
tangent fits to the relevant parts of the envelope at each time.

Such fits, together with the associated inflection points, are
included in Fig. 4!c". Then we obtain the leading-edge ve-
locity V+ and the trailing-edge velocity V− from the collec-
tion of fronts extracted from the envelopes at short times
!(50Tadv". Likewise, we obtain the envelope maximum at
each time, and from these data, we define the group velocity
Vg to be the velocity of envelope maximum, as this gives the
speed of the packet as a whole. These velocities are the in-
verse of the slopes shown in the spatiotemporal diagram of
Fig. 4!b". Finally, we define the phase velocity Vp as the
translation speed of the vortices in the evolving wave packet
as seen in Fig. 4!a". Note that all vortices move at essentially
identical speed. Moreover, the leading-edge velocity V+,
which is effectively determined by the velocity of the first

FIG. 3. !Color online" Visualization of the impulse re-
sponse at three successive time instants !from bottom to
top" in the cylinder wake. Left: streaklines obtained
from fluorescein dye visualization. Right: instantaneous
cross-stream velocity fields obtained from PIV
measurements.
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FIG. 4. !Color online" Evolution of
the wave packet seen in spatiotempo-
ral diagrams for #=−0.137. !a" Cross-
stream velocity Uy!x , t", !b" envelope
of Uy!x , t", and !c" Uy!x" and its enve-
lope !bold dashed curve" at a fixed
time !t=24Tadv". Also shown !thin
curves" are tanh fits to the relevant
part of the envelope. The infection
points and envelope maximum are in-
dicated. !d" Envelope of Uy sampled
along various rays as a function of ray
velocity. The edge and group veloci-
ties, obtained from the inflection
points and envelope maxima, are indi-
cated with vertical lines.
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advected vortex released from the cylinder, is the same as the
phase velocity to within experimental precision: V+&Vp.

We show now that the edge velocities obtained proce-
durally through inflections points of the envelope correspond
very closely to the edge velocities defined in convectively
unstable systems. !See in particular Ref. 13." In this case one
defines V− and V+ to be the x / t rays that separate regions of
growth from regions of decay in the space-time diagram. The
growth rate along rays defining the edges is zero. For the
experimental data, the growth rate along rays is shown in
Fig. 4!d", where the envelope of Uy, sampled along different
x / t rays, is plotted against ray velocity. The edge velocities
V+ and V− obtained from inflection points are indicated by
vertical dashed lines in Fig. 4!d". It can be seen that these are
in excellent agreement with the zero growth-rate rays. More-
over, the group velocity Vg !vertical solid line" also agrees
very well with the maximum of the envelope in the ray rep-
resentation.

Thus it can be seen that the velocities are all quite well
defined experimentally, at least up to the time at which the
perturbation reaches its maximum, even though the flow is
spatially inhomogeneous and the wave packet lives only a
finite time. As expected, none of the velocities !including Vp"
are strictly constant over this space-time region, but they are
very nearly so outside of the near-wake region. We have not
attempted to extract their detailed variation in the present
study.

We now consider the behavior of the different velocities
as (#(→0 !i.e., when Re→Rec". In Fig. 5!a" we can see that
the phase velocity Vp, and equivalently the leading-edge ve-
locity V+, normalized by the inflow speed, exhibit a slight
decrease with increasing Reynolds number. Generally, the
value of Vp /U0 in the subcritical regime !#&0" compares
well with the value of 0.88 reported in the literature18 for the
supercritical !#'0" regime. The group and trailing-edge ve-
locities are summarized in Fig. 5!b". Both velocities decrease
with increasing Reynolds number as one would expect in
approaching the global wake instability. To within experi-
mental accuracy, V− approaches zero as #→0.

From the spatiotemporal diagrams we are also able to
pinpoint the position in space and time !Xmax,Tmax" at which
the subcritical response reaches maximum amplitude. See
Fig. 6!a". Again we use the cross-stream velocity component
Uy. We let Amax denote the maximum of the response, so that
Amax=Uy!Xmax,Tmax".

Figures 6!b"–6!d" show the dependence of the maximum
on reduced Reynolds number. It is not surprising that Amax
grows when the global instability threshold is approached
!(#(→0", as can be seen in Fig. 6!b", because the suscepti-
bility of the flow increases near the onset. On the contrary,
the behavior of Xmax !which diminishes when (#(→0, see
Fig. 6!c", deserves a further comment, since it seems to be
opposite to the case of other instabilities in the subcritical
regime where the characteristic length scale increases when
(#(→0 !e.g., the penetration length in pretransitional
Rayleigh–Bénard convection19". The fact that the maximum
of the instability moves closer to the cylinder !i.e., that Xmax
diminishes" when approaching the threshold while the time
at which this occurs remains constant #on a nondimensional

scale normalized by the advective time scale Tadv, Fig. 6!d"$
is actually consistent with Vg decreasing as the convectively
unstable system tends to the absolute instability threshold.
The difference with the case of Rayleigh–Bénard convection
comes from the effect of the mean flow advection, which
modifies the physical meaning of the penetration length
scale.

For a given value of #, an increase in the strength of the
perturbation produces a response in which the maximum am-
plitude Amax is slightly larger and occurs at a position closer
to the cylinder !smaller Xmax". Approaching the threshold re-
duces the effect of changing the perturbation strength.

IV. TRANSIENT GROWTH

As noted in Sec. I, an important feature of the cylinder
wake is the inhomogeneous nature of the flow. Hence, even
though the subcritical response just presented has much of
the general character of convective instability, perturbations
do not grow indefinitely !even linearly" as they would for a
homogeneous convectively unstable system. Rather, a local-
ized initial perturbation grows at first, due to local flow fea-
tures near the cylinder, but is simultaneously advected down-
stream into a region of stability where the perturbation
decays. Hence in the absence of any inflow noise the impul-
sive response is only transient. Such behavior is known in
inhomogeneous flows.5,20–27 It should be noted, however,
that inflow or other noise may modify the picture in that the
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Experimental points are labeled as !: small perturbation, !: medium per-
turbation, and ": strong perturbation. Horizontal error bars indicate the
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localized region of instability acts as an amplifier and sus-
tained dynamics may arise in some cases even in the sub-
critical regime.11,24,27–29

An increasingly common approach to quantifying the
transient response of flows is in terms of their transient en-
ergy growth.30 Such an analysis provides a global measure of
the response dynamics. Here we undertake such an analysis
of experimental data.

We define the perturbation energy from our measure-
ments as follows

E!t" =) )
%

!ux
2 + uy

2"dxdy ,

where

ux = Ux − Ux base; uy = Uy − Uy base,

where the base flow !Ux base ,Uy base" is the measured steady
flow before any perturbation.

Experimentally, the total energy of the perturbation can
only be measured while the packet is contained in the obser-
vation window. Hence, the energy calculated from the ve-
locimetry data does not include the contribution from vorti-
ces that have been advected out of the measurement area. In
order to quantify this effect we compare the energy calcu-
lated using two different streamwise sizes for the integration
area %: the total energy Etot, where the whole measurement
window is used, and the energy of the first half of the wave
packet Ehalf, where the downstream boundary of the integra-
tion area % is given by the time-dependent position of the
maximum perturbation amplitude X̃max!t"; see Fig. 7!a". We
note that X̃max!t" is time-dependent and should not be con-
fused with Xmax shown in Fig. 6!c". The quantities are related

via: Xmax=maxtX̃max!t". We find that the ratio of Etot /Ehalf

remains approximately constant !#2" in time, which means
that the measurement window is sufficiently large to capture
the dynamics of the perturbation growth and decay before
the effect of the flow structures advected away from the
downstream boundary of the measurement window becomes
significant.

The time evolution of the energy is shown in Fig. 7!b".
The value of Etot, as well as Ehalf and Etot−Ehalf, are shown.
All energies are all normalized by E0, the value of Etot at the
first measured instance following the impulse. The perturba-
tion energy initially undergoes growth until t%50Tadv, at
which point the energy decays. This is precisely the transient
growth dynamics expected of convective instabilities in in-
homogeneous media.

The late time behavior of the energy corresponds to the
exponential decay of the least stable normal mode in a stable
region, e.g. Refs. 31 and 7. As the system approaches the
absolute instability threshold !#→0" this decay becomes
slower. This can be seen in Fig. 7!c", where the decay rate is
given by the slope of the curves of log Etot and more quan-
titatively in Fig. 8!a" where the asymptotic decay rate is plot-
ted as a function of reduced Reynolds number. For compari-
son, decay rates from linear stability computations6 are
shown with a solid curve. The agreement is excellent.

The energy growth at short times can be examined using
the maximum of the energy Emax and the time for which this
maximum is reached tmax as a function of #. See Fig. 8!b".
Consistently with the approach of the absolute instability
threshold, Emax increases when (#(→0. The time tmax where
the maximum energy is reached remains approximately
constant.
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FIG. 6. !Color online" !a" Definition
of the maximum of the perturbation on
the spatio-temporal diagram. !b" Evo-
lution of the maximum of the pertur-
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mental points are labeled as !: low
perturbation, !: medium perturbation,
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V. DISCUSSION AND CONCLUSIONS

The convectively unstable wave packets produced by an
impulsive perturbation in a subcritical cylinder wake have
been studied experimentally. Velocity field measurements
obtained by PIV have permitted us to characterize quantita-
tively the instability wave, shedding light on points that re-
mained not clearly analyzed in the literature. First, probing
the perturbation of the velocity field due to the instability
shows unambiguously that there is a well-defined maximum
of the perturbation amplitude in the wake. This differs sig-
nificantly from the picture given by the streakline visualiza-
tions usually used to illustrate the convective instability,17

which distorts the observation of the actual growth and de-

cay. The value of this maximum and its position downstream
of the cylinder depend on the Reynolds number and, less
markedly, on the strength of the perturbation, whereas its
position in time remains constant. In addition, the evolution
of the wave packet has been characterized with respect to the
Reynolds number using the leading and trailing fronts as
well as a typical group velocity. The measured velocities are
consistent with the transition from a convective to an abso-
lute global instability as the Reynolds number increases to-
ward the Bénard–von Kármán instability threshold !see Fig.
5".

The analysis of the transient energy growth associated
with the instability also deserves a final comment. The quali-
tative features of the temporal evolution of the energy agree
with the standard picture of transient growth due to convec-
tive instability in inhomogeneous media, i.e., a short-time
algebraic growth followed by an exponential decay at late
times. However, the measured values of max!Etot /E0" are
remarkably low !always less than 10" when compared to the
values obtained by numerical computations !of order 103, see
e.g. Refs. 25 and 27". The main reasons for this discrepancy
are most likely the fact that in the experiment one does im-
pose an optimal perturbation and also the fact that extracting
E0, the initial energy of the perturbation, is experimentally
quite difficult. This discrepancy raises the question about the
pertinence of the energy gain !ubiquitous parameter in tran-
sient growth studies" as the most appropriate quantity to use
for comparison between theory and experiments.
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