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In this Rapid Communication, we study with the Stuart-Landau (SL) amplitude equa-
tion, a wake flow control scenario using experimental data from a cylinder wake forced
by plasma actuators. Given the formal framework recently discussed by Gallaire et al.
[Fluid Dyn. Res. 48, 061401 (2016)] on pushing amplitude equations far from threshold,
we analyze experimental data of a forced wake in order to test the SL reduced order model.
Linear stability theory and global mode concepts are used to determine the SL parameters.
The extension to forced wakes of the SL model had been proposed by Thira and Wesfreid
[J. Fluid Mech. 579, 137 (2007)] in the context of their study on stability properties, but
its employment still remained an open question. Here, we show that a forced wake at a
Reynolds number far from the first threshold can also attain the critical behavior described
by the SL model.

DOI: 10.1103/PhysRevFluids.3.091901

Controlling wake flows presents many important applications in engineering and environmental
sciences. The goals of control can be, for instance, the reduction of drag [1] or the modification of
heat transfer on a structure subjected to an external flow [2]. Mechanically, the characteristic vortex
shedding of wake flows is one of the cornerstones of many fluid-structure interaction problems,
such as the vibration of bridge support cables or the thrust production mechanisms in animal
locomotion. In active control strategies, considerable energy savings or engineering optimizations
can be obtained through a careful choice of forcing parameters. In this Rapid Communication, we
consider the canonical example of a circular cylinder, using an active control strategy based on the
near-wall flow manipulation produced by plasma actuators [3]. The wake dynamics can be strongly
affected when forcing the flow in the boundary layer around the cylinder.

Many studies on the subject of forced wakes have been conducted in the past 40 years using
experimental, numerical, and theoretical approaches (see, e.g., Refs. [4–10]), and significant drag
reductions have been associated with the stabilization of the Bénard–von Kármán instability (BvK)
[6,9,11]. For wake flows with higher Reynolds numbers, or with less-energy-expensive actuators,
comparable drag reductions have been attained through interfering with the formation of BvK
structures by promoting symmetrical vorticity patterns [12,13].

The goal here is to examine a reduced model of the wake flow, the Stuart-Landau (SL) equation
[14,15], in the case of a forced wake, identifying the parameters of the model with measurements
from experiments. The application of the SL model to the unforced cylinder wake far from the
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threshold of the BvK instability has been discussed recently [16]. Here, we show, using plasma-
actuated wake experiments, that the forced wake can also be described in the same framework,
exhibiting a critical behavior coupled to the forcing parameter.

It is well known that the Reynolds number Re = u∞d/ν controls the transition from a stationary
state in the wake to the BvK vortex shedding regime, where u∞ is the flow velocity far away from
the cylinder of diameter d and ν is the kinematic viscosity of the fluid. For the laminar regime in
a two-dimensional (2D) flow, from Re ∼ 5, a recirculation region with two well-defined eddies of
opposite circulation takes place, and therefore the streamwise central velocity ux is negative in the
near wake—we will consider hereafter a Cartesian (x, y) reference frame with the cylinder axis z

perpendicular to the (x, y) plane and placed at its origin, and the flow far away from the cylinder
moving in the positive x direction. At Rec � 47 these eddies are no longer stable and the BvK
instability sets in [4,17].

The wake dynamics close to the threshold can be modeled considering it as a propagating wave
that grows from the origin, reaches a maximum, and decays afterwards. The spatial envelope of this
coherent oscillation gives the amplitude of the so-called global mode (see, e.g., Refs. [18–20]), for
which the dominant contribution is given by the first harmonic. The main flow structures, a double
row of staggered vortices of opposite signs, are present for a large range of Reynolds numbers. The
evolution of these structures and the supercritical transition near the stability threshold Rec can be
approximated with the complex Stuart-Landau (SL) equation (see, e.g., Refs. [4,21])

τ
da

dt
= ε(1 + ic0)a − g(1 + ic1)|a|2a, (1)

where a = ρeiφ is a complex amplitude such that ρ is the amplitude of the global mode and φ

the phase of the fluctuations, and τ , g, c0, and c1 are real coefficients. The Reynolds-dependent
control parameter ε is a function of the distance to the critical Rec value and can be written as
ε = Re−1 − Re−1

c , as proposed by Ref. [22] and thoroughly discussed by Ref. [16]. The linear term
in Eq. (1) characterizes the growth rate σ0 = ε and the frequency ω0 = εc0 of the fluctuations in
the wake at the onset, while the saturating nonlinear term ∝a3 is linked to the presence of a limit
cycle due to the interaction between the zeroth, or stationary, mode that represents the time-mean
flow and the first harmonic of the perturbation [22]. For the limit cycle regime, this model gives the
evolution of the amplitude ρ ∼ √

ε/g and frequency shift τ φ̇ ∼ ε(c0 − c1).
Concerning flow control, even though forced wakes lead to complex behaviors, they can be also

modeled by the SL equation. Previous attempts can be found in Refs. [4,23,24] where a temporal
forcing term F exp(2πiff t ) is added to Eq. (1). However, in such models there is no link between
the global mode dynamics and changes produced by the mean flow correction. On the other hand,
it has been suggested [11] that the selected global modes in forced wakes could exhibit a similar
critical behavior as that of free wakes near the threshold Rec. Consequently, dynamic properties such
as growth rate and frequency could be described by coupling the response amplitude a to a forcing-
dependent parameter. A general case can be described considering a forcing with two parameters:
an amplitude A and a frequency ff ; and the archetype of a cylinder forced by rotary oscillations
has been discussed with numerical results by Ref. [25]. In such a forced cylinder wake, we also
note a strong modification of the recirculation length behind the cylinder LR , which corresponds
to the streamwise location for which the streamwise time-mean flow ux = 0 at y = 0 (see Fig. 1).
If we consider the forcing as a mean flow perturbation that contributes to the zeroth harmonic
of the wake, the following system for the established regime is obtained through a multiple-scale
expansion [16,25],

τ ȧ = ε(1 + ic0)a − g(1 + ic1)|a|2a − γ (1 + iβ )ab, (2a)

b = F (|a|2, A, ff ) = G(A, ff ) − H (A, ff )|a|2, (2b)

091901-2



FORCED WAKES FAR FROM THRESHOLD: STUART- …

u∞

LRd

δu

δu

x

y

1 mm

20 mm

3 mm

ionic wind

plasma

x

y

electrodes

(a) (b)

FIG. 1. Schematic diagrams of (a) a forced wake where the forcing is represented by a perturbation δu on
the upper and lower parts of the cylinder that modifies the mean flow and so LR . (b) Actual experimental setup,
when forcing is obtained through plasma actuation.

where the dot stands for the time derivative, and γ and β are real coefficients. This leads us to define
a forcing-dependent parameter b that can be represented either by the function F (|a|2, A, ff ) with
A the forcing amplitude and ff its frequency as suggested in Ref. [11], or by the pair of functions
G(A, ff ) and H (A, ff ) as derived from the SL development. Therefore, the term −γ (1 + iβ )ab

represents the coupling between the wake dynamics and the external forcing. Writing the complex
amplitude a = ρeiφ , Eq. (2a) leads to

ρ2 = (ε − γ b)/g = ε̂/g, (3a)

τ φ̇ = ε(c0 − c1) − γ b(β − c1). (3b)

The new control parameter ε̂ in Eq. (3b) governs the supercritical transition observed in the forced
wake. The ε̂ parameter depends both on the Reynolds number (through ε, so that it can still describe
the free wake transition) and the forcing term b. This means that stabilization can occur at a Re
number other than the threshold without forcing Rec.

While increasing the forcing amplitude A, the perturbation amplitude ρ, and accordingly |a|2,
might decrease. Thus, though we do not know the exact expression of the functions F , G, and H

derived in (2b), there is strong evidence that F (|a|2, A, ff ) → G(A, ff ) at high values of forcing,
so that the parameter b only depends on the forcing properties A and ff .

As mentioned above, the objective of the present Rapid Communication is to apply this
theoretical framework to a realistic experimental case. For that purpose we use the experimental
study of forced flow past a circular cylinder described in Ref. [26]. The setup, where plasma
actuators are used to induce a ionic wind on the boundary layer of the cylinder, is represented
schematically in Fig. 1. The cylinder of diameter d = 0.02 m is placed in an air flow of upstream
velocity u∞ = 0.18 m/s with viscosity ν = 1.5 × 10−5 m2/s, which gives a Reynolds number
Re = 235.

Forcing over the cylinder surface produces a strong coherent flow along the cylinder span which
diminishes the possible spanwise variations due to three-dimensional instabilities or end effects
[8,27,28]. Flow field measurements are performed using 2D particle image velocimetry (PIV)
[29]. We refer the reader to D’Adamo et al. [26] for more details on the experimental setup. The
experimental forcing parameter dc stands for duty cycle, a relationship between the time when the
plasma is on, Tehd, and the forcing time Tburst (see Ref. [29]). It is thus related with the actuator
electric energy input (see Ref. [26]). As suggested in earlier studies, the modification of the flow
transition could be forced by changing the actuation amplitude, its frequency, or both [11]. Here, it is
the ionic wind amplitude of the plasma actuators that sets the amplitude of the forcing perturbation
δu, showed schematically in Fig. 1. The forcing is stationary so it has no time dependence (ff = 0)
and, while we do not have a direct measurement of the velocity perturbation δu ∼ A added in
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FIG. 2. Isocontours of the instantaneous 2D velocity modulus of the wake behind the cylinder for different
duty cycles. (a) dc = 0 (no forcing), (b) dc = 10, (c) dc = 20. While increasing the forcing amplitude, an
extension of the recirculation region length LR , and an increase of the wavelength are observed.

the neighborhood of the cylinder wall (see Fig. 1), we know it is an increasing function of dc.
We thus keep the nomenclature of the experimental setup forcing parameter dc in the following
discussion.

Figure 2 shows typical wakes for different forcing amplitudes: dc = 0 (no forcing), dc = 10,
and dc = 20. The velocity modulus |u| = (u2

x + u2
y )1/2 is represented, where u = (ux, uy ) is the

velocity field measured experimentally. As we increase the forcing amplitude, we observe both a
growth of the recirculation region and a stabilization of the wake, as vortex shedding takes place
further downstream. Such changes are linked to the mean flow correction [8,30] and in this case
they are introduced by the forcing. In order to examine the modification of the wake induced by the
forcing, we explore now the evolution of the mean flow velocity. Figure 3(a) shows the evolution
of the time-mean streamwise velocity 〈ux〉 measured along the x axis at y = 0 as a function of the
intensity of the plasma forcing dc. In the same graph, we observe that the mean velocity difference
�umin between the natural wake and the forced one increases with dc, and it can be noticed that both
the minimal value of 〈ux〉 and its distance from the cylinder are modified. As dc increases, the mean
flow correction has smaller variations so its global contribution to the zeroth harmonic is decreasing,
which means that the wake tends to be stabilized. Now, the amplitude ρ of the SL-equation limit
cycle can be estimated from intensity of the flow fluctuations. Following Ref. [30], we identify the
order parameter ρ2 from Eq. (3a) with the maximum of the transverse velocity fluctuations 〈u′

y
2〉1/2

along x at y = 0 [see Fig. 3(b)]. The position of this maximum changes with the strength of the
forcing, as was also reported in Thiria and Wesfreid [25].

Let us recall the study of Zielinska et al. [19] on the mean flow modification of a wake in the
supercritical regime. In their notation, when the flow is no longer stationary, the time-mean flow
〈V 〉 = V0 − δV results from a nonlinear correction δV to the stationary basic flow V0. In the present
case, the mean flow modifications represented by the quantity �umin are portrayed with respect to
the nonlinear oscillations represented by ρ2, as shown in Fig. 3(c). When the forcing is strong
enough, �umin > 0.1, ρ2 depends linearly on the modifications of the mean flow �umin. Thus,
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FIG. 3. (a) Evolution of the mean velocity measured along the x axis as a function of dc, where the different
labels are displayed on (b). The definition of �umin is plotted in the case of dc = 20. The inset plot shows the
values of �umin as a function of the forcing parameter dc. (b) Evolution of the spatial shapes of the global
modes with the forcing dc. For each curve, its maximum defines a pair of values (xmax, ρ ). (c) Relationship
between the squared amplitude ρ2 and the characteristic modification of the mean flow given by �umin. As
�umin increases, ρ2 tends to 0, corresponding to the wake stabilization. Linearity ceases to hold when the
forcing weakens, which is displayed in the graph through a diminished color intensity of the plot markers.
(d) Behavior of the selected frequency f of the global mode (© and �) and the growth rate σ (�) as a function
of the squared amplitude ρ2; © and � are obtained through a linear stability analysis, and � are determined
from a Fourier decomposition of the experimental values. As ρ2 → 0, the stable mean flow frequency f0 ∼
0.115. In the same sense, while increasing the forcing, the temporal growth rate decreases.

following Eq. (2a), we propose that the parameter for the mean flow correction b is equivalent to
�umin. The slope of the line displayed in Fig. 3(c) is therefore −γ /g.

To explore the stabilization of the wake, we perform a linear stability analysis based on the
time-mean flow, as discussed by Refs. [31,32]. Following the methods provided for a local analysis
by Ref. [33], we have access to the growth rate σ0 and the frequency ω0 of the selected unstable
mode for each x-streamwise coordinate. The criterion for the prediction of global frequency for
a spatially developing flow [34] is recalled in Appendix B. This predicted value is compared to a
direct measurement through a Fourier decomposition of the experimental values uy (t ) evaluated at
a vicinity of (xmax, y = 0, t ). They are plotted in Fig. 3(d), showing that the linear stability analysis
is accurate enough in our case. As we can see, the forced wakes tend to a stable stationary solution
as the growth rate σ is a decreasing function of the nonlinear oscillations given by ρ2. The behavior
of the wake properties σ and f is very similar to the evolution observed for free wakes when
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approaching the threshold of the instability by upper values of the Reynolds number (Re → Re+
c ).

It is noticeable in Eq. (3a) that when ρ2 goes towards zero, which corresponds to ε̂ = 0, we
obtain a critical value bc = −ε/γ that we can use to create a nondimensional transition parameter
(bc − b)/bc. In the same sense, for small values of ρ, the frequency of the wake decreases through
a linear dependence of slope γ (β − c1)/τ . Particularly, when ρ2 → 0, the forced wake frequency
reaches a finite value identified as the stable flow frequency f0 � 0.12 [18,33], as in the nonforced
scenario [see Fig. 3(d)]. The wave velocity c = λf is near constant (c = 0.80 ± 0.05). The reduced
parameter (bc − b)/bc is therefore relevant to describe the forced wake transition at a fixed
Reynolds number Re, and the parameter ε̂ would be a good choice to fully describe the Reynolds-
dependent and forcing-dependent transition that leads to the BvK instability when we work in flow
control.

Summarizing, we found strong evidence of a critical behavior of the mean flow parameter b → bc

at the transition to the flow stabilization. Consequently, the mean flow correction produced by the
control is found to be a parameter for the bifurcation in the way defined in Eq. (2). The estimated
Strouhal number St = f d/u∞ corresponding to the value b = bc was St � 0.12, which is only
slightly below the critical frequency selected at Re = Rec.

Scaling laws based on the mean flow modification seem to remarkably describe and characterize
the critical dynamics close to threshold under forcing conditions when flow control is performed
with plasma actuators. Even more, the mean flow, which is a function of the forcing parameter
(A, ff ) and the Reynolds number, does not involve directly the specific form of the external
perturbation, but its consequence on average. The scenario should thus be similar with other forms
of control such as body rotatory oscillations (see Ref. [35]).

The link between the mean flow correction �umin and the transition in the forced wake
being established, we believe that this parameter, which is closely linked to the stabilization
mechanisms, should be robust enough to describe critical behaviors in wake flows for a large
range of forcing parameters and far from the critical Reynolds number. As a final note, we
recall that, as the forcing also modifies the recirculation length scale LR , a transition diagram
between stable and unstable flow had been suggested in the (Re; LR ) plane (see Fig. 24 in
Ref. [11]). The behavior of the recirculation length, both for the stable state and the vortex shedding,
could be explained as a linear and nonlinear modification of the mean flow [19,30]. Therefore,
we can relate it to the perturbation induced by the forcing and help to complete a transition
diagram.

In this Rapid Communication, we expose that is possible to explain and predict the effect of an
actuator on unstable flows. The steps described here offer a physical explanation of flow control
mechanisms that go beyond a purely phenomenological description.

We acknowledge support from CONICET (Argentina) and CNRS (France) through the LIA
PMF-FMF (Franco-Argentinian International Associated Laboratory in the Physics and Mechanics
of Fluids).

APPENDIX A: STUART-LANDAU EQUATION WITH A FORCED TERM

We develop the equation corresponding to the forcing cases from the basis of the Stuart-Landau
equation applied in wake flows by Refs. [16,22],

dA

dT
= λA − μ|A|2A, (A1a)

λ = λ0 + δλ(F ), (A1b)

μ = μ0 + δμ(F ), (A1c)
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where λ0 and μ0 are the coefficients when there is no forcing and δλ(F ) and δμ(F ) are functions
that depends on forcing. Therefore, Eq. (A1a) can be rewritten as

dA

dT
= λ0A − μ0|A|2A + βBA, (A2a)

0 = −βB + f (|A|2, F ), (A2b)

f (|A|2, F ) = δλ(F ) − δμ(F )|A|2, (A2c)
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FIG. 4. Schematic representation of the necessary steps involved in the linear stability analysis: (a) Mean
flow streamwise velocity contours, with a slight loss of symmetry is due to forcing, where a cut a x = xc

gives (b) a mean velocity profile (square symbols) 〈vx (y, x = xc )〉, which is fitted by a function (dashed
line) u(y ) = 1 − a0 + a0 tanh [a1(y/d )2 − a2)], where a0, a1, and a2 are fitting parameters. Solving the
corresponding dispersion relation, the Rayleigh equation for this inviscid instability, for a range of wave
numbers k = kr + iki , we obtain (c) a map for ki = const in the ω plane. At a critical point, a cusp on the
ki = −0.7 curve, the point (ω0r , ω0i ) is determined for xc. In (d) the results for each x position(◦ marks)
are plotted in a ω plane. Criteria for the prediction of a global frequency in a spatially developing flow is
given by the condition ∂ω/∂x|x=xs

= 0 [34]. The saddle point ωs = ω(x = xs ) is obtained through an analytic
continuation to complex values of x = xr + ixi by inspecting the when a cusp point takes place (point-dashed
curve) [36]. Considering all the cases, the points ωs = (ω, σ ) provide the data for Fig. 3(d).
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which is a particular case for Eq. (2), corresponding to the stationary evolution of B. A possible
modification for an harmonic forcing is to consider f (|A|2, F )eiωF t , as proposed by Ref. [11].

APPENDIX B: PREDICTION OF THE GLOBAL MODE FREQUENCY

The criterion proposed by Ref. [34] and applied to a wake flow in Refs. [36,37] for the
prediction of global frequency for a spatially developing flow consists in finding a saddle point
∂ω0/∂x‖x=xs

= 0 of the complex function ω0(x) through use of the Cauchy-Riemann equations
and analytic continuation to complex values of x = xr + ixi . The procedure, applied as in other
works [11,38] to the time-mean flow, is full summarized in Fig. 4. Hence, we could select the onset
frequency f = ω0(xs )/2π for this spatially developing flow.
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