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Questions of energy dissipation or friction appear immediately when

addressing the problem of a body moving in a fluid. For the most simple

problems, involving a constant steady propulsive force on the body, a straight-

forward relation can be established balancing this driving force with a skin

friction or form drag, depending on the Reynolds number and body geometry.

This elementary relation closes the full dynamical problem and sets, for

instance, average cruising velocity or energy cost. In the case of finite-sized

and time-deformable bodies though, such as flapping flyers or undulatory

swimmers, the comprehension of driving/dissipation interactions is not

straightforward. The intrinsic unsteadiness of the flapping and deforming

animal bodies complicates the usual application of classical fluid dynamic

forces balance. One of the complications is because the shape of the body is

indeed changing in time, accelerating and decelerating perpetually, but also

because the role of drag (more specifically the role of the local drag) has two

different facets, contributing at the same time to global dissipation and to

driving forces. This causes situations where a strong drag is not necessarily

equivalent to inefficient systems. A lot of living systems are precisely using

strong sources of drag to optimize their performance. In addition to revisiting

classical results under the light of recent research on these questions, we dis-

cuss in this review the crucial role of drag from another point of view that

concerns the fluid–structure interaction problem of animal locomotion. We

consider, in particular, the dynamic subtleties brought by the quadratic drag

that resists transverse motions of a flexible body or appendage performing

complex kinematics, such as the phase dynamics of a flexible flapping wing,

the propagative nature of the bending wave in undulatory swimmers, or the

surprising relevance of drag-based resistive thrust in inertial swimmers.
1. Introduction
Fluid dynamic drag as a force that acts opposite to the relative motion of an object

with respect to the surrounding fluid is one of the main ingredients of all loco-

motion problems in nature. Aside from their evident biological relevance, the

locomotion strategies found in the flight of birds, bats and insects (e.g. [1,2])

and the swimming of fish and marine mammals (e.g. [3–5]) have long since

served as inspiration for the development of artificial systems (e.g. [6–8]). The

result of this pluridisciplinary appeal is that literature abounds over an ample

spectrum of approaches bounded by biology, physics and engineering. Analysing

the case of flying and swimming animals, we will discuss here different facets of

the drag problem, beyond the most intuitive one, which is to counter the propul-

sive effort of an animal that moves from one point to another, consequently

setting the average cruising velocity. Owing especially to its engineering

relevance, this problem has been widely studied, defining and describing differ-

ent types of drag, such as skin friction or form drag (e.g. [9–12]). Moreover, a

recent study [13] has shown that a scaling law constructed on basic drag consider-

ations links swimming speed to body kinematics for a wide range of scales in

macroscopic aquatic locomotion. From a fluid dynamics perspective, there is of

course only one hydrodynamic force, which results from integrating the pressure
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Table 1. Cruising Reynolds numbers.

bacterium �1025

marine invertebrate larvae �0.1210

Drosophila �102

small fish (e.g. guppy) �103

dragonfly �104

tuna �105

blue whale �106
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wake
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U

Figure 1. Schematic diagram of the flow streamlines over an airfoil section
showing the boundary layer and its separation on one side defining the width
of the near wake. The drag force is in the direction of the uniform flow
velocity U far from the streamlined object, lift is perpendicular.
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and viscous forces around the moving object. The physics that

links the pressure p with the velocity field u ¼ (ux, uy, uz) is

described by the Navier–Stokes equations, which can be

written in dimensionless variables as (e.g. [14])

@u

@t
þ (u � r)u ¼ �rpþ 1

Re
r2uþ F ð1:1Þ

and

r � u ¼ 0, ð1:2Þ

where r ¼ (@/@x, @/@y, @/@z) is the nabla operator, Re ¼
LU/n is the Reynolds number, defined in terms of characteristic

length L and velocity U scales and of the kinematic viscosity n,

and F is an external force (usually only gravity for the problems

that interest us here). The swimmer, flyer or moving object

completes the problem definition by giving the initial and

boundary conditions. As such, if an animal starts to move

from rest in a quiescent fluid, we can write for the initial con-

dition u(t ¼ 0) ¼ 0. Because the fluid extremely close to the

animal will follow the motion of the surface of the animal

Sanimal, the boundary condition can be formally written as

u(x [ Sanimal) ¼ uSanimal
. Integrating the pressure field obtained

from solving the Navier–Stokes equations over the moving

boundary can be, in principle, obtained for each particular

case, giving the net force, although this remains challenging

and is the subject of recent advances when considering velocity

field measurements [15–17]. The dynamical balance in

equations (1.1) and (1.2) depends on the Reynolds number,

which determines the importance of inertial versus viscous

forces in the problem. The two limit cases in terms of Re have

been widely studied: when Re� 1, the viscous term is negli-

gible and in practice the Euler equations for an ideal fluid are

recovered, the pressure gradient being balanced by fluid iner-

tia. In these high Reynolds number flows, such as the flow

around an airfoil, the effects of viscosity are confined to a

thin boundary layer that matches over a small length scale the

‘outer’ inviscid flow and the actual solid boundary, where

the no-slip condition applies and the velocity of fluid particles

must match the velocity of the boundary. In the other limit, for

Re� 1, it is the viscous term that governs the dynamics. This

limit, known as Stokes flow, describes for instance the propul-

sion of microscopic organisms using cilia or flagella. The

Reynolds numbers relevant to animal swimming and flying

cover a broad range (table 1), a lot of cases being ‘intermediate’

with respect to the two limits mentioned above, those that con-

ventional analytical methods are capable of handling [18].

Physical insight relevant to this intermediate range usually

requires the correct modelling of the vortex dynamics detach-

ing from the swimmer or flyer, and considerable efforts in

this sense have been widely documented in the literature
(e.g. [19–33]). As we will discuss further, the dynamics of the

solid body itself, in particular its elastic properties, also have

to be considered. Indeed, in addition to constituting the bound-

ary condition for the fluid problem that will describe the

locomotion forces, the deformable body of the animal in ques-

tion will also respond to the action of the surrounding fluid

producing a fully coupled fluid–structure interaction problem.

The separation between skin friction and pressure drag

may be exemplified with the traditional picture of aero-

dynamic flow around an aerofoil (figure 1). There, pressure

drag can be obtained from inviscid flow analysis and the skin

friction evaluated from boundary-layer solutions (e.g. [11]).

In separated flows, pressure drag should be estimated using

a more complicated approach due to the degeneration of the

shear layer into the wake. A convenient manner of analysing

drag in this case is through the definition of the drag coefficient,

CD ¼
FD

(1=2)rU2S
, ð1:3Þ

where the hydrodynamic force FD is rendered dimensionless

by comparing it to the dynamic pressure rU2 acting on a refer-

ence surface S. Different definitions of S are used depending on

the problem, so care should be taken when using drag coeffi-

cient figures from the literature. For bluff-bodies, S is usually

defined by the frontal area, i.e. the projected area of the object

onto the plane perpendicular to the flow direction, which

gives a measure of the characteristic size of the separated

region delimiting the zones of rotational and inviscid flows.

For streamlined bodies, it is usually the wetted area (the total

surface of the body) that is considered, whereas in wing aero-

dynamics, the reference surface is the wing plan form.

Unsteadiness, being an intrinsic feature in flapping and swim-

ming animals of interest here, complicates the straightforward

application of the usual formulæ for estimating fluid dynamic

forces.

The most subtle part of the drag question in animal loco-

motion may be that the previous cruising-velocity-limiting

role of drag cannot be fully decoupled from the thrust pro-

duction mechanisms of an undulating body or a flapping

appendage. The latter is an obvious statement for low-Reynolds

number microorganisms, where viscous drag is the only force

available to drive locomotion (e.g. [18]), but not at larger

Reynolds numbers, where thrust production mechanisms

are usually associated with inertia, in particular to added

http://rsif.royalsocietypublishing.org/
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Figure 2. Skin friction and pressure drag contributions to the total drag coef-
ficient for a family of struts of length L and thickness th at Re ¼ 4 � 105

(data from [45]). The CD data were obtained by dividing drag-per-unit-
length data by 1=2rU2th. Drag-per-unit-length divided by thickness is
thus here equivalent to drag FD divided by the frontal surface S in
equation (1.3). (Online version in colour.)
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mass-based effects. Vogel [34] uses a model example to propose

that drag-based thrust at high Reynolds numbers (see also [35])

is the best strategy for the initial acceleration manoeuvre of a

swimmer, or for a craft starting from rest, whereas lift-based

thrust production—as per the one used by swimming

penguins [36]—would be advantageous once a cruising speed

has been established. In nature, the strategies adopted by swim-

ming animals are, of course, dependent on the circumstance, we

refer to the reader to ch. 12 of Vogel [34] for further references to

particular examples.

Drag-based mechanisms have also been shown to play an

important role in insect flight [37,38]. There again, the problem

is far from the traditional picture of aerodynamics that exam-

ines lift versus drag coefficients, because of the intrinsic

unsteady nature of flapping flight (e.g. [7]); instantaneous vel-

ocity around a wing being in that case the vectorial addition

of the flapping velocity and cruising velocities. Here, the only

difference with swimmers is that flapping flyers must balance

drag and their own weight by producing both thrust and lift

at the same time. It should be noted that the relative importance

of aerodynamic drag to weight increases as the size of an insect

decreases, due to the respective surface and volume depen-

dency of both forces. In parallel to the active locomotion

strategies, aerodynamic drag may affect the distribution of habi-

tats of insects of different sizes and shapes regarding only their

response to the local wind, which will produce drag forces that

may exceed rapidly the weight of small insects [39].

Fluid dynamic forces set not only the absolute motion of

the swimmer/flyer (acceleration, cruising speed, etc.) but

also passive deformations of the flapping/undulating body or

appendage (e.g. [40]). Wings, fins or even the whole body of cer-

tain animals are indeed compliant structures and, in nature,

animals use a combination of muscular action (actively control-

ling the body deformation) and the passive elastic response of

their bodies to produce the observed kinematics. The latter is

observed also in the shape reconfiguration of sessile organisms

subject to the action of an external flow (e.g. plants in the wind

[41] or underwater vegetation [42]). Passive deformations are

also of great importance in the mechanisms of locomotion for

real animals or artificial swimmers or flyers.

After giving a short overview of recent results concerning

drag in deformable bodies, we will discuss the role of local

drag forces in the case of a flapping wing or a swimming

body. In particular, we will review the role of quadratic drag

in the local force balance of slender bodies and discuss its

consequences on the locomotion mechanisms and strategies

depending on animal shapes and specific gaits. The last part

will be dedicated to the extension of these results to understand

the passive deformations involved in the conception of arti-

ficial swimmers or flapping flyers. We have organized the

paper around a few particular examples taken from our own

recent research, attempting to illustrate the common thread

that connects the different points that we discuss.

We have decided not to include in the present paper the

issue of wave drag, thus focusing on flapping flyers and swim-

mers far from the surface. Wave drag is nonetheless certainly

an important point for a large class of problems that concern

animals moving at or near the air–water interface. These pro-

blems range from small insects dealing with capillary waves

[43], to large animals that need to stay close to the free surface

to breath and, consequently, are forced to manage the wave

drag associated with the perturbation of the interface [44]. The

subject of wave drag undoubtedly deserves a dedicated review.
2. Global drag in deformable bodies
A first general question about drag in animal locomotion con-

cerns the way in which the traditional picture of figure 2—

showing the contributions of frictional drag and pressure

drag to the total drag over a streamlined body—is modified

for a body whose shape is changing in time. Part of the difficulty

comes from the fact that the same body (or appendage) that is

producing the propulsive force by flapping or undulating is

also the source of drag [46–48]. Nonetheless, the question of

how the swimming kinematics modifies the so-called dead
drag, i.e. the drag experienced by a rigid model or dead

animal towed at its usual cruising speed has remained

worthy of attention as we review in this section.

2.1. Skin friction
Skin friction is given by the integral over the body of interest of

the local wall shear stress t0 ¼ h(du/dy)y¼0, where y is the

coordinate away from the body on the local frame of reference

and u(y) is the velocity field tangential to the wall along the

x-direction. Considering a flat plate of length L, span H and

negligible thickness th as the most basic model of a streamlined

body, the skin friction drag per unit span over the two sides

of the plate is given by Dsf=H ¼ 2
Ð L

0 t0 dx. The total skin fric-

tion drag can be written in terms of the Reynolds number

ReL ¼ UL/n, giving (e.g. [49]):

Dsf ¼
4

3

rU2LHffiffiffiffiffiffiffiffi
ReL
p ¼ 4

3
r
ffiffiffiffiffiffi
nL
p

HU3=2, ð2:1Þ

where n is the kinematic viscosity and U is the mean speed of

the plate—the key assumptions for the validity of equation (2.1)

are those of boundary-layer theory, i.e. ReL� 1 and @/@x�
@/@y. Of course, one can define a skin friction drag coeffi-

cient by rendering equation (2.1) non-dimensional as CDskin ¼

Dsf/(rU2LH), where we have used, as mentioned before, the

wetted area 2LH as reference surface. This expression has

been repeatedly used in the literature concerning undulating

slender structures (e.g. [50,51]). However, equation (2.1) relies

http://rsif.royalsocietypublishing.org/


3.5 cm

10 cmG

G

–G–G

(a) (c)(b)

Figure 3. (a) Trailing stream-wise vortices in the wake of a rectangular wing (from [63]). (b,c) Stream-wise vortices detached from model undulatory swimmers of
two different aspect ratios—(b) H/L ¼ 0.3 and (c) H/L ¼ 0.7, the foils are shown from behind, i.e. swimming into the plane shown (from [64]). (Online version
in colour.)
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on a classical steady boundary layer profile, which, as put for-

ward by the Bone–Lighthill hypothesis [52], is considerably

modified by the oscillatory motion of a flapping structure.

Indeed, it has been measured that swimming fish experience

greater friction drag than the same fish stretched straight in a

uniform flow [53]. Concerning a full theoretical description, it

is only very recently that a skin friction model including the

effect of a normal velocity component has rationalized the

boundary-layer thinning hypothesis [54,55]. Their expression

for the longitudinal drag per unit length reads:

Dk ¼ C3DhUk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReH

U?
Uk

s
, ð2:2Þ

where U?, Uk, ReH and C3D are, respectively, the wall-normal

and longitudinal velocities, the Reynolds number based on

the span H and the incoming velocity Uk and a drag coefficient

in the range 1.7 , C3D , 2. The numerical simulations by

Ehrenstein et al. [55] reinforce the theoretical prediction of

boundary-layer thinning—albeit resulting in a significantly

lower enhancement of skin friction than the original values

proposed by Lighthill [52]—but the hypothesis is still

challenged by recent observations [56].
2.2. Bluff-body drag
Friction drag becomes a minor issue when strong separations

occur and pressure drag accounts for most of the total drag.

Pressure drag is, in these cases, referred to as bluff-body

drag [9] and the reference surface in the definition of the drag

coefficient (equation (1.3)) is the cross-section facing the flow

(e.g. S ¼ pa2 for a sphere of radius a). In animal locomotion,

one usually expects streamlined shapes to be favoured, but

other animal shapes indeed exist and considerations of ecologi-

cal relevance such as enhanced manoeuvrability have been

suggested to be the evolutionary reason for bluff-body type

shapes such as the archetypal example of boxfishes (Ostra-

ciidae: Tetrodontiformes) [57], where pressure drag can be

expected to be larger than skin friction. Pressure drag is also

the main type of drag in transient manoeuvres with impulsive

rapid motions and massive separations behind the moving

body, such as the rowing-type motions of median and paired

fin propulsion in fish swimming, the fast c-starts of body and

caudal fin fish swimming [58] or the impulsive accelerations
of the strike manoeuvre in aquatic predators [59,60]. For

simple models such as flapping foils, bluff-body drag has

also been considered using the tip-to-tip amplitude of the trail-

ing edge displacement as the effective width of the frontal area.

If the flapping amplitudes are similar to the foil width, the

latter has been used as the characteristic length scale for the

reference surface [25,30], whereas for slender bodies a reason-

able choice is the area swept by the tail tip [61]. Other

empirical formulations to model form drag in stream-

lined bodies have been described by Hoerner [10], based on a

reference surface described in terms of a dimensionless

streamlining parameter (see also [62]).
2.3. Vortex-induced drag
Skin friction and bluff-body (or pressure) drag can be defined

in a two-dimensional framework, e.g. the wake of a cylinder

or an airfoil. When considering the three-dimensional reality,

pressure drag is modified by an additional mechanism that

has its origin in the trailing vortices that appear to ensure

the continuity of pressure at the extremities of a finite objet

(figure 3a). This is a well-known issue in aerodynamics

where the downwash velocity associated with these vortices

reorients the lift vector giving it a backwards component that

adds to the total drag, the so-called induced drag

Di ¼
L2

A0rU2
, ð2:3Þ

where L is the total lift on the wing and A0 has the dimensions

of an area and depends on the circulation distribution around

the wing (e.g. [49]). The trade-off between lift and drag is of

course one of the basic ingredients behind the richness of

wing shapes in nature, in particular for animal gliders (e.g.

[1]). The problem gets more complex when analysing the pro-

blem of flapping flight, where the beating wings produce both

lift and thrust. The intrinsically unsteady mechanisms at play

in such a problem have been widely studied and we refer the

reader to other reviews [1,2,7,65].

Finite-size effects have also been shown recently to be essen-

tial to understand the relationship between thrust and drag in

undulatory swimmers [64,66]. A clear example is the system

of trailing stream-wise vortices produced at the edges of a

self-propelled flexible foil (see fig. 3b–c, from [64]). We will

http://rsif.royalsocietypublishing.org/
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see in the following that these vortices are intimately linked to

the process of resistive force production in inertial swimmers.
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Figure 5. Phase diagrams of drag-driven and added mass-driven propulsion
as a function of the aspect ratio and slip ratio for (a) anguilliform kinematics
and (b) carangiform kinematics. The dashed line represents the kTmal ¼ kTdl
in the phase space. Experimental data are obtained from: Gray [72], Tytell
[73] and Hess [74] for anguilliform swimmers, and Bainbridge [75], Webb
[76], Videler [77] and Videler [78] for caranguiform swimmers. (Adapted
from [68].) (Online version in colour.)
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3. Local drag in models of animal locomotion
Thrust production for slender undulatory animals or appen-

dages relies on local actions achieved by the muscles or by

passive deformations. For low-Reynolds-number flows, the

full description of the swimming mechanics depends only on

local viscous friction. This case, based on resistive theory,

benefits now from a large body of literature (e.g. [67] and refer-

ences therein). In the case of slender swimmers at intermediate

to high Reynolds numbers, the local force balance requires

two forces which, as we will see, are used differently depend-

ing on the animal. Neglecting the viscous contribution—and

in a (x, y, z) frame of reference where the swimming direction

is 2ex and the undulation is described by the x(s, t), y(s, t) coor-

dinates, depending on the curvilinear coordinate s and time t—,

these two forces (per unit surface) can be expressed as [68]

fma ¼ �M(h)(€yþ 2U _y0 þU2y00)n ð3:1Þ

and

fd ¼ �
1

2
rCdj _yþUy0j( _yþUy0)n, ð3:2Þ

where M(h) represents the local added mass accelerated

during swimming—with h(s) being the local span of the

cross section of the swimmer—n is the unit vector normal to

the fish local surface, and the dot and prime symbols are

time and space derivatives, respectively. In addition, r is the

fluid density and Cd is a drag coefficient weighing the nonlinear
resistive force. Both forces come from the inertial character of the

flow in these Reynolds number regimes, but are of different

sources. The first term fma is the reactive contribution due to

the acceleration of the surrounding fluid by the undulating

body or appendage, as it was derived using a potential flow

assumption by Lighthill’s elongated body theory [52,69]. But,

the second term fd represents a resistive force associated with

the dynamic stalls at each swimming cycle that result from

the large transversal local velocities and the finite geometry

of the fish section, as illustrated for instance in figure 4 from

a recent simulation of the flow around a model fish (figures

from [70]). Although a resistive model to describe the loco-

motion of long and narrow animals was developed by Taylor

in the 1950s [71], ever since Lighthill’s works [52,69], the reac-

tive term has been the usual expression used to describe thrust

production for high Reynolds number swimmers, marking a

clear difference between the basic mechanisms for locomotion
at low and high Reynolds numbers: the former being resistive

and the latter reactive. It is only more recently that models have

included both reactive and resistive contributions in the force

balance at a cross-section in the elongated-body limit

(e.g. [47,62]).

Using anguilliform and carangiform kinematics from the

literature, Piñeirua et al. [68] showed that both contributions

intrinsically depend on the full animal kinematics and geo-

metry. Figure 5—reproduced from [68]—shows the relative

weights of resistive and reactive components involved in

the thrust production as a function of the gait and aspect

ratio for both anguilliform and caranguiform kinematics.

kT̂mal is defined as the reactive to total thrust ratio such that

kT̂mal ¼ k(
Ð L

0 fma � ex ds)=(
Ð L

0 fma � ex dsþ
Ð L

0 fd � ex ds)l and the

gait is characterized through the slip ratio U/vw, with vw
the phase velocity of the undulatory kinematics. The aspect

ratio ĥ is defined as max (h(s))=L, with L the total length of

the swimmer.

We see that the consideration of the resistive nonlinear term

leads to make the distinction between added mass-driven

and drag-driven mechanisms to produce locomotion at high

Reynolds numbers. In particular, we note that animals using

http://rsif.royalsocietypublishing.org/
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an anguilliform gait such as eels, are in fact even in this large

Reynolds numbers regime, rather resistive than reactive swim-

mers (i.e. the physical mechanism to produce thrust is similar

to low Reynolds number swimmers). This feature is first due

to the slender nature of the body or appendage offering a

large resistance in comparison with added-mass-induced

reaction, but also because anguilliform animals use fast

phase velocity for the propagation of the undulatory waves

(0.4 � U/vw � 0.8). By contrast, carangiform swimmers,

characterized by higher aspect and speed ratios, are gathered

in the added-mass-driven propulsion regime. Thus, although

in some cases inertia-based locomotion is well described by

classical potential flow theories, the problem becomes more

complex with slender bodies or appendages. Moreover, the

main thrust production mechanism is highly dependent on

the kinematics. The above results complete the picture of loco-

motion mechanisms of inertial regimes animals in general.

The existence of the quadratic resistive term may also have

consequences on the fluid–structure interaction mechanisms

arising for passive deformation of some body parts or in

the case of artificial flyers or swimmers, as we discuss in the

next section.
(Online version in colour.)
4. Local drag in fluid – structure interactions
of passive appendages

We will consider in the following a slender body flapping or

undulating as a model system to discuss the role of hydrodyn-

amic drag in the fluid–structure interaction problem of animal

or bioinspired artificial swimming and flying. We have dis-

cussed above different aspects of the fluid problem and shall

now explore the motion of the structure, i.e. the swimmer or

flyer subjected to aerodynamical loads. While it constitutes

the boundary condition for the fluid problem, its own

dynamics is, of course, coupled to that of the surrounding

fluid, establishing the two-way coupling described schemati-

cally in figure 6. The dominant features of the different

branches in this full fluid–structure interaction problem pic-

ture are ruled by various non-dimensional parameters that

weigh the relative importance of the different physical mechan-

isms at play. Some of these numbers are built solely from the

comparison of different dynamical properties of either the

fluid (e.g. the Reynolds number) or the solid physics; others

are intrinsically built from the comparison between the

dynamics of the fluid and the structure.
For simplicity, we will consider a simple geometry con-

sisting of a slender flexible structure of characteristic length

scale L, thickness th, density rs ¼ L21ms (ms being mass per

unit surface) and bending rigidity B � Et3
h (e.g. a beam or a

plate) propelling through a fluid at an average cruising

speed U. A harmonic forcing of angular frequency v ¼ 2pf
and amplitude A is imposed at one of its ends, constituting

the input of energy needed to sustain the motion. Such a

simple model allows for the introduction of the key par-

ameters that can be used to describe the locomotion

problem of a flexible body in a fluid. We have already

noted the dynamical regimes defined by the Reynolds

number. We have now to also introduce the fluid–solid

mass ratio M*�r/rs, the Cauchy number Cy ¼ rU2L3=B
[80,81] and the elastoinertial number N ei ¼ msAv2L3=B [82]

comparing, respectively, the fluid pressure and the solid

inertia to the elastic restoring force of the structure.

In the following sections, we will develop these ideas

further for several cases, either in air or water (i.e. M*� 1 or

M*� 1). The fluid–structure coupling can be described by

http://rsif.royalsocietypublishing.org/
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the same Euler–Bernoulli beam (figure 7; e.g [85]), which is

written in its general form:

ms
@2X

@T2
¼ @

@S
ftt� B

@2u

@S2
n

� �
� fþW(t), ð4:1Þ

where m is the mass per unit length, ft is an internal tension

ensuring the inextensibility condition, f ¼ fam þ fd is the force

due to the fluid pressure field as defined in the previous

section. n and t are the unit normal and tangent vectors to

the beam. In this model, the internal viscoelastic dissipation

in the beam is neglected considering that damping is domi-

nated by the external resistive term due to the lateral fluid

quadratic drag fd. W(t) is the imposed actuation, which for

a flapping wing or fin, can be usually modelled by simple

harmonic functions.

4.1. Thrust production of an elastic flapping plate
Our first example of fluid–structure interaction involving a pas-

sive structure concerns the thrust production of a slender

rectangular flexible flapping plate in water, a basic model of a

swimmer that has been the subject of several recent studies

[51,64,86–93]. The usual problem here is to determine how the

local actuation imposed at one of the extremities of the plate

gives rise to thrust production and consequently to locomotion.

The mechanical response of the plate is characterized by reson-

ance modes, which are intimately related to the amplitude of the

deformations and hence to the swimming performance.

Figure 8a–c shows experimental thrust measurements com-

pared to a numerical solution of equation (4.1) for three

different forcing conditions of the elastic plate: a pure heaving

motion, a pure rotating motion and a combination of heaving

and pitching [93]. In the example, the swimming velocity is

set to zero to focus on the production of propulsive force that

can be accurately measured experimentally. The modal

response of the plate is clearly observed for the three actuations,

and we can see that the match between computational results

and the experimental data is satisfactory. This validates the
simplified fluid/structure model, in particular in the choice of

the fluid forcing terms. The interesting feature of the modelling

approach is precisely that it enables comparison of the weight of

the different fluid terms, reactive and resistive: figure 8d– f
shows the ratio of reactive thrust to total thrust kTmal for the

three different actuations, this time for self-propelled situations

where the swimming velocity is set by the equilibrium between

thrust and drag. In the same manner as shown previously in

figure 5, these results confirm the strong role of nonlinear local

drag and the importance of the kinematics in the case of

bioinspired artificial locomotion.

Depending on the forcing imposed at one of the plate

extremities and of the geometry of the swimmer, the sources

of propulsion can be fundamentally different. We see, for

example, that a pure heaving propulsion for low-aspect-

ratio plates is essentially drag-based, which contrasts with

the almost fully added-mass-driven propulsion of the pure

pitching case. In the combined pitch–heave case, thrust pro-

duction is based primarily on either drag or added mass

depending on the aspect ratio: larger aspect ratios dominated

by the reactive term, while lower aspect ratios are dominated

by the resistive term. These conclusions significantly modify

the usual distinction made between resistive and reactive loco-

motion in terms of viscous versus inertial potential flow-based

propulsion (or low Re versus high Re approach).
4.2. Propagating fish-like kinematics of a passive
slender elastic body

Another interesting feature of the presence of quadratic damp-

ing in the fluid/structure problem of an actuated elastic plate

moving in a flow is the modification of the modal response to

local excitation. Figure 9a shows visualizations of an experiment

by Ramananarivo et al. [94] on a vibrating elastic plate in both air

(left) and water (right). In air, the quadratic drag is negligible

because of the very low fluid density and it is seen that the dyna-

mical response of the plate is a classical standing wave predicted

http://rsif.royalsocietypublishing.org/
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by weak damping vibration theory. The same experiment per-

formed in water, though, showed very different behaviour,

exhibiting pure propagating waves as observed in unbounded

media. It was shown that the difference between both kin-

ematics was due to the magnitude of the drag term leading, in

the case of water, to continuously strong kinematic losses

during the propagation of the waves. The irreversible loss of kin-

etic energy transferred from the swimmer’s body to the fluid

(represented in the beam model by the quadratic dissipation

term) is the dynamical ingredient that enables a propagative

bending wave to be established. This feature, here described

in a simple vibrating plate experiment, has also been observed

and studied for self-propelled artificial swimmers. As a

model, we still consider a passive elastic body where the actua-

tion is localized at one extremity as defined by equation (4.1).

Practical examples of such systems have been investigated

recently experimentally [51,88,90,92,95–97] and numerically

[66,86,89,98]. Equation (4.1) can be written in the weak ampli-

tude approximation, except for the dissipation term, which

holds due to the high transversal velocities involved along the

body. The resulting beam equation now reads:

ð1þ ~mÞ€yþ y0000
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{linear beam with added mass

þ ~m½2 ~U _y0 þ ~U
2
y00�

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{0flag0 terms

þ ~aj _yþ ~Uy0jð _yþ ~Uy0Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{quadratic dissipation

¼ 0, ð4:2Þ

which is written in dimensionless variables, ~U ¼ UL
ffiffiffiffiffiffiffiffiffiffiffi
ms=B

p
is the reduced velocity, ~m ¼ M=ms the mass ratio and

~a ¼ 1
2 rdCdL=ms the non-dimensionalized damping coefficient.

Note that ~a depends on L, which reflects the increasing effect

of damping when the filament is longer [61]. We can note in par-

ticular: (i) the effect of added mass term, (ii) a potential flow

model for the surrounding fluid that brings two extra terms

that depend on the swimming velocity (labelled ‘flag’ terms in

the equation as they are responsible for the flapping flag
instability when an outer flow of sufficient velocity is imposed,

e.g. [99]) and (iii) the quadratic dissipation term opposing lateral

motions. The latter turns out to be by large, the most important

effect of the fluid for the beam model in the slender swimmers of

[61], always one to two orders of magnitude larger than the

added mass and flag terms.1

Equation 4.2 is solved numerically using the parameters

of the experiment [61]. The output of this model success-

fully recovered the elastic wave kinematics measured

experimentally—figure 9g. The model can be simulated, by

parts, increasing gradually the number of terms in order to

pinpoint their respective physical contribution to the elastic

response of the filament. The model with only the first two

terms is shown in figure 9b, adding the convective terms

(or ‘flag’ terms) in figure 9c and adding the quadratic damp-

ing in figure 9d. As can be seen, the first gives the standard

standing wave solution expected for a linear non-damped

system. The presence of the second term barely changes the

global elastic response of the filament. However, the addition

of the quadratic dissipation drastically affects the resulting

solution, changing to a fish-like propagating wave. This is an

important point that can be non-intuitive: the direct conse-

quence of dissipation due to the lateral quadratic drag on the

elastic response of a body that is actuated locally is thus to

enable the production of a propagating wave kinematics; such

kinematics will increase the locomotion efficiency with respect

to what would be achieved with standing wave kinematics, as

was already shown by Lighthill in his 1960 paper [69].
4.3. Phase dynamics in flexible flapping wings
As a last example of the role of fluid dissipation in the descrip-

tion of a flexible structure, we consider the case of flapping

flyers or insect-inspired flexible flapping wings. Of course,

‘insect-inspired’ is a rather broad label, considering the wide

variety of insect wing morphologies and kinematics, and one

can reasonably expect different force balances in, say, tiny

http://rsif.royalsocietypublishing.org/
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insects performing clap-fling [100,101] or larger insects in cruis-

ing flight [102] or taking-off [103]. Wing compliance has been

identified as one of the key points that determine the perform-

ance of flapping wings [82,83,104–106]. More precisely, it has

been observed that during a stroke cycle, the trailing edge

response of the wing was characterized by a strong lag with

respect to the imposed motion of the leading edge. The pres-

ence of this phase lag is a vital ingredient in terms of

performance, as it ensures the best instantaneous aerodynamic

shape for thrust production. This feature is exemplified in

figure 10a: large phase lags will provide the largest bending

of the wing at maximum flapping speed, leading to a more

favourable repartition of aerodynamic forces.

The amplitudes of deformation of a compliant wing

flapping in air can also be derived from equation (4.1) with

a model that includes only solid inertia and elasticity

Ramananarivo et al. [83], as depicted schematically in

figure 7. In that framework, equation (4.1) may be rewritten

including nonlinear terms due to inertia and curvature. For

high-amplitude and frequency-flapping strokes (i.e. involving

strong transversal velocities), the quadratic term is also

needed in the equations describing the dynamics. Here, a
new dimensionless variable w(x, t) ¼ (h(x, t) 2 W(t))/L is

introduced to describe the system in the reference frame of

the leading edge, the beam equation reads:

w0000 þ €w
zfflfflfflfflffl}|fflfflfflfflffl{linear beam

¼ �(w0w002 þ w000w02)0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{curvature nonlinearity

� 1

2
w0
ðx

1

@2

@t2

ðx

0

w02 dx
� �

dx
� �0zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{inertial nonlinearity

�j _w
zffl}|ffl{linear damping

�jnlj _wj _w
zfflfflfflfflffl}|fflfflfflfflffl{quadratic damping

�A
L

€W

zfflfflffl}|fflfflffl{inertial forcing

ð4:3Þ

Keeping only the first mode of an expansion of the

displacement as w(x, t) ¼
P1

1 X p(t)Fp(x) (where Fp are the

non-dimensional linear modes for clamped-free beams) and

using a classical multiple scales method [83], the amplitude

a and phase g of the oscillation of the trailing edge can be

obtained (figure 10a,b).
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The main observations are the following: (i) the amplitude

of the response increases rapidly with frequency, which is

readily explained by the inertial forcing to the system (last

term in equation (4.1)), until it saturates because of the geo-

metric limitation imposed by the finite chord length of the

wing. Measurements in air and vacuum are approximately

the same, proving that solid inertia is the main bending factor

[82,107]. (ii) No clear resonance is observed around �vf ¼ 1 at

these large-amplitude oscillations—only a barely visible peak

is observable when testing a lower flapping amplitude as

shown in the insert in figure 10b. A slight but rather broad

peak can nonetheless be observed in the nearness of v0/3

in the amplitude curve, which can be explained as a super-

harmonic resonance consequence of the cubic nonlinearities

in equation (4.1) [83]. (iii) Concerning the phase g, the results

in figure 10c recover the trend of what has been reported

previously in the literature [108–111]: jgj increases monoto-

nically with the forcing frequency �vf. A remarkable point is

that, contrary to what we have noted for the amplitude a,

there is a large difference in the evolution of the phase g

between the case in vacuum and that in air at atmospheric

pressure. It is clearly observed that g decreases more slowly

in the low-density environment. From the beam model point

of view, this shows that the quadratic damping term due to

aerodynamic drag is responsible for the rapid phase lag

observed when increasing the flapping frequency. Now, con-

sidering together the performance peak in the aerodynamic

power —marked as a grey band in figure 10a,b—and the corre-

sponding increasing phase lag, supports the idea of a more

favourable repartition of the aerodynamic forces by the bent

wing shown in figure 10a. Indeed, as g increases the wing

experiences larger bending at the maximal flapping velocity

where the beneficial effect of bending the wing is most useful.
5. Conclusion
After recalling briefly the basic concepts of hydrodynamic

drag, we have discussed the specificities that arise when apply-

ing them to the problems of animal locomotion in the inertial

regime. Firstly, we have considered a global point of view,

where the different types of drag that oppose the propulsive

effort of an animal have been identified. Although this is an

old question, we have seen that recent analyses have clarified

a few delicate points, such as the changes in skin friction due

to the deformations of an undulating body or the important

role of stream-wise vortices. Secondly, we have discussed the

role of drag from a local point of view: on the one hand, we

have used the case of slender undulatory swimmers to describe

the crucial role of drag in the force production balance along

the body of an animal with a prescribed kinematics; on the

other hand, we have discussed the fluid–structure inter-

action problem that arises when considering a passive body

or appendage with localized actuation.

Summarizing, we have seen above that lateral drag is

essential in the force balance that governs the deformation

dynamics of elongated undulatory swimmers. Although

resistive force production has been computed since the

pioneering work of Taylor [71] for the case of slender undu-

lating animals, when discussing inertial swimmers, the

estimation of thrust is usually described using Lighthill’s

elongated-body theory [69], which considers reactive forces.

Some models have included both reactive and resistive
contributions in the force balance at a cross-section in the

elongated-body limit [47,62], but it is only recently that a

quantitative assessment of the relative role of the resistive/

reactive forces as a function of kinematics and morphology

of a model swimmer has been performed [68]. This resistive

force can be as large as, or even larger than, the reactive

force usually computed using Lighthill’s elongated body

theory, and is needed to obtain a correct description of the

fluid–structure interaction problem of undulatory swimming

[93]. Physically, the quadratic drag that resists the lateral

motion of a cross-section of an elongated swimmer comes

from the strong separations at the edges of the undulating

body (figure 4). How this lateral drag force can produce

unexpected thrust has been pointed out recently in the case

of fish larvae that exploit edge vortices along their dorsal

and ventral fins folds to propel themselves [70]. Hydrodyn-

amic thrust generation and power consumption in future

bioinspired undulatory swimmers will thus be the outcome

of a strongly coupled fluid–structure interaction problem

where local dissipation is a key issue. Moreover, the mechan-

isms that we have described will also be at play when

considering actively enforced body kinematics, such as the

case of robotic piezoelectric fins [112]; and other passive sys-

tems like bioinspired underwater canopies [113] that can be

modelled as assemblies of reconfigurable elastic beams [114].

In the last part of the paper, we have considered the case of

elastic insect-inspired wings. We have pointed out that through

a phase lag mechanism, local dissipation is behind the per-

formance of flapping flyers with flexible wings. Again, a

mechanism that can be pivotal for the design of efficient

insect-inspired micro-air-vehicles. Open questions remain in

this matter, concerning in particular the way in which the dis-

sipation by local drag that we have discussed here enters

problems with more complex kinematics. Problems with full

three-dimensional deformation and torsional actuation are

obvious leads to be explored, and the challenges are especially

significant where elastic phenomena are linked to fluid

dynamical transient regimes such as, for example, the onset

of hydrodynamic instabilities.

We can give consideration to the biological implications of

the physical mechanisms that we have reviewed here: natural

selection may not just act to increase locomotion efficiency

via drag-reducing morphologies, but also rely on more subtle

potentially beneficial aspects of local drag. Certainly, as we

have shown, local drag is at the base of several fundamental

aspects of biolocomotion, such as the alternative thrust pro-

duction mechanisms for a large range of inertial swimmers,

or the establishment of the undulatory kinematics in swimmers

and the phase dynamics in flapping wings through passive

elastic responses.

Data accessibility. All the source data presented in this review have been
previously published.

Authors’ contributions. Both authors contributed equally to this work.

Competing interests. We declare we have no competing interests.

Funding. In addition to the research resources provided by the PMMH
laboratory parent institutions (ESPCI Paris, CNRS, Sorbonne
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Endnote
1In the range of parameters of the experiment: ~m 	 1, ~U 	 [0:2�4]
and ~a 	 [50�150]. Equation (4.2) is solved numerically using the
experimental parameters [61].
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