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Abstract – Confined geometries usually involve reflected waves interacting together to form a
spatially stationary pattern. A recent study on bio-locomotion, however, has reported that propa-
gating wave kinematics can naturally emerge in a forced elastic rod, even with boundary conditions
involving significant reflections. It has been shown that this particular behavior is observed only
in the presence of strong damping. Based on those observations, this study aims at giving a
quantitative description of the mechanism involved to prevent the build-up of standing waves and
generate traveling solutions. The question is discussed here in the framework of handmade artifi-
cial swimmers as an example of practical application but we believe that its potential is beyond
this scope.

editor’s  choice Copyright c© EPLA, 2014

Due to the presence of boundary conditions, traveling
waves propagating in bounded media evolve into standing-
wave solutions. A canonical textbook example is the wave
pattern on a string. More generally, for elastic, capillary,
or gravity waves, when the typical size of the system is
comparable to the wavelength, the obtained pattern is
thus determined by the way the different reflected waves
interact, which is set by the geometry.

A recent study on bio-locomotion [1], though, has shown
that even systems whose dynamics is strongly dependent
on geometry (a beam, or a plate, for instance) can exhibit
very different behaviors. The experiment consisted in an
elastic rod placed on a water surface and subjected to
harmonic forcing at one of its ends. The authors showed
that, depending on the conditions, the dynamical response
passes from classic standing waves to traveling solutions
(see fig. 1). In the particular case of bio-inspired artificial
eel-like swimmers, this transition controls the ability of the
elastic body to achieve an anguilliform kinematics, thus
affecting the global swimming efficiency [2–4]. This was
an important result for optimizing artificial realizations of
autonomous swimming propellers.

Concerning the underlying mechanism inducing this
transition, they showed that those particular dynamical
responses were only made possible by the presence of a

strong dissipation rate [1]. This dissipation is due to
kinetic energy being wasted to the fluid through transver-
sal flow separation at each stroke cycle [1,5]. Without
this term, only standing waves could be observed. How-
ever, the understanding of this transition is still an open
question. To our knowledge, the issue of spontaneous es-
tablishment of a propagative dynamics in bounded media
received limited attention in the literature. In most stud-
ies, the desired undulatory motion is imposed actively, ei-
ther through a continuous mechanical actuation analog to
muscles along a fish backbone (see, e.g., the Tuna-form
robot of [6]), or by controlling the vibratory reponse of
the flexible structure through a spatial distribution of ex-
ternal forces (see, e.g., [7]). The latter requires an active
tuning of the excitation (that is commonly applied at the
boundaries) until a pure traveling wave is formed. The au-
thors, however, underlined the difficulty to obtain a robust
system [8].

In this paper, we provide a description of the transition
from a standing wave to a traveling wave using an ana-
lytical model and controlled experiments. The geometry
studied is a classical plate under local harmonic forcing,
that is chosen as a standard model of continuous dynam-
ical system. We show here that the presence of a strong
damping term induces a complex coupling of waves along
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Fig. 1: (Colour on-line) Vibration experiments performed on a
Mylar plate flapped with a shaker in air (a), and in water (b).
In air, a standard standing-wave solution is observed, that is
characteristic of systems influenced by the boundary condi-
tions. In water, with a stronger damping, the plate now ex-
hibits a traveling solution. (c) Model plate of finite length L,
forced at its upper extremity.

the plate and generates a propagative kinematics. We con-
firm the importance of that transition for the optimization
of artificial anguilliform swimmers.
Vibration experiments are performed using a rect-

angular Mylar plate (2 × 8 cm, thickness 150µm,
µ = 4.1 · 10−3 kg ·m−1, and B = 1.9 · 10−5N ·m2), hang-
ing vertically. The upper extremity of the elastic plate is
clamped to a high-precision shaker whose frequency and
amplitude are controlled. Under excitation, the system
develops bending wave patterns that are visualized us-
ing a fast camera, and by illuminating the cross-section
of the Mylar sheet with a laser. Recorded images are
then post-treated with Matlab. The experiments are re-
peated in air and water, to cover different fluid dissipation
rates. The recorded kinematics is observed to evolve from
a standing wave in air, to a traveling solution in water (see
fig. 1(a), (b)).
The plate is theoretically modeled as a linear Euler-

Bernouilli beam [9] under harmonic forcing (see fig. 1(c)).
In the absence of external flow, the action of the fluid
has two main contributions, respectively through an added
mass effect and a nonlinear dissipation due to cyclic flow
separation [1,10,11]. The equation for the local transversal
displacement Y (x, t) writes

(µ+M)∂2
t Y +B∂4

xY + α|∂tY |∂tY = 0, (1)

where µ, M , B and α are, respectively, the mass per unit
length of the plate, the added mass of fluid, the flexural
bending rigidity of the plate and the damping coefficient.
In addition, Y (x, t) satisfies clamped-free boundary con-
ditions: Y (0, t) = Aω cos(ωf t) and ∂xY (0, t) = 0 (where
Aω and ωf are, respectively, the forcing amplitude and
frequency), along with ∂2

xY (L, t) = ∂3
xY (L, t) = 0 (where

L is the length of the plate). Using the typical length
and time scales L and L2

√

(µ+M)/B, eq. (1) yields in a
dimensionless form

∂2
t y + ∂4

xy + α̃|∂ty|∂ty = 0, (2)

with α̃ = αL/(µ + M); the tilde denotes non-
dimensionalized quantities. Equation (2) can be solved
numerically, but in order to get a clearer view of the un-
derlying physics, the nonlinear term on the left-hand side
will be rewritten in a simplified linear form α̃|∂ty|∂ty ∼
α̃Ãωω̃f∂ty (with Ãω and ω̃f the dimensionless forcing am-
plitude and frequency). By approximating the lateral
speed by the maximal excitation value Ãωω̃f , the damping
term will most probably be overestimated. However, this
expression keeps the physical ingredients of a quadratic
dissipation and allows to give a more straightforward de-
scription of our dynamical system. For the purpose of
comparison, the analytical results will be plotted together
with the nonlinear implementation of eq. (2) (i.e. includ-
ing the exact expression of the damping term)1. There-
fore, the equation for the displacement y reads

∂2
t y + ∂4

xy + α̃Ãωω̃f∂ty = 0. (3)

Assuming that the elastic response of the system is mainly
described by ω̃f , we look for solutions y(x, t) = φ(x)eiω̃f t;
which gives

∂4
xφ− k4φ = 0, (4)

with the clamped-free boundary conditions φ(0) = Ãω ,
∂xφ(0) = ∂2

xφ(1) = ∂3
xφ(1) = 0, and k that is determined

by the complex dispersion relation

k4 = ω̃2
f (1− iα̃Ãω). (5)

The solutions for φ are given by

φ(x) = a+p e
−ikx + a−p e

ikx + a+n e
−kx + a−n e

kx, (6)

where a+p , a
−
p , a

+
n and a−n are determined by the boundary

conditions. Those constants are functions of Ãω and k (see
footnote 2). Since k is a complex wave number, so are
a+p , a

−
p , a

+
n and a−n . Thus, the function φ(x) describing

the spatial variations of the lateral displacements y(x, t) is
now complex, which allows for a phase shift between the
oscillating motion of each point along the plate. Writing
k = kr + iki gives the following expression for y(x, t):

y(x, t) = A+
p (x)e

i(ω̃f t−krx) +A−
p (x)e

i(ω̃f t+krx)

+ A+
n (x)e

i(ω̃f t−kix) +A−
n (x)e

i(ω̃f t+kix), (7)

1Equation (2) is rewritten in a matrix form using finite differences
and solved numerically in Matlab to obtain the complex amplitude
φ(x), and subsequently the motion of the plate y(x, t). The plate
is discretized over 1000 points, which is sufficient to account for the
spatial variations along its length. The actuation is imposed through
the implementation of the boundary conditions.

2Exact expressions for the four constants a+p , a−p , a+n and a−n in
eq. (6) are

a+p =
Ãω

4

[

1 + eik(cosh k + i sinhk)

1 + cos k cosh k

]

,

a−p =
Ãω

4

[

1 + e−ik(cosh k − i sinhk)

1 + cos k cosh k

]

,

a+n =
1

2

[

Ãω − (1 + i)a+p − (1 − i)a−p

]

,

a−n =
1

2

[

Ãω − (1 − i)a+p − (1 + i)a−p

]

.
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with the spatial envelopes

A+
p (x) = a+p e

kix, A−
p (x) = a−p e

−kix,

A+
n (x) = a+n e

−krx, A−
n (x) = a−n e

krx.
(8)

As can be seen, the solution for the local displacement
is expressed as the contribution of four waves. The first
two terms in eq. (7) are propagative waves traveling for-
ward and backward with a speed that depends explicitly
on kr. Their amplitudes as a function of x are given by
the functions A±

p (the sign refers to the direction of propa-
gation). Those spatial envelopes vary over a characteristic
lenghtscale li (the inverse of ki) associated to energy dis-
sipation along the plate. li is here one order of magnitude
larger than the spatial wavelength defined as λr = 2π/kr.
The last two terms of eq. (7) are near-field bending waves;
these are evanescent waves that decay exponentially with
the distance from the boundaries. As the spatial phase kix
is here varying slowly along the plate length (ki $ kr),
the contribution of these terms is essentially stationary
and is not involved in the propagative mechanisms. This
point is clearly evidenced observing fig. 2(f) (top and bot-
tom) that details, respectively, the contribution of the first
two terms of eq. (7) responsible for the traveling kinemat-
ics (top), and the stationary contribution of the last two
terms (bottom).
Unlike the case with no friction (ki = 0), there is now

a possibility for a global propagation along the plate,
which is conditioned by the balance between forward and
backward contributions (i.e. the balance between the
respective weights of the spatial functions A+

p and A−
p ).

Figures 2(a)–(c) show the solution of eq. (7) for differ-
ent friction rates α̃Ãω (with the same non-dimensionalized
forcing frequency, ω̃f = 31). The cases with no dissipation
or intermediate dissipation are to be compared with exper-
imental observations in air and water (the calculation of
the experimental values of α̃Ãω is described in footnote 3).
First, it is worth noting that for a value of α̃Ãω = 0

(ki = 0), we retrieve the standard standing-wave solu-
tion of a conservative system with no friction (see fig. 2(a)
and the supplementary MovieS1.avi). This case is com-
pared to the vibration experiment performed in air for
the same set of parameters. The observed kinematics (see
fig. 2(d) and the supplementary MovieS2.avi) shows very
good agreement with the theoretical one. Increasing α̃Ãω

(to 0.31) leads to the destabilization of the nodes and the
emergence of a propagative component in the movement
that is traveling forward (see fig. 2(b) and the supplemen-
tary MovieS3.avi). Again, this case shows strong simi-
larities with the equivalent experimental measurements of
a plate immersed in water (fig. 2(e) and supplementary

3Following [12], the added mass and the dissipation coefficient
required to estimate the experimental value of α̃ = αL/(µ + M)
are taken to be M = ρπH2/4 and α = 1/2ρCdH, with ρ the fluid
density, H the height of the plate, and Cd = 1.8 the drag coefficient
experimentally measured by [12]. The fluid dissipation rate associ-
ated to air and water are thus, respectively, α̃Ãω = 2 · 10−2 and
α̃Ãω = 0.31.

Fig. 2: (Colour on-line) Evolution of the plate response y(x, t)
as defined in eq. (7) for different rates of dissipation α̃Ãω (the
forcing is on the left side of the profiles). (a) and (d): α̃Ãω = 0
(no friction), the response is a standing-wave solution, clas-
sically observed for conservative systems. Left: solution of
eq. (7) and right: experimental measurements (performed in
air). (b) and (e): α̃Ãω = 0.3, the response is here no longer
stationary due to the imbalance between forward and back-
ward traveling waves. Again, left: solution of eq. (7) and right:
experimental measurements (in water). The nonlinear solution
of eq. (2) has been superimposed (light gray) for comparison
and exhibits only slight differences. (c) and (f): α̃Ãω = 1
(strong friction). Nearly all the energy is now traveling in one
preferred direction, resulting in an anguilliform kinematics. As
can be seen from the nonlinear calculation, the friction is here
overestimated. However, the physics observed remains similar.
The right panel details the contributions of the first two terms
of eq. (7) (top), and the other two (bottom).

MovieS4.avi). The nonlinear solution of eq. (2) has been
superimposed for comparison (light gray), and it exhibits
only slight differences with its linearized version. Finally,
by further increasing the friction rate, a propagating wave
kinematics is established (see fig. 2(c)). The comparison
with the nonlinear direct calculation is here less accurate.
As indicated before, the linearized version of the damp-
ing term overestimates the dissipation along the plate, ex-
plaining the observed deviation between both solutions
and the more pronounced spatial amplitude attenuation.
However, it is important to note that the global dynamics
remains similar and that the observed differences do not
interfere with the understanding of the mechanism for the
transition.
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Quantitatively, the continuous transition from a
standing-wave solution to a traveling behavior can be ob-
served by plotting the ratio of the energies related to the
waves traveling forward and backward, as a function of
the friction rate. This energy ratio Ē is given by

Ē =

∫ 1

0

∫ 2π/ω̃f

0
[A−

p e
i(ω̃f t−krx)]2dxdt

∫ 1

0

∫ 2π/ω̃f

0
[A+

p e
i(ω̃f t+krx)]2dxdt

=

∫ 1

0
[A−

p (x)]
2dx

∫ 1

0
[A+

p (x)]
2dx

.

(9)

Equation (9) is plotted in fig. 3(a) as a function of the
damping rate α̃Ãω. The transition to the anguilliform
traveling kinematics is here clearly exemplified. The sys-
tem transits from a Ē ∼ 1 regime (i.e. the amount of
energy traveling forward and backward is equal) to Ē → 0
(all the energy travels forward).

Figures 3(b) and (c) also show the evolution of the wave
numbers kr and ki with α̃Ãω . kr increases a little along the
transition, meaning that the mode shape slightly changes
due to the presence of strong damping slowing down the
propagation (related to vφ,r, the real part of the phase
speed). ki (associated to the spatial attenuation length
li) on the other hand, decreases from 0 to ∼ −1.5 con-
sistently with the increase of dissipation. Thus, we see
that the presence of strong damping (i.e. ki &= 0) is a
crucial ingredient in selecting the energy ratio that allows
for propagation, thus determining how much the response
will diverge from a standing-wave solution. From a physi-
cal point of view, a certain amount of energy is gradually
extracted from the wave forward and further backward
after the reflection as shown in fig. 3(d), that displays
the energy per unit length [A±

p (x)]
2 carried by each wave.

α̃Ãω modulates the decay rate, thus allowing to play on
the imbalance of the amount of energies traveling in both
directions. The nonlinear nature of the dissipation (pro-
portional to ω2

f ) ensures a sufficiently fast dissipation rate
(with respect to the other physical ingredients) to nearly
mask the effect of the reflection. However, one has to note
that in the present case, the fact that the removal of en-
ergy is continuous imposes a sort of coherence between
both waves in the vicinity of the reflection point. As a
consequence, the spatial envelope of the plate oscillations
exhibits a narrowed zone at the tail, due to this inter-
ference (see figs. 2(b) and (c)). For actual real systems
though, the presence of a fluid wake withdrawing a part
of the incident wave energy might attenuate this effect (see
fig. 2(e) that shows a less narrowed zone).

This work shows the mechanisms through which
a traveling-wave global kinematics can be obtained
even in very geometrically constrained media. The
strong damping here modifies the system impedance by
extracting energy all along the plate, which leads to an
imbalance between incident and reflected waves. In the
present context of aquatic propulsion, the establishment of
an anguilliform kinematics has a direct consequence on the

Fig. 3: (Colour on-line) (a) Evolution of the energy ratio Ē as
a function of the damping rate. The transition from standing-
waves solutions (Ē ∼ 1) to traveling kinematics (Ē → 0) is here
clearly exemplified. The three values of α̃Ãω used in fig. 2 are
indicated. (b) Evolution of the wave number kr; (c) the wave
number ki with α̃Ãω. (d) Wave energy ([A±

p ]
2) as a function of

x for the incident (thick line) and reflected (thick dashed line)
waves for the case α̃Ãω = 1 (to be compared with fig. 2(c)). As
can be seen, the strong dissipation ensures a negligible contri-
bution of the backward traveling wave to the global dynamics
allowing the establishment of a propagative kinematics.

performance of artificial elastic swimmers (as described
in [1]). As reported in the literature [2,3], the efficiency
of the swimming movements η is directly related to the
velocity of the wave traveling down the body vφ: η =
1
2 (1 + U/vφ) (where U is the swimming velocity). A pro-
gressive wave is thus desirable since it leads to efficiencies
systematically higher than 1/2, and whose value is set by
the speed ratio U/vφ. Conversely, it has been shown that
swimmers executing standing waves cannot exceed an effi-
ciency of η = 1/2 [2]. The transition to anguilliform swim-
ming by means of an appropriate source of dissipation is
thus a way to optimize such systems. This mechanism also
offers the advantage of being passive, which means that it
does not require a complex active control of the undulatory
motion. Regarding the particular point of optimization,
the implementation of a spatially inhomogeneous damp-
ing is a promising option in order to increase the efficiency
of the mechanisms described above. As discussed, homo-
geneous damping imposes a residual coherence between
both traveling waves next to the reflecting end. A non-
uniform damping could reduce the wave interference. For
example, soft dissipation at the energy injection point and
strong dissipation at the reflection point would increase
the quality of the energy transfer. From a practical point
of view, the inhomogeneous distribution of damping could
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be implemented using a spatially varying thickness along
the plate, the dissipation being proportional to the sur-
face of the local cross-section. This might be helpful for
the future design of artificial swimmers, for instance. It is
worth noting that the results detailed in this study can be
extended to any dynamical systems that can be described
similarly to eq. (2). The possibility of adapting or dras-
tically changing the kinematics is an interesting feature
opening a large field of perspectives.
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