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Unexpected ricochet of spheres off water 
D. J. Shlien 
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Abstract A sphere was observed to apparently ricochet off the 
free surface of water at incident angles as large as 45 ~ while 
the expected (empirical/analytical) maximum angle to the 
horizontal for ricochet was 6 ~ . Closer examination of the process 
revealed that the cavitating sphere penetrated the liquid to 
depths as great as 35 sphere diameters. Under certain 
circumstances the sphere was also observed to leave the liquid in 
a direction close to the incoming direction; that is, the sphere 
ricocheted backwards! This peculiar behavior was found to be 
a result of an unintentional spin applied to the sphere upon 
launching. By crudely modelling the process, the sphere path is 
qualitatively predicted. It was found that the drag and lift 
coefficients required to model the trajectory data were several 
times smaller than those obtained for the non-cavitating case or 
for the non-spinning case. If more precise sphere trajectory data 
were available, this experiment could be used to measure the 
lift and drag coefficients of a spinning and cavitating sphere. 

1 
I n t r o d u c t i o n  
The phenomenon of ricochet of a sphere off the free surface of 
water was well known from at least the time of the Battle of 
Trafalgar, 18o5, when the range of ship-mounted cannons was 
increased by aiming the ball so that it would ricochet off the sea 
surface. In addition to extending the range, the cannon ball 
would be more likely to inflict damage on its target due to the 
lower trajectory. Extensive tests were performed in 1838 
(reported by Johnson and Reid, 1975) in which a 54 lb cannon 
ball was observed to ricochet over 30 times! Ricocheting was 
also used by the British in WWII with the "bouncing bomb" 
plan of Barnes Wallis to destroy the MiShne Dam in Germany. 
This was discussed in the biography of Barnes Wallis by 
Morpurgo (1972). 
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The maximum incident angle for ricochet to occur can be 
estimated by the empirical result: 

critical angle= 18~ specific density) 1/2 (1) 

The source of this relationship is discussed in a fascinating review 
of the subject of the ricochet phenomenon by Johnson and Reid 
(1975). Wallis' design involved applying a back-spin (peripheral 
to translational velocity ratio of 0.3) to the bomb to increase the 
critical angle for ricochet. He carried out a series of experi- 
ments for his design, but unfortunately his original data were 
accidentally destroyed. Hutchings' (1976) analysis of a spinning 
cylindrical projectile resulted in an additional term in the 
cylindrical form of the empirical equation, Eq. (1). A significant 
increase in critical angle was observed, due to an applied 
back-spin. No references were found which mentioned the 
possibility of a spinning projectile fully submerging before exiting 
the liquid. 

This work was undertaken in an attempt to verify the analysis 
of Miloh and Shukron (1991). The results of the latter analysis 
reduced to Eq. (1) when the Froude number is large. Thus the 
work to be presented here deals with the ricochet phenomenon 
at relatively high velocities. 

Equation (1) results in a critical angle of 6 ~ for a steel sphere. 
Thus, in a preliminary investigation of this phenomenon, it 
was most surprising to find that ricochet occurred at approach 
angles to the free surface of 30 ~ and even 45 ~ . In addition, in 
one case the sphere even ricocheted backwards! When the 
experiment was set up, it was thought that the spin introduced 
by the propulsion method would be small and that its effect 
would similarly be small. Here, the investigations shall be 
presented and it will be shown that the observed phenomena can 
be qualitatively reproduced by analysis. 

2 
Apparatus 
The experiments were performed in a channel 30 cm wide, 46 cm 
deep and over 2 m long. Water was filled to a depth of 31 cm. The 
motion of the sphere was recorded on video tape and played 
back by single stepping each field. 

The propulsion apparatus consisted of an 80 ml reservoir 
of compressed air (normally 690 kPa), a solenoid activated 
valve which separated the compressed air from the 0.635 cm 
sphere, and 75 cm long polyethylene tube (Fig. 1). The tube was 
directed to a set angle from the water free surface. The end 
of the tube was approximately 9 cm above the water surface. The 
solenoid valve was then opened to propel the 0.635 cm 
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Fig. 1. Sphere propulsion apparatus. A air reservoir; B solenoid actuated 
valve; C polyethylene tube; D sphere speed measurement device; E adjustable 
angle, 30 ~ to 45 ~ 

sphere through the polyethylene tube. The sphere speed was 
measured by the time interval the sphere interrupted two light 
beams spaced 5.04 cm apart along the trajectory. This timing 
apparatus was placed at the tube exit. 

3 
Observations 
Two sequences of successive video fields, showing the sphere 
trajectory, are reproduced in Fig. 2. For both of these cases, 
the incident angle is 45 ~ and the sphere diameter is 0.635 cm. The 
scale of the photograph may be determined from the 6 inch 
ruler positioned horizontally just above the water surface. The 
sphere path is made visible by the trial of cavitation bubbles. 
The initial impact splash is evident in sequence (a) in which the 
steel sphere can be seen to exit at an angle of 65 ~ . (Notice that 
part of the path of the exiting sphere in air can be seen in both 
sequences as a short streak.) In sequence (b), the exit angle 
of the acrylic sphere is 11o ~ . This unexpected behavior can only 
be attributed to spin of the sphere. 

In these experiments, the launch tube was set up as shown in 
Fig. 1. In a subsequent experiment, the sign of curvature of the 
tube was reversed, that is, instead of the launch tube being 
concave down, it was manipulated to be predominately concave 
up. The path of the sphere was then observed to deviate 
downwards from the straight line path instead of upwards. It may 
thus be concluded that the unexpected observations were a 
result of spin of the sphere, since the modified curvature direction 
of the launch tube changed the spin direction of the sphere. 

4 
Analysis 
The observations can be modelled simply if the splash and 
the energy lost upon impact are neglected. The equations of 
motion of the sphere are obtained by equating the product of the 
sphere mass rn,, times its acceleration to the vector sum 
of all of the forces exerted on the sphere. These forces consist of 
the force W of gravity on the sphere, the buoyancy force B 
(weight of the displaced fluid), the drag force D, and the lift force 

L. The magnitudes D and L are written in terms of the drag and 
lift coefficients, CD and CL respectively: D = CDA~pfV '~ and 
L = CLA�89 where A = red2/4, is the sphere diameter, 
pf is the fluid density and V'= (u'2+ v'2) 1/: is the magnitude 
of the sphere velocity, in which u' and v' are the x (horizontal) 
and y (vertical) components of the sphere velocity. The 
horizontal and vertical component equations are thus: 

du' 
m -.ff-tT = D~ + L x (2) 

dr' 
ms ~7  =Dy + Ly+ ( B -  W) (3) 

where t' is time and subscripts x and y denote horizontal and 
vertical components, respectively. Substituting the given 
expressions for D and L results in: 

du' { u' v"] 3 pi V': 
--=dt' - \Co~;+CL~;_g--; P" d (4) 

V' _ U " ~ 3 p f V  '2 / 
dV'=dt, - - C D v T ' + L ' L V T ' ) 4 ~ - - d - - ~ I - - ~ )  g (5) 

The equations are then made dimensionless by defining the 
following dimensionless variables: u = u' l V ', v =  v' l V ', t=  
t ' V ' l d  and V= V'/Vo, where V0 is the velocity V' at the initial 
time t = o. This results in the following form of the equations of 
motion: 

du 3 
- -  = - (CDU + CLV) - R (6) 
dt 4 

dv 3 b - - = -  )~ dt ( CoV+CLU R V2 (7) 

where R = pflps, the ratio of the density of the fluid to that of the 
solid, and b = O - R ) g d / V ~ ,  the net buoyancy factor. 

The equations of motion can be solved for the sphere 
trajectory, providing the initial velocity and expressions for CD 
and CL are given. Unfortunately no data are available for 
drag and lift of spinning and cavitating spheres. Therefore an 
attempt was made to fit equations for Co and CL to obtain 
the observed trajectory. It will be seen that the trajectory 
resulting from the analysis does qualitatively exhibit the 
observed behavior but limited success was achieved in 
reproducing the measured trajectory in all cases. It is to be noted 
that the main purpose of the analysis is to explain and to 
qualitatively predict the observed behavior, rather than to obtain 
accurate expressions for the drag and lift coefficients. The latter 
objective requires more detailed data. 

5 
Drag and lift coefficients 
The model will be compared with observations of a 0.635 cm 
diameter steel sphere at a speed of approximately 75 m/s 
and ratio of peripheral velocity to translational velocity of 0.9, 
with two different incident angle: 30 ~ (Run A) and 45 ~ 
(Run B). Under these conditions the cavitation number 

1 V t 2 ~  _ Ca = (P-Pv) / (~Pf  s -  0.035, confirming that the bubbles 
observed in Fig. 2 are indeed due to cavitation. Here (p--pv) is 
the difference between the pressure of the undisturbed fluid and 
the fluid vapor pressure. 
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Fig. 2a, b. Two sequences of successive video fields showing the sphere 1/6o s. Sequence a: steel sphere, sequence b: acrylic sphere. Arrow heads 
trajectory with incident angle of 45 ~ . The time interval between fields is indicate sphere position 

The ratio of peripheral to translational sphere velocity U'IV' 
was estimated from an expression by Barlda and Auchterlonie 
(1971) in terms of the total bend angle of the tube ~, and the 
coefficient of friction #, between the sphere and tube wall: 

U' 5 
v '  2 / ~  (8) 

This expression was obtained from the ratio of (moment 
x t ime)/(moment of inertia). By bonding two spheres together 

and measuring the angle at which they first slip within the 
tube, # was found to be approximately o.4. The angle ~ = 51 ~ 
yields U'IV' =o.9 and thus a spin rate of 33oo rev/st This high 
spin rate would certainly be expected to affect the cavitation 
process and to influence the values of Co and CL. 

Since, to the author's best knowledge, there are no published 
data for the drag coefficient of a cavitating spinning sphere, 
known values of Co will be discussed for other cases. The range 
of Reynolds numbers observed here is from 35 x lO 3 to 520 x lO 3. 
For a non-spinning, non-cavitating sphere in a uniform flow, 
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CD is essentially constant at 0.45. A value of CD = 0.7 can be 
extracted from the work of Barkla and Auchterlonie for 
non-cavitating spinning spheres. Measured values of Cv for 
non-spinning spheres as a function of cavitation number in the 
Reynolds numbers range of 12o X 1 0  3 to 330 x lO 3 have been 
reported by May (1975). A trend of increasing Co with increasing 
Reynolds number was observed but the reported data scatter was 
considerable. For Re = 490 x 103 and cavitation number 
Ca = 0.034 (the conditions of Run A to be considered here), a 
drag coefficient of approximately 0.275 is reported. The drag 
coefficient will be assumed constant, for simplicity. However, as 
has been pointed out by Miloh (1993, private communication), 
for drag considerations, if the effective velocity of the 
bottom half of the sphere is assumed to be V ' +  U' and that of 
the top half is V ' -  U', the total drag force is proportional to 
V '2 + U'2 if the drag on the two parts is regarded to be 
independent. 

lust as there are no data available for the drag of a cavitating OI 
and spinning sphere, no data were found for the lift coefficients. 
Although potential theory for a spinning cylinder yields a -5 
lift coefficient proportional to the ratio of peripheral velocity 
to translational velocity, the Magnus or Robins effect, -1(1 
measurements yield a nonlinear variation. Barkla and 
Auchterlonie presented their indirect measurements of Ca for >" 
a non-cavitating spinning sphere together with those of Maccoll -15 
(1928) as a function of the ratio of peripheral to translational 
velocities, U'/V'. For simplicity, it is assumed here that CL for the -20 
cavitating spinning sphere depends upon this ratio in one of two 
ways: (a) the lift coefficient is constant or (b) it is inversely a -25 
proportional to V, the dimensionless translational velocity of 
the sphere, Ca = k~ V. Here k is the constant of proportionality 
and represents the initial value of Ca; i.e., the value of CL when 
V'= Vo. The first method (a), assumes that the peripheral 
velocity decreases with time at the same rate as the translational 
velocity while (b) assumes that the change in peripheral velocity 
U', is small compared with the change in translational velocity, 
V'. Since the dimensionless value of V', V, is initially unity 
and decreases with time, assumption (b) results in Ca increasing 
with time. Using the calculation methods and the data from 
Barkla and Auchterlonie for Run A, the ratio of peripheral to 
translational sphere velocity was estimated to be 0.9, yielding 
a lift coefficient of o.33. Since this result is for non-cavitating 
spheres, the actual lift coefficient for the present experiment is 
expected to be different from this estimate. 

Thus, for Run A, it is initially estimated that CD = O.275 (from 
cavitating but non-spinning data) and that k = o.33 (from 
spinning but non-cavitating data). Here it is assumed that the 0-" 
magnitude of the sphere's initial velocity Vo, and its angle of -5 
entry are known. What is actually measured is the velocity and 
angle with which the sphere leaves the launching apparatus: -10 
the effect of the entry splash and the effect of the propelling 
air blast are considered negligible. To summarize, the main -15 
assumptions of the analysis are: negligible effect of splash and 
air blast of the entering sphere, constant value of Co, and either -20 
variation (a) or (b) of CL with dimensionless velocity g. 

-25 
6 
Results and discussion 
The equations of motion, Eqs. 6 and 7, were solved by a finite 
difference method. A step size of one sphere diameter was found 

to yield sufficiently accurate results. The measured trajectory 
was determined from the position of the cavitation bubble 
recorded on video tape (similar to the photos in Fig. 2). Path 
points extracted from the video tape of Run A (o.635 cm steel 
sphere at 76.5 m/s at 30 ~ are plotted in Fig. 3a together with the 
calculated trajectory, using Ca = k~ If, in accordance with 
assumption (b). As expected, the values of k = 0.33 and 
Co = 0.275 suggested by the references (previously discussed) 
clearly do not fit the data. A close fit to the data is obtained by 
trial and error using k--0.037 and Co = 0.075. Figure 3a also 
shows the significant effects on the trajectory of a slight variation 
in k while Fig. 3b shows the effect of varying the value of Co. 

The result of assuming a constant value for Ca [assumption 
(a)] as applied to Run A is shown in Fig. 4. It can be seen 
that the lift force becomes too small to overcome gravity when 
using this assumption. Thus it may be concluded that the 

k• k=O.O39,Co=O.O75j 
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Fig. 3a, b. Sphere trajectory for Run A (76.5 m/s at 30 ~ incident angle) 
compared with analysis assuming CL=klV. a Effect of varying k; b effect of 
changes in Co 
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• 
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Fig. 4. Sphere trajectory for Run A compared with the analysxs, assuming 
constant CL 



peripheral velocity of the sphere decreases more slowly than 
its translational velocity. 

A verification of the fitted form for Cn and CL was next 
attempted by comparison with measurements at sphere incident 
angle of 45 ~ (Run B). For assumption (b), CL = k/V,  it can be seen 
in Fig. 5a that the lift coefficient increases too rapidly resulting 
in a curl in the sphere path. The fit does not improve much if 
the values of k and Co are changed. If a constant value of lift 
coefficient [assumption (a)] is taken, Fig. 5b shows that the lift 
force becomes too small and thus the sphere does not leave 
the liquid. If a larger value of CL is assumed, the calculated 
trajectory deviates excessively from the measured trajectory. It 
may be concluded that the assumed form for CL should lie 
between a constant and k/V,  say CL= k / V  a where a is a positive 

parameter less than 1. This latter fit was applied to Run B, but 
little improvement over the previous attempts was found. 

The present analysis neglects the energy loss due to impact 
splash. Such an energy loss can be considered to result in 
a decreased initial velocity of the sphere, 110. As can be seen from 
the equations of motions, Eqs. (6) and (7), a change in 1/o only 
affects the magnitude of the buoyancy factor b. The term 
involving b is usually small compared with the remaining terms 
except when the lift force is small as seen in Fig. 4- In Fig. 6, 
it can be seen that a large change in Vo results in a small 
change in the sphere trajectory for Run A with CL = o.o37/V and 
CD = 0.075. Similar small effects were observed for Run B and 
for the constant CL case. Thus it may be concluded that the effect 
on the sphere trajectory due to initial energy losses is small. 
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Fig. 5a, b. Sphere trajectory for Run B (81.9 m/s at 45 ~ incident angle) 
compared with analysis, a Analysis assuming CL = k~ V; b assumes 
constant CL 

Og 

-5 

-10 

-15 

-20 

-25 

�9 m 

M eosu recl ~ ~ i ~  \Vo= 38.0 rn/s 

2'0 Lo 6o 8o lOO 
x/d 

Fig. 6. Effect of initial velocity Vo on sphere trajectory for Run A with 
CL=o.o371V and CD=o.o75. The curve for Vo =15o m/s coincides with that 
for Vo =76.5 m/s 

7 
Summary and conclusions 
Before the present observations it was generally assumed that 
a spherical projectile (spinning or non-spinning) would either be 
propelled into a liquid or ricochet off the free surface of the 
liquid. It has been shown here that there is a third possibility: the 
sphere may enter the liquid, become submerged to a depth of 
as great as 35 sphere diameters, and then leave the liquid at an angle 
greater than its entry angle! This includes the case of the sphere 
leaving at an angle greater than 9o ~ that is, having a horizontal 
component of velocity in the direction from which it came. 

The analysis was compared with the measured trajectories at 
Reynolds number of about o.5 x lO 6, cavitation number of o.o35, 
ratio of peripheral to translational sphere velocity U ' / V ' =  o.9 
and two entry angles of 30 ~ and 45 ~ . For both entry angles, 
Co = 0.075 appeared to fit well with the data. For the 30 ~ case, 
CL = o.o37/V resulted in a fit within the accuracy of the data, 
while assuming CL = constant did not yield a sphere exiting 
trajectory. For the 45 ~ entry case, neither CL = constant nor 
CL = k / V  gave a complete trajectory. A variation of CL with 
V between these two cases, i.e. CL = k / V  ~ with o < a < 1, did not 
significantly improve the data. The drag and lift coefficients used 
in the model were several times smaller than those reported 
by others for the non-cavitating or for the non-spinning cases. 
The effect of the entry splash on the trajectory is small. 

High speed photography could yield the sphere position as 
a function of time. If the data are accurate enough to extract the 
components of the sphere instantaneous acceleration, the equa- 
tions of motion, Eqs. 5 and 6, could be solved for the lift and drag 
coefficients. Thus, these observations could be used to meas- 
ure the drag and lift coefficients of spinning, cavitating spheres. 
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