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Electric field makes Leidenfrost droplets take
a leap

Sander Wildeman*a and Chao Sun*ba

Leidenfrost droplets, i.e. droplets whose mobility is ensured by a thin vapor film between the droplet and

a hot plate, are exposed to an external electric field. We find that in a strong vertical electric field the

droplet can start to bounce progressively higher, defying gravitational attraction. From the droplet’s

trajectory we infer the temporal evolution of the amount of charge on the droplet. This reveals that the

charge starts high and then decreases in steps as the droplet slowly evaporates. After each discharge

event the charge is in a fixed proportion to the droplet’s surface area. We show that this behavior can be

accurately modeled by treating the droplet as a conducting sphere that occasionally makes electrical

contact with the hot plate, at intervals dictated by an electro-capillary instability in the vapor film. An

analysis of the kinetic and potential energies of the bouncing droplet reveals that, while the overall

motion is damped, the droplet occasionally experiences a sudden boost, keeping its energy close to the

value for which the free fall trajectory and droplet oscillation are in sync. This helps the droplet to

escape from the hot surface when finally the electrical surface forces overtake gravity.

Four hundred years ago William Gilbert noticed how a water
droplet sitting on a dry surface is ‘‘drawn up into a cone’’ when
a piece of statically charged amber is held above it.1 Important
progress on this topic was made a few centuries later: by Lord
Rayleigh2 in his work on the stability limits of charged droplets
and by Millikan,3 who showed in his famous oil-drop experiments
that charge is quantized. Closely after, Zeleny4 published beautiful
photographs of how droplets suspended from thin glass capillaries,
destabilize when a high voltage is applied between the liquid and a
nearby grounded plate. The change of shape of the droplet from a
spherical cap to a cone and the subsequent jetting of small charged
droplets from the cone tip, were later put on firm theoretical
grounds by Taylor.5 The curious behavior of charged liquid is
further exemplified by phenomena like floating water bridges,6,7

whipping jets,8,9 and the non-coalescence of oppositely charged
drops.10,11

An equally curious effect, with uncharged droplets, was
demonstrated by Leidenfrost in 1756.12 He showed that water
droplets can survive for seconds on a glowing hot iron spoon,
without the instant evaporation one might expect. The effect,
occurring above a critical temperature TL of the spoon, is
explained by a thin vapor film sustained below the droplet,
which thermally insulates the droplet from the hot metal. The
vapor film also enables Leidenfrost droplets to move with very

little friction.13 It has been demonstrated that these hyper-
mobile droplets can be conveniently trapped and steered by
equipping the hot surface with ratchet-like structures14–16 or, in
the case of a paramagnetic liquid, by using a magnet.17 For an
overview of the work on Leidenfrost droplets we refer to the
review by Quéré.18

We bring together the classic experiments of Gilbert and
Leidenfrost, and investigate how Leidenfrost droplets behave in
a strong electric field. Previously it has been shown that the
Leidenfrost state can be suppressed by applying a voltage
directly between the hovering droplet and the hot plate.19,20

In our experiments we apply the electric field externally, so that
the forces are determined by a capacitive coupling between the
electrodes and the droplet. Similar ideas have been employed to
guide droplets through microfluidic devices.21,22

1 Setup and method

The setup, shown in Fig. 1, consists of a stainless steel ball
(+24 mm) mounted a distance d = 7 mm above a polished
aluminum plate. The sphere is connected to a high voltage DC
power supply and the bottom plate is grounded. The temperature
of the plate can be set via an external temperature controller. In
each experiment the plate had a constant temperature T well
above the Leidenfrost point TL, and the top electrode was set to a
potential Vs between 2 and 5 kV. With a grounded stainless steel
needle (not shown) we then gently deposited a millimeter sized
droplet of water, ethanol or perfluorohexane (FC72) on the hot
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plate (see Table 1 for an overview of the relevant liquid properties).
The spherical shape of the top electrode ensures that a charged
Leidenfrost droplet experiences a small horizontal force that traps
the droplet below the center of the sphere (see Appendix A). The
droplet’s motion was recorded with a high speed camera and
the captured frames were further processed with an image

analysis script to obtain the center-of-mass (CM) trajectory
(XCM(t), YCM(t)) and the volume O R 4pR3/3 of the droplet,
defining an effective droplet radius R.

2 Vertical droplet trajectory and radius

Fig. 2 shows a recording of an ethanol Leidenfrost droplet
(T = 220 1C) in a electric field of strength E = 2.9 kV cm�1 (Vs = 2 kV).
The first frame shown was taken about 10 seconds after deposition.
Initially the droplet bounces with a small amplitude DYCM { R.
For most parts the amplitude decreases slowly with time.
However, as indicated by the upward arrows, it occasionally
shows a sudden increase. Interestingly, near the end of the
sequence in Fig. 2(b) this behavior reverses. In this final stage
the jump height steadily increases in time, now with an occasional
drop in amplitude (downward arrows). Finally, it bridges the gap
completely and impacts onto the top electrode (Fig. 2 (d)). In
Section 5 we will analyze this peculiar motion in detail. However,
for this we first need to understand the (dis)charging behavior of
the droplet, which will be the focus of Sections 3 and 4.

The full time series of the extracted CM trajectory and the
effective radius are shown in Fig. 3(a) (top panel). While the
droplet is close to the surface its radius R decreases approximately
linear in time. A fit to the first part of the R(t) curve of ethanol in
Fig. 3(a) gives�dR/dt E 0.03 mm s�1. Similar values are found for
water (�dR/dt E 0.01 mm s�1) and FC72 (�dR/dt E 0.08 mm s�1),
increasing in order of liquid volatility (see Fig. 3(c) and (d),
respectively). For the ethanol droplet the evaporation rate
somewhat decreases in the final stage (stage II in Fig. 3(a)).
This is likely due to a combined effect of the lower temperature
experienced by the drop (on average it spends less time near the
hot plate) and its lower velocity (so that convective contributions
to the mass flux are reduced). A proper treatment of the mass
and heat transfer problem of an oscillating Leidenfrost droplet

Fig. 1 (a) Schematic of the setup. A droplet hovering on a hot plate
(T 4 TL) is trapped under a spherical electrode set to a high voltage Vs

between 2 and 5 kV. (b) Image captured by the high speed camera just
after deposition. It shows a millimetric droplet of ethanol and its reflection
in the polished aluminum plate. In the magnification of the contact region
(c) the thin vapor gap, which insulates the drop from the hot surface, is
clearly visible.

Table 1 Relevant vapor (v) and liquid (l) properties used throughout the
text. All material parameters are taken at the boiling temperature of the
liquid

Property Sym. Unit Ethanol Water FC72

Boiling point Tb 1C 78 100 56
Surface tension g mN m�1 17 59 10
Dielectric permittivity (l) er — 19 55 1.7
Density (l) r kg m�3 730 950 1594
Density (v) rv kg m�3 1.6 0.6 12.5
Viscosity (v) mv mPa s 10 12 12
Thermal conductivity (v) kv W (mK)�1 0.02 0.02 0.01
Latent heat L kJ kg�1 900 2260 88

Fig. 2 Typical dynamics of a small Leidenfrost droplet in a strong electric field. Figures (b) and (c) were obtained by taking from each subsequent frame
in the high speed recording a thin vertical strip through the center of mass of the droplet (shown in (a) for the first frame) and then merging all these strips.
The total time covered by (b and c) is about 9 seconds with a gap of 1 second between the initial stage (b) and the final stage (c). The up- and downward
arrows in (b) and (c) indicate the times for which there is a sudden increase or decrease in the jumping amplitude. In (d) the droplet has just impacted on
the unheated top electrode, ejecting a small secondary droplet.
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would require detailed knowledge about the varying conditions
outside the droplet (such as temperature, vapor saturation) and the
boundary layers that develop. This is outside the scope of this work.

3 Droplet charge

When the droplet is free from the surface the only external
forces acting on it are gravity Fg =�mg, air drag Fd and electrical
forces Fe from the electrodes and image charges, where m is the
mass of the droplet and g is the gravitational acceleration. For
the small velocities considered here, we can safely neglect the
air drag. The vertical component of the equation of motion
then takes the form

mŸCM = �mg + Fe(YCM, R, Vs, Qd), (1)

in which Qd is the charge on the droplet. Since we can measure
m, ŸCM (see inset Fig. 3(a)), YCM and R, and we control Vs, we can
in principle solve eqn (1) to infer Qd, given the function Fe(YCM,
R, Vs, Qd). The simplest form of this function is obtained by
assuming that the droplet is a point charge in an external electric

field of strength E = Vs/d, so that Fe E �QdVs/d. This point charge
model could be extended by including forces BQ2/(4pe0YCM

2)
from image charges in the top and bottom electrode. Although
this approach can capture most of the charging trends, it fails
when the droplet is close to the electrodes, where it can no longer
be considered to be a point. In this case we can view our system
as consisting of three finite conductors: a grounded plate, a
spherical top electrode and the droplet. For any configuration of
conductors at potentials Vi one can write the charge on con-
ductor i as Qi ¼

P
j

cijVj , where the capacitance coefficients

cij only depend on the geometry of the problem, and cij = cji.
23

The total potential energy for the system can then be written as
Ue ¼ 1

2

P
i

QiVi �
P
n

QnVn. The first sum runs over all conductors

and the second sum over all conductors connected to a constant
voltage supply. In our experiment the geometry is fully specified
by YCM, R, and the (fixed) position and radius of the top electrode
(see Fig. 4). We can therefore write Qd = cddVd + cdsVs and
Qs = cssVs + csdVd, where the subscripts s and d refer to the top
electrode and the droplet, respectively. The charge Qp on the
bottom plate is not relevant here, as Vp = 0 and it therefore does

Fig. 3 Extracted dribbling and charging behavior for (a) ethanol, (c) water and (d) FC72 Leidenfrost droplets in an external electric field (with Vs = 2.0 kV,
3.0 kV and 2.5 kV, respectively). For each liquid the time evolution of droplet radius R and vertical trajectory YCM (top panel), the inferred and predicted
droplet charge Qd (middle panel), and the jumping energy DU (bottom panel) are shown. The data for R were smoothed (solid line) to remove non-
physical fluctuations in the tracking (gray shading). In (a) the inset shows a magnified region of 70 ms of the trajectory, where a parabola was fitted to one
of the peaks to obtain the free-fall acceleration ŸCM. In (c) the inset on YCM shows that also the water droplet finally makes it to the top electrode. The
solid vertical line in (a) separates the qualitatively different initial (I) and final stage (II) seen for ethanol. The vertical dotted lines in both (a) and (c) serve to
correlate key features in the stacked panels such as the charge plateaus and sudden changes in amplitude. For FC72 we took into account its low
permittivity by multiplying the prediction for the charge by f = (er� 1)/(er + 2) = 0.2 (note the different scale on the axis for the charge on the FC72 droplet).
Panel (b) shows snapshots of the three tested liquids at their maximal deformation during a rebound.
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not contribute to the potential energy. Using these relations to
express Ue = (QdVd � QsVs)/2 in terms of Qd and Vs (which are
constant during each flight) one obtains:

Ue ¼
1

2cdd
Qd

2 � cds

cdd
QdVs þ

1

2

cds
2

cdd
� css

� �
Vs

2: (2)

Finally, the force needed to vary the droplet height YCM is found
from the principle of virtual work as

Fe = �qYCM
Ue. (3)

The required capacitance coefficients cij(YCM, R) have an analytical
representation only in some limiting cases (which will be dis-
cussed later). For the remaining configurations the coefficients
were determined numerically using COMSOL (see Appendix B).
Combining eqn (1) through (3) we find a quadratic equation for
Qd, which we solve for each maximum in the droplet’s flight
trajectory. The numerical capacitance coefficients take into
account the precise geometry and configuration of the electrodes
and any forces due to induced images charges and dipoles.

As can be seen in Fig. 3(a) (middle panel), the inferred
amount of charge on the droplet starts high and then decreases
in time as the droplet evaporates. Initially, there is a large
scatter in the inferred charge (left of first dotted line). This is
mostly related to a similar initial scatter in the measured droplet
volume and center of mass position. A likely reason for this
apparent scatter is the non-axisymmetric wobbling of the droplet
observed in the initial regime (due to capillary waves created
during deposition, and possibly by the discharges in the vapor
gap). This invalidates the assumption of an axisymmetric droplet
shape underlying the image analysis. Another source of error will
be the assumption of a spherical droplet shape in the numerical
calculation of the capacitance coefficients. We expect the value of
the extracted charge to be most reliable in the later stages, when
the drop shape closely approximates a sphere. In the final stage,
about 6 seconds before impact, the charge decreases in a step-like
manner, perfectly correlated with the sudden changes in the
jumping amplitude (see vertical lines in region (II) of Fig. 3(a)).

The fact that the charge on the droplet decreases with time,
indicates that there is occasionally electrical contact between the
droplet and the plate, most likely during a rebound. Irrespective
of how this contact occurs we can model the droplet during this
stage as a small conducting sphere adhered to a grounded plate
(Fig. 4(b) with YCM = R). The problem of finding the charge on the
sphere (droplet) is mathematically equivalent to that of finding

the polarization of two adhering spheres aligned with an external
electric field. This problem has been solved by Smith & Rungis24

using the method of images, who give the following analytical
expression for the amount of charge Qd on each sphere:

QdðRÞ ¼ �
2p3

3

e0R2Vs

d
; (4)

where e0 E 8.85� 10�12 F m�1 is the vacuum permittivity and we
approximated the external field as �Vs/d. This is about twice (2p2/9
to be precise) the displaced charge one would find for a single
sphere of radius R in the same electric field. Taking R from the
measurements, we compare eqn (4) to the experimental data in
Fig. 3(a) (middle panel). Both magnitude and trend are in good
agreement, without any fitting parameters.

4 Discharge mechanism

To understand how the droplet loses its charge, it is insightful
to estimate the electric field strength BVd/H in the vapor film
during a rebound (where H is the film thickness). The droplet’s
potential can be expressed as Vd = (Qd � cdsVs)/cdd, with the
coefficients evaluated at YCM = R + H. Since we will have H { R,
we can approximate cds(R + H,R) as cds(R,R), which can be
directly read off from eqn (4): cds(R,R) = �2p3e0R2/(3d). To find
the second coefficient, cdd(R + H,R), we use the geometry in
Fig. 4(b), but neglect the top electrode, as it is relatively far away
in this case. This classical electrostatics problem23,25 has the

solution cddðRþH;RÞ � 4pe0R gþ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=H

p� �� �
in the limit

H { R, where g E 0.577 is the Euler–Mascheroni constant.
With this, the potential of the droplet can be written as:

Vd � �
p2

6

R0
2 � R2

R gþ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=H

p� �h i Vs

d
ðH � RÞ: (5)

Here we assumed that the droplet made its last electrical contact
at some radius R0, obtaining a charge Qd(R0) as given by eqn (4). We
see that the drop potential is zero after each contact, and becomes
negative as R shrinks due to evaporation. The minimum height of
the vapor film, appearing in the logarithm in eqn (5), can be
estimated by balancing the Laplace pressure Pg = 2g/R exposed in
the flattened bottom, with the lubrication pressure Pm in the vapor
flowing out through the small gap.26 The details of this estimate
can be found in Appendix C. For the ethanol droplet under study
we find H E 6R5/4DT1/4 mm, with R given in mm and DT = T � Tb.
To give an estimate of the maximum value of Vd reached before a
discharge event, consider a droplet of initial radius R0 = 0.6 mm that

Fig. 4 Canonical electrostatic problems to calculate the capacitance
coefficients in our experiment. The height YCM and radius R of the droplet
are varied. From (a) we get cdd(Y,R) = Qd and csd(Y,R) = Qs, and in (b) we
have cds(Y,R) = Qd and css(Y,R) = Qs.

Fig. 5 Cartoon of the electro-capillary instability in the vapor gap that we
speculate to be at the root of the observed discharge events.
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evaporates by a small amount DR to a final radius R = R0� DR. With
DT E 140 K, we find H E 10 mm, so that eqn (5) becomes Vd E
�1.1VsDR/d. The duration of a charge step in Fig. 3(a) is approxi-
mately 1 second. The droplets shrinks by about DR = 0.02 mm in
this time, so we find Vd E �6 V at the moment of discharge.
Although this gives rise to a strong electric field in the gap, of about
600 kV m�1, it is still far below the breakdown voltage of ethanol
vapor Vb E 500 V for gap sizes of 10 mm at atmospheric pressure.27

Another pathway for discharge would be an electro-capillary
kind of instability in the vapor gap, akin to the classical cases
that can occur for a charged droplet as a whole.2,5 To investigate
this possibility, consider a perturbation h(x) on the flattened
bottom of the droplet during a rebound (see Fig. 5 for a sketch
of the situation). The pressure distribution at the liquid–vapor
interface will have two main contributions: the Laplace pressure
Pl = gk E gqx

2h and an electrostatic pressure Pe = �1
2 e0E2 E

�1
2 e0[Vd/(H + h(x))]2 E �1

2 e0Vd
2[1 � 2h(x)/H]/H2, where in the

approximations we used that h(x) { H (as is the case when the
instability sets in). This situation is similar to the unstable
configuration of a dense fluid atop a lighter fluid, for which the
Rayleigh–Taylor (RT) instability can set in.26,28,29 As for the
RT-instability, the Laplace pressure stabilizes the interface,
while the destabilizing role of the hydrostatic pressure rgh(x) is here
played by the electrostatic pressure e0Vd

2h(x)/H3. From this analogy
we can immediately obtain an expression for the smallest unstable

wavelength. For the RT-instability we have lRT ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðrgÞ

p
.

Replacing rg by e0Vd
2/H3 as suggested by the analogy, we obtain:

lm ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffi
gH3

e0Vd
2

s
: (6)

The largest wavelength that can be supported on the bottom of the
droplet surface is approximately lm E 4a, where a is the radius of
the flattened area (that is, half a wavelength over the diameter 2a).
Using this condition in eqn (6) we find a minimum droplet
voltage for the onset of the instability as

Vc ¼ �
p
2

ffiffiffiffiffiffiffiffiffi
gH3

e0a2

s
(7)

In the side-view recordings of ethanol droplets we observed that
a B R during each impact. Using this in eqn (7), we find
Vc E �4 V for R = 0.6 mm and H = 10 mm, which is indeed close
to the value of �6 V inferred from the measurements using
eqn (5). Note that lm strongly depends on H. This may facilitate
a non-linear steepening of the growing mode as the drop’s surface
is attracted closer to the bottom plate. On the other hand, the
strong evaporation in the gap may limit the amplitude of the
instability. With the limited spatial and temporal resolution in our
setup we were unfortunately not able to directly capture the details
of a discharge event, which will be a topic for further investigation.

5 Dribbling motion and escape

From eqn (1) and (4) it is clear that the droplet will eventually
jump to the top electrode. The force acting on the surface

charge is proportional to R2, which, as the droplet shrinks,
eventually overcomes the downward gravitational force proportional
to R3. The critical radius R* for which this occurs can be estimated
by balancing Fg = �mg with Fe E QdVs/d, leading to

R� ¼ p2

2

e0Vs
2

rgd2
: (8)

As shown in Fig. 6 this expression predicts the escape radius
reasonably well (within about 50%) in a series of experiments
done at various voltages and temperatures, and with different
liquids. In the case of FC72 an additional prefactor f = (er � 1)/
(er + 2) E 0.2 is required (dashed line) to take into account the
liquid’s low dielectric constant er E 1.7 (as will be discussed in
Section 6).

What remains to be explained are the details of the dribbling
motion, such as the (sudden) increases and decreases in
amplitude. To this end we look at the total change in potential
energy DU during each jump. This energy can be calculated in
two ways: one way is to assume that air drag is negligible
and invoke conservation of energy, so that DU is equal to the
kinetic energy K0 with which the droplet leaves the surface.
Another way is to use the inferred charge to directly calculate
Um = mgYm + Ue(Ym) at the jumping maximums Ym and to
subtract the corresponding values U0 of the droplet close to the
surface. As shown in Fig. 3(a) (bottom panel) these independent
energy measures give practically the same result, confirming
that air drag can safely be neglected and at the same time
validating our charge extraction method. For most parts of the
trajectory the energy decreases after each rebound. For these
low impact velocities this is likely due to dissipation associated
with the oscillatory motion of the droplet after impact.30,31

Interestingly, there is occasionally a sudden increase in energy.
Comparing top and bottom panels in Fig. 3(a) one can see that
these boosts in energy correlate with the sudden increases in
jumping amplitude in the initial stage (stage I). We do not
know the precise origin of these energy injections, but it could
be related to the electro-capillary instability described in the
previous section. Although the injections always seem to occur,
their timing varies in repeated experiments under the same
conditions. In the final stage (stage II), when the discharge

Fig. 6 Escape radius of the droplet (just before impact) in repeated
experiments at various voltages (�(2–5) kV) and temperatures (120–300 1C),
normalized by the predicted critical radius R* given by eqn (8). For the dashed
line the low dielectric constant of FC72 was taken into account. The large
symbols correspond to the representative cases shown in Fig. 3.
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occurs in well defined steps, the droplet’s energy decreases
almost monotonically. At first sight this may seem at variance
with the overall increasing jumping amplitude, but this is not
the case. Both the gravitational and electric field contributions
to the potential energy make that smaller droplets can jump
higher with the same energy. In the final stage the dissipation
rate is not high enough to counteract this effect. Here the
amplitude drops at every discharge, as these events cause the
potential energy to shift up for the same height.

In a previous study it was found that even without an external
electric field, Leidenfrost droplets display a surprising (quasi) elastic
bouncing behavior.31 It was argued that the droplet finds a jumping
mode in which energy dissipation is least, occurring when its

oscillation time tR � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=ð2gÞ

p
becomes similar to the free fall

time tf �
ffiffiffiffiffiffiffiffiffiffi
2h=g

p
. Solving tR = tf for the fall height h, gives h =

p2g2rR3/(4g). This can also be rewritten as a condition on the kinetic
energy by using that mv2/2 E mgh, with v the velocity of the center of
mass. Introducing the dimensionless Weber-number, We = rRv2/g,
and Bond-number, Bo = rgR2/g, one finds the condition

We � p2

2
Bo2: (9)

If we evaluate this expression for our ethanol droplet, for which
1 mm 4 R 4 0.5 mm, we find 0.8 4 We 4 0.05 and kinetic
energies of 30 nJ 4 K0 4 0.5 nJ, which are indeed of the same order
of magnitude as those found experimentally (Fig. 3(a)). Note that in
the presence of charge on the droplet the oscillation frequency
would change to o2 = [8g � Qd

2/(8p2e0R3)]/(rR3).2 However, in the
experiment considered here the amount of charge is still far (at
about 10%) from the stability limit. We can therefore safely neglect
the second term between the brackets. Another effect we need to
consider is that the electric force will alter the free fall time. This
could be incorporated by introducing an effective gravitational
acceleration g0 E g � QdVs/(md), which decreases from g0 E g just
after deposition to g0E 0 when the droplet flies to the top electrode.
However, in this final stage the free flight time is a lot longer than
the time for the oscillations to damp out, so that the whole
consideration above looses its validity anyhow. We can interpret
eqn (9) as a kind of initial condition for the experiment, giving the
typical kinetic energy before the electric forces take over.

6 Effect of liquid properties

In the model for predicting the droplet charge (eqn (4)) it was
assumed that the droplet behaves as a perfect conductor. We
expect this to work for liquids with a high relative permittivity
er c 1. In this section we will discuss results for water, which
has a high permittivity of er E 55, and perfluorohexane (FC72),
which has an extremely low permittivity of er E 1.7. Ethanol lies
in between with a permittivity of about er E 19. In Fig. 3 a
typical result for water (Vs = 3 kV, T = 270 1C) is shown next to
that for FC72 (Vs = 2.5 kV, T = 120 1C). It can be immediately
seen that the behavior for the two liquids is quite different. The
water droplet mostly stays close to the surface and takes one big
leap near the end, while the FC72 droplet at some point starts

to jump progressively higher, as was also observed for the
ethanol droplets. The water droplet displays three clear charge
steps, with each step starting on the line predicted by eqn (4).
The duration of these charge plateaus is about 6 seconds in this
case. In this time the droplet shrinks by about DR = 0.06 mm.
Again taking H B 10 mm (which also turns out to be a good
estimate for the water droplets) we find that the droplet voltage
decreases by about Vd = 1.1VsDR/d E 28 V before each dis-
charge. About 5 times more than in the case of the ethanol
droplet. This can be understood from the fact that for the water
droplet the radius a of the flattened area during rebound is
significantly smaller than R (see Fig. 3(b)). Because the droplet
here bounces with a small amplitude and velocity, this flatten-

ing is dominated by gravity and can be estimated as a=R �ffiffiffiffiffiffi
Bo
p

¼ R
ffiffiffiffiffiffiffiffiffiffi
rg=g

p
� 0:2 (see also Appendix C).32,33 According to

eqn (7) we have Vc p 1/a, so that this indeed gives rise to a
factor of 5 in the critical voltage compared to ethanol, for which
we set a = R. The FC72 droplet shows just a single charge plateau,
starting about 2 seconds before impact. During this same period
it also starts to escape. Although this behavior is similar to what
was found for ethanol droplets, the amount of charge is about
two orders of magnitude lower. One order of magnitude can be
explained by the smaller radius of the droplet. Eqn (4) would
predict a charge of about 8� 10�12 C for the droplet radius at the
start of the plateau. To understand why the amount of charge is
even smaller, we have to take into account the extremely low
dielectric permittivity of FC72. Eqn (4) was derived by calculating
the polarization of a perfectly conducting bi-sphere. This polariza-
tion was found to be about twice as large as that of a single sphere
in the same electric field. It is well known that the polarization of a
single dielectric sphere can be obtained directly from that of a single
conducting sphere by multiplying the latter with a factor f = (er� 1)/
(er + 2).34 Approximately the same factor will apply to the bi-sphere
case. For ethanol and water this factor leads to a negligible
correction, but for FC72, with er E 1.7, one finds f E 0.2, explaining
the low amount of charge observed. In Fig. 3(d) we took this factor
into account in the comparison between the inferred charge (dots)
and the model (dashed line). Had we not done this, then the line
would lie outside the field of view. Similarly, this factor is necessary
to understand the escape radii plotted in Fig. 6.

The above considerations imply that for FC72 also the
formulas used for inferring the charge and potential energy
(eqn (2) and (3)) are inaccurate, because the coefficients cij were
calculated for perfect conductors. This error will occur mainly
through the estimation of second order forces due to image
charges, and may explain for example why the charge plateau
for FC72 does not seem to be perfectly horizontal in Fig. 3(d)
(this would also happen for water and ethanol in the simple
point charge approximation).

7 Effect of electrode polarity

In the experiments described so far the top electrode was set to
a positive voltage with respect to the grounded plate, so that the
droplet attained a net negative charge. Fig. 7 (top) shows the
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results of two experiments, one with ethanol (a) and one with
FC72 (b), in which the voltage on the top electrode was set to a
negative value (so that the droplets would get a positive charge).
For comparison similar experiments for which the voltage was
positive are also plotted (bottom).

While ethanol droplets behave practically the same for positive
and negative voltage (as does water), FC72 droplets show an
interesting asymmetric behavior under polarity reversal. The
FC72 droplet seems to be unable to obtain any net positive charge.
To trap the droplet under these neutral conditions we had to
increase the magnitude of the voltage to at least |Vs| = 5 kV, and
even then the droplet often rolled off the plate. This asymmetric
charging behavior of FC72 is likely related to the chemically inert
nature of this fluor-rich fluid. Similar to a Teflon-rod that is
charged by rubbing, FC72 prefers to hold a negative charge.

8 Approaching the charging limit

To observe the progressive increase in jumping amplitude, the
voltage on the top electrode has to be high enough to overcome
the loss in height due to energy dissipation (see Section 5).
However, if the voltage is too high, the spherical shape of the
droplet becomes unstable with respect to a conical shape.5 For
ethanol and water this happens around Vs \ 4 kV in our setup.

Fig. 8 shows some snapshots of these instabilities. Initially,
both the water and ethanol droplet developed a Taylor cone at
their upper surfaces. For the ethanol droplet this cone quickly
destabilized and started to eject small droplets. In the same
recording the ethanol droplet occasionally stretched into a thin
filament bridging the whole gap. This filament remained stable
for a while, and then broke up into several smaller droplets,
leading to a very irregular behavior. For the water droplet no
ejection was observed, instead the tension was released by a
violent electrical discharge striking the drop’s sharp tip.

9 Conclusion and outlook

Small Leidenfrost droplets in a vertical electric field of strengths
between 2 and 5 kV cm�1 display a surprising regular and
repeatable dribbling motion, in which they escape from the
hot surface by jumping progressively higher. We have related
this behavior to the electrical and gravitational forces acting
respectively on the charge and mass of the droplet. As the
droplet shrinks due to evaporation, the charge on the droplet
decreases in a step like manner to remain proportional to R2.
Eventually the upward electrical force will therefore always
dominate over the gravitational force, which is proportional to
R3. The discrete discharge events were attributed to an electro-
capillary instability in the vapor gap, occurring each time the
electrical potential of the droplet reaches a critical value.

In an analysis of the potential and kinetic energies of the
dribbling droplets we have found that for most parts of the drop’s
motion the jumping energy slowly decreases in time. However, the
droplet occasionally receives a boost, helping it to escape. These
sudden energy injections will be an interesting subject for future
research (What is their (electro-capillary) origin? How does their
frequency and strength depends on the control parameters? etc.)
In the final stage, the decrease in potential energy due to evapora-
tion is by itself enough to allow the jumping amplitude to increase.

The theoretical approach employed in this work, using capa-
citance coefficients to calculate potentials, forces and energies,
can be extended to any geometry. This opens up the possibility to
design electrical circuitry to trap and steer the hyper-mobile
Leidenfrost droplets (e.g. in microfluidic devices). Furthermore,
the method of inferring the charge from the droplet’s trajectory
offers an easy way to study the basic charging properties of a
liquid or the insulation properties of its vapor.

Appendices
A Horizontal trapping potential

The most basic electrode configuration for creating a vertical
electrical field would be two parallel plates. However, practically it
is more convenient to let one of the electrodes have a slight
curvature. In this case there is no need to align the electrodes and it
ensures that a charged droplet experiences a slight trapping force,

Fig. 8 Instabilities observed for (a and b) ethanol and (c and d) water
droplets at voltage differences above 4 kV. In (a) the ethanol droplet
developed a sharp cone from which small droplets are ejected. A few
bounces later (b) it temporary formed a vertical bridge between the top
electrode and the hot bottom plate, still hovering on a vapor film. Also the
water droplet (c) first developed a cone, but in this case (d) the electrical
tension is released by a violent discharge that ruptures the drop.

Fig. 7 Evolution of the charge on (a) ethanol droplets and (b) FC72
droplets trapped under either a negatively (top panels) or a positively
charged electrode (bottom panels). While for ethanol the behavior is
symmetric, FC72 does not obtain any positive charge, even for electrode
voltages as low as �5 kV.
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keeping it in the field of view. The electrical potential between a
sphere of radius Rs with its center a distance dc above a plate can be
calculated numerically through a summation over image charges.
The positions yn and magnitudes qn of these virtual point charges in
the top electrode are given by the recursive relation:

y1 ¼ dc

yn ¼ dc �
Rs

2

dc þ yn�1

q1 ¼ RsVs

qn ¼
R

dc þ yn�1
qn�1 ðn ¼ 2; 3; . . . Þ

(10)

Another set of charges with the same magnitude but of opposite
sign, are to be placed below the plate, mirrored with respect to the
plate surface. The potential field f(x, y) is then simply given by

summing over the potentials fn(x, y) = �qn/rn(x,y), with rn the
distance to the point charge. Fig. 9(a) shows a contour plot of
the potential calculated in this way, with Vs = 2 kV. To extract the
trapping potential (at a certain height YCM) we take a horizontal slice
f(x,YCM), as shown in Fig. 9(b). The potential energy is given by
U(x) = Qdf(x). For small motions about the center this potential is
approximately harmonic and we can define a spring constant as

kðyÞ � Qd
@2f
@x2

: (11)

A droplet with mass m and charge Qd will then oscillate with angular
frequency

o2 ¼ k

m
¼ Qd

m

@2f
@x2

: (12)

In each experiment all quantities except Qd are known, thus
providing an other method to extract the charge on the droplet.
The result of such an analysis is shown in Fig. 10. Although the
inferred charge is consistent with that found from the vertical
motion, the horizontal motion is less regular, resulting in a
large scatter.

B Capacitance and force coefficients

To infer the charge on the droplet through eqn (1) one needs to
know the electrical force Fe on the droplet as a function of its
position and size. Substituting eqn (2) into eqn (3) one obtains:

Fe = �qYCM
U = fddQd

2 + fdsQdVs + fssVs
2, (13)

with the ‘force coefficients’ fij = fij(YCM, R) related to the
capacitance coefficients as fdd = �qY(1/cdd)/2, fds = qY(cds/cdd)
and fss = qY(css � cds

2/cdd)/2. In first approximation the force
acting on a charged droplet is given by Fe = QdVs/d, which
assumes that the droplet can be treated as a point in an external
electrical field of strength Vs/d. The corresponding force coefficients
would be fdd = fss = 0, and fds = 1/d. Although this approximation
gives already quite a good estimate of the amount of charge on the
droplet, it fails when the droplet is very close to the plate.

Fig. 9 (a) Electrical potential between a conducting sphere of Vs = 2 kV
(black) and a grounded plate (white). (b) Horizontal slice through the field
in (a) showing the weak trapping potential close to the plate.

Fig. 10 (a) Horizontal motion of the center of mass of a charged ethanol
droplet in the trapping potential and (b) the charge inferred from this
oscillatory motion.

Fig. 11 Geometry and mesh used to calculated the force and capacitance
coefficients with COMSOL. (a) Overview of the (axisymmetric) computational
domain with spherical top electrode clearly visible. (b) Magnification of the
gap between the top electrode and the plate, with the droplet in between.
The surfaces of the droplet and the top electrode have a fine mesh.
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Furthermore, the charge plateaus are not horizontal in this
approximation, giving the wrong impression that the charge
here slowly increases or decreases. To circumvent these errors
and to check the analytical expressions used in the main text, we
used the electrostatics module of COMSOL (version 5.0) to
directly calculate both the capacitance and force coefficients
in our setup. Fig. 11 shows the typical geometry and mesh used
in these calculations. To calculate for example the capacitance
coefficient cds, the voltage of the top electrode was set to 1 V,
while the droplet was grounded (cf. Fig. 4). cds is then given by the
total amount of surface charge accumulated on the conductor that
represents the droplet. To obtain sufficient accuracy for performing
these integrals, the mesh was extra refined on the surfaces of the
conductors.

These calculations were repeated for a range of droplet heights
H and radii R, to obtain a fine grid of coefficients cij(H,R) covering
all the radii and heights found in the experiments. Values in
between the grid points were obtained through interpolation. To
give an idea of their behavior, Fig. 12 shows the coefficients as a
function of H, and a fixed radius of R = 0.6 mm. In eqn (5) we used
approximations for cdd and cds to calculated the electrical potential
of the drop when it is close to the surface (H { R). In Fig. 12 these
approximations are shown as dashed lines. They indeed approach
the correct values in the limit H - 0.

The force coefficients can in principle be obtained from the
variation of capacitance coefficients with H by taking the appropriate
combinations and then taking the derivative. However, it turns out

that doing this numerically leads to some errors, especially for fss

which is calculated as fss = qH(css � cds
2/cdd)/2. To circumvent this

numerical differentiation, we also directly calculated the force
coefficients by treating the droplet as a floating potential with a
fixed charge Q = 1 C or 0 C (and, as before, with the top electrode
set to 1 V or 0 V) and directly calculating the net force exerted by
the field on the surface charges. The plots in Fig. 12 show both the
coefficients obtained through differentiation (black dots) and
through direct calculation (gray lines). For fdd and fds the two
methods practically overlap, but for fss the direct method performs
significantly better.

C Vapor film thickness

Our prediction for the critical discharge voltage of the droplet,
eqn (7), relies on an estimation of the minimum height of the
vapor gap below the droplet during a rebound. For this estimation
we will follow a similar procedure as outlined in Biance et al.26 for
droplets in a gravitational field. We then extend this approach to
droplets impacting with a finite velocity to see whether it is the
impact force or the gravitational force which dominates in our
case. The situation is sketched in Fig. 13.

When a millimetric droplet sits on a solid surface (with or
without vapor in between) the bottom of the droplets gets
indented by the small amount:32

dg 	
rgR3

g
¼ RBo; (14)

Fig. 12 Capacitance coefficients cij and force coefficients fij as a function of the gap between the droplet and the plate H, for a fixed radius of
R = 0.6 mm. The black dots are the calculated coefficients (it is hard to see separate dots because of the fine grid of points). For cdd and cds also analytical
asymptotic solutions for H/R - 0 are shown. The force coefficients were calculated both from the capacitance coefficients (black dots) and directly by
integrating the force in the simulation (gray lines).
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so that the decrease in potential energy due to the lowering of
the center of mass is balanced by an increase in the surface
energy. From the spherical geometry of the droplet it follows
that the radius of the flattened area is:

a 	
ffiffiffiffiffiffiffiffi
Rdg

p
¼ RBo1=2 (15)

The flattening of the bottom locally exposes the Laplace pressure
of the droplet. In the solid this pressure is supplied by a small
elastic deformation. When there is a vapor film between the solid
and the droplet, the same pressure has to be built up in the vapor.
This is possible when the gap becomes so small that viscous forces
in the vapor become important. The flow in the gap can then be
shown to be equivalent to the classical lubrication problem of a
squeezing flow below a flat disk of radius a moving down with the
velocity of the generated vapor:

vv 	
kvDT
LrvH

; (16)

where kv is the thermal conductivity of the vapor and L the latent
heat of evaporation. The maximum lubrication pressure for the
squeezing flow scales as:

pm 	
mvvra
H2

	 mvvva
2

H3
; (17)

where vr B vva/H is the radial flow velocity and mv is the dynamic
viscosity of the vapor. This pressure has to balance the Laplace
pressure pgB g/R. Setting pmB pg, and using eqn (14)–(17) we find:

H

R
	 kvDTRmvrg

Lrvg2

� �1=4

: (18)

This expression is similar to eqn (8) in Biance et al., except that we
here find an exponent of 1/4 instead of 1/3 on the dimensionless

term between brackets. The difference is that in the former work, it
was assumed that heat transfer to the whole droplet surface
contributes to the vapor flow in the gap. In Fig. 13b we reproduced
the experimental data and eqn (8) (dashed line) from Biance et al.,
and also plot eqn (18) derived above (solid line). The pre-factors
were adjusted so that both lines go through the first experimental
point, we find a pre-factors of 2.5 for the former and 0.75 for the
latter, which seems to favour eqn (18). However, given these
pre-factors the correct slope cannot be inferred from the
measurements, and for the radii we are interested in here,
R B 1 mm, both lines predict a similar film thickness of about
H E 20 mm. For droplets larger than about R = 3 mm the
deformations are no longer small and the droplets cannot be
assumed spherical, so that the models do not work in this regime.

When the droplet has a finite impact velocity v, its momentum
will provide an additional force that pushes the droplet down. If
we suppose that the droplet decelerates over a distance d, we can
interpreted this in the frame of reference of the droplet as an
effective gravitational acceleration:

g0 	 v2

d
: (19)

Using this in eqn (14), and solving for d, gives:

dv 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rv2R3

g

s
¼ RWe1=2 (20)

Note that the same result is found by comparing the kinetic energy
BrR3v2 to the energy associated with the small deformation of the
surface Bgd2. Comparing eqn (14) and (20) one obtains that the
transition from a gravity to an inertia dominated regime occurs for:

We B Bo2. (21)

Coincidentally this condition corresponds precisely to that for
the natural jumping mode of small Leidenfrost droplets (cf.
eqn (9)). This means that in our experiment the droplets are
always found in this transitional regime, and it does not matter
much which scale is used to estimate H.
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31st ICPIG E-b. Abstr., 2013.
28 J. H. Snoeijer, P. Brunet and J. Eggers, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2009, 79, 1–13.
29 G. Taylor, Proc. R. Soc. London, Ser. A, 1950, 201, 192–196.
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