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THE AVERAGE TRANSPORT PATH LENGTH IN SCATTERING MEDIA*

J. N. BARDSLEY+ AND A. DUBI:

Abstract. For connected regions of arbitrary shape containing a distribution of scattering centers that
need not be homogeneous, the average path length for particles that traverse the medium is shown to be
unaffected by the presence of the scattering centers, provided that the incidence of the particles is uniform and
isotropic, that no absorption or particle reproduction occurs in the medium, and that the scattering
probabilities satisfy detailed balance.

1. Introduction. The study of the number of reactions that occur in a volume of
material subjected to a uniform and isotropic inflow of particles played a significant role
in the early development of neutron transport theory [1]-[4]. While involved in such
studies Dirac [5] derived, by means of simple physical arguments, an elegant geometri-
cal theorem that the average chord length for a connected region of volume V and
surface area S is equal to 4V/S. For lumps of absorbing material in which little
scattering occurs, such as fuel elements in a fast reactor, this result can be used to
estimate the probability of absorption of neutrons which enter the volume V from
outside. Also, by means of a reciprocity theorem, the escape probability for neutrons
which are created in the volume V can be estimated.

In this note we present a generalization of Dirac’s result to allow for scattering. We
show that the average path length for particles traversing a region of volume V in which
they are deflected by an arbitrary array of scattering centers is also equal to 4 V/S in a
wide range of situations, provided that the particle inflow is uniform and isotropic. The
physics underlying this generalization is essentially unchanged, however the mathema-
tical statement of this theorem becomes more complex since we must define an
ensemble of random paths rather than a set of chords.

2. The average-chord-length theorem. Consider a connected region of volume V
and total surface area S. For simplicity of discussion we will assume that the region is
convex with a single surrounding surface, but these restrictions are not necessary for our
results. We will denote a point on the surface by A and a surface element by dS. Let
I(A, 1) denote the length of the chord which extends in V from A in the direction
and let n denote the direction of the inward normal at A. (Note that 0 unless
D,.n > 0). Then the average chord length is defined to be

(1) -=I dS dl(n I)I(A, I)=N
dS dll(n. 1) D"

The weighting factor n. ll implies that the spacing between the chords with a given
direction Yl is independent of the orientation of the surface elements that are inter-
sected by the chords. To avoid double counting and ensure a nonnegative weighting
function, the integration over is restricted to those directions for which Yl. n > 0.

The numerator in (1) can be evaluated by noting that the integrand represents the
volume of a column within the volume V erected on the base dS with height (see
Fig. 1). Thus

(2) J dS (n. I)I(A, 1)= V
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72 J. N. BARDSLEY AND A. DUBI

FIG. 1. Each element of surface dS and chord, drawn along the direction lI, defines a column with the
volume V. The vector n is perpendicular to the surface.

for all lI, and N 47rV. In the denominator,
2-n" "rr/2

(3) I dll(n.ll)=/o d [ao sinOdOcosO=rr,

so that

and

D "re I dS rrS

4V
(4) --.

S

This geometric result had been anticipated by Cauchy [6] and Czuber [7].
However, the significance of the result was not fully appreciated until it was shown that
the average defined above is appropriate for a uniform isotropic flux of particles
entering the volume V across the surface S. For example, if the particles may take part
in a reaction for which the cross section rR is small lR << 1), then the probability that a
particle entering the region undergoes this reaction is approximately given by

4V
(5)

For an incident flux of O particles/sec, the reaction rate is then 40VcrR/S.

3. The average-path-length theorem. Let us now replace the straight chords across
the volume V by a set of random walks. As shown in Fig. 2, we consider each path to
consist of a number of straight line segments of length l, with a total path length of

k

(6) L(A, )-- 2 li.
i=1

The starting point and the direction of the first element are defined by A and II. The
length of each segment and the direction of all further segments are determined
stochastically. For example, suppose that, after travelling a distance x in the direction of
’i along the ith segment, we reach the point ri. Then the probability that this segment is
terminated with a length between x and x + dx is given by trr (li, ri) dx. The probability
that the direction of the track is changed from ’i to ’i+1 is given by O’(’i, ’i+1 ri) dx.
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AVERAGE TRANSPORT LENGTH IN SCATTERING MEDIA 73

FIG. 2. A typical track across the volume V, with three scattering events.

These functions may be completely arbitrary, except that they should be consistent and
satisfy detailed balance,

(7) dll’ cr(ll, ll’; r) o’r(ll, r),

and

(8) r(ll, 11’; r)= r(-l’, -11; r).

If L(A, ll) is the average length of all such tracks beginning at the surface point A
in the direction II, then we wish to prove that

(9) /_: .IdS d(n. gl)/(A, l’l)= 4rr____V

4. Application of transport theory. Let us suppose that region I discussed above is
surrounded by a region II which contains a distribution of sources that leads to a
uniform isotropic flux of particles &0/4rr across the boundary from II to I. The number
of particles flowing across a surface element dS in the direction 1 per unit time is
(&o/4rr)(n gl) dS, and the total incoming flux is &oS/4 (from (3)).

Let us suppose that in the interior of region I the particles undergo scattering
collisions with cross sections r(1), gl’; r) and rT (gl, r), as defined above, and that there is
no absorption and no source of particles inside I. The particle flux & (r, 1) satisfies the
transport equation. V&(r, i2)+ (rT(i, r)&(r, 12)= J d’(r(i’, i; r)&(r, i2’).
(10)
For all choices of o-, consistent with (7) and (8), this equation, with the boundary
condition specified above, has the simple solution

1
(11) b (r, l’) --- b0.

Thus the flow inside region I is uniform and isotropic, and so is unaffected by the
scattering.

To derive the average path length from the transport theory, let us suppose that
while traversing the region I the particles may undergo some reaction, for which the
cross section (rn is constant. This reaction should not change the particle flux, and so we
will assume that the reaction does not destroy the particle or lead to any modificatiorf of
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74 J. N. BARDSLEY AND A. DUBI

its path across the volume V. The rate at which reactions occur is

(12) R fvdr f dl’l crn&(r, il)=o’n&oV.

For each particle that enters the volume V the probability of reaction is equal to nL,
where L is the total path length. Hence R must be equal to the product of n, the
average path length L, and the total current of incoming particles,

(13) R da dS(a n)=
Here again the integration over is restricted to those angles for which n > 0. From
(12) and (13) we obtain

(14) 4
V

This result represents the physical generalization of Dirac’s Theorem.
In order to estimate the average path length by Monte Carlo techniques one would

generate a large number of random trajectories following the stochastic rules specified
in 3. The use of such simulation procedures to estimate reaction rates is a classic
problem in neutron physics. For example, if a typical trajectory has k segments with
lengths 1 then

k

(15) n
i=1

provides an unbiased estimate of the reaction probability for particles entering the
region I [3, p. 73]. If the nth trial results in a value of , then

1 u 4RV
N n=l S

The right side of this equation represents the total reaction rate divided by incoming
current, as calculated above. Hence, setting 1,

lira
1 N 4 V

=1 i=1 S. Discussion. We have shown that for particles flowing uniformly and iso-
tropically into a region of volume V, the average length of the path followed by the
particles in V is not changed by scattering, provided that there is no absorption inside V
and that the scattering cross sections satisfy detailed balance (7). We have not assumed
that the scattering centers are distributed uniformly, or that the scattering is isotropic.

In defining the scattering probabilities we did not introduce the speed of the
particles. The theorem cannot be applied when the scattering probabilities depend on
properties changed in previous collisions. Hence, if cross sections are velocity depen-
dent and the speed of the particles is changed by the collisions, the result is in general
not true. However if the whole system is in thermal equilibrium so that the velocity
distribution is unchanged by collisions, then our assumptions are valid and the ther-
mally averaged cross sections should be used in (7) and (8).

Although we have considered a single surface S surrounding the volume V, this is
unnecessary. The theorem can be applied to a volume of material with holes, provided
the area S includes all bounding surfaces and the volume of the holes is not included in
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AVERAGE TRANSPORT LENGTH IN SCATTERING MEDIA 75

V. Since the result depends crucially on the homogeneity of the flux inside V, if we cover
part of the surface by a perfect reflecting material the theorem still holds with S
measuring the uncovered surface area.

The practical value of this theorem lies in the estimation of reaction rates for
processes that occur within a finite volume with sufficiently low probability that the
reaction does not destroy a significant fraction of the ensemble of particles. It has been
used by one of us (J.N.B.) in the calculation of ionic recombination rates in gases, by
giving an estimate of the length of time for which the separation between two gas
molecules remains less than some critical value [8]. Although we cannot allow for
absorption in the derivation of the theorem, the result can be used to estimate the
absorption rate in situations where elastic scattering is more likely than absorption. In
strongly absorbing media we believe, but have not yet proved, that the absorption rate is
always reduced by scattering under the flow conditions assumed above.

Analogous results can be obtained in any dimension. For example, consider
particles moving along the line O -<_ x <= with a probability o’(x) of being backscattered.
In the appendix we will show, for constant o-(x), that scattering leads to increased path
length for the transmitted particles, but to no increase in the average path length for all
entering particles.

The one-dimensional theorem can be extended to treat random walks along a
discrete mesh. Consider a lattice, as shown in Fig. 3, which contains a set of line

FIG. 3. A lattice with 3 boundary nodes ((3), 11 internal nodes (0) and 21 connecting lines. The average
number o1: steps in a random walk across this lattice is 14.

segments of length li (i 1, N) with nodes a,/3, 3’ ",which are classified either as
internal or boundary nodes. The boundary nodes are attached to only a single line,
whereas each internal node can be attached to an arbitrary positive number of lines. The
mesh must be constructed so that any two nodes are connected by at least one chain of
lines. A random walk begins with equal probability at any boundary node, and is
terminated when a boundary node is again encountered. At each internal node a a set
of probabilities P(a; -> j) is specified such that

(16)
O-<P(a; if)=< 1,

P(a --> j) P(a j --> i),

and

P(a; --> f) 1.

We also require that P(ce -/’) be nonzero if and only if the lines and/’ intersect at
Under these conditions the average number of steps in each random walk is 2N/ne,

where N is the total number of line segments and ne is the number of boundary nodes.
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76 J. N. BARDSLEY AND A. DUBI

The average distance traveled is

N

(17) L=
2

li.
//e i=1

These results follow directly from the fact that the flux along each line in each direction
is uniform.

Appendix. To demonstrate the validity of this result in one dimension, consider a
strip of length l, for which the average path length must be equal to in the absence of
scattering. For a homogeneous strip a complete solution of the scattering problem is
possible. Suppose that each element of length dx leads to a probability crdx that the
particle’s direction of motion is reversed. Let R(1) and T(l) be the reflection and
transmission probabilities for the whole strip, and let AR(l) and Ar(1) be the average
path length for the reflected and transmitted particles.

Consideration of the effects of an increase in the length of the strip from to + gl

leads to the following differential equations,

dR_ o.T2 dT
dl dl’

dAT
1 + o-RAR,

dl

dAR o’T2

dl R
(2AT--AR).

These equations have the solution

1 o’l
T- R-

1 +o’l’ 1 +rl’

AT=(1 + O’I + 1/20"212),
1 +o-I

(1 + rl),AR-- 1+or

from which it can be confirmed that the average path length for all particles is
independent of o-, since

A =-- TAT+RAR =l.

As the scattering probability is increased, the larger path length for transmitted
particles is offset by a reduction in the average path length of reflected particles.
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