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Time reversal and holography with
spacetime transformations
Vincent Bacot1, Matthieu Labousse1,2†, Antonin Eddi3, Mathias Fink1*‡ and Emmanuel Fort1*‡

Wave control is usually performed by spatially engineering the properties of a medium. Because time and space play similar
roles in wave propagation, manipulating time boundaries provides a complementary approach. Here, we experimentally
demonstrate the relevance of this concept by introducing instantaneous timemirrors.We showwith water waves that a sudden
change of the e�ective gravity generates time-reversed waves that refocus at the source. We generalize this concept for all
kinds of waves, introducing a universal framework which explains the e�ect of any time disruption on wave propagation. We
show that sudden changes of the medium properties generate instant wave sources that emerge instantaneously from the
entire space at the time disruption. The time-reversed waves originate from these ‘Cauchy sources’, which are the counterpart
of Huygens virtual sources on a time boundary. It allows us to revisit the holographic method and introduce a new approach
for wave control.

Holographic methods are based on the time-reversal
invariance of wave equations. They rely on the fact that any
wave field can be completely determined within a volume

by knowing the field (and its normal derivative) on any enclosing
surface1,2. Hence, information reaching the two-dimensional (2D)
surface is sufficient to recover all information inside the whole
volume. Based on these properties, Denis Gabor introduced the
holographic method, which provides an elegant way to back-
propagate a monochromatic wave field and obtain 3D images.
More recently, time-reversal mirrors exploited the same principles
extended to a broadband spectrum to create time-reversed waves.
This latter approach has been implemented with acoustic3,4,
elastic5, electromagnetic6 and water waves7,8. It requires the use of
emitter–receptor antennas positioned on an arbitrary enclosing
surface. The wave is recorded, digitized, stored, time-reversed
and rebroadcast by the antenna array. If the array intercepts the
entire forward-propagating wave with a good spatial sampling,
it generates a perfect backward-propagating copy. Note that this
process is difficult to implement in optics9,10, and the standard
solution is to work with monochromatic light and use nonlinear
regimes such as three-wave or four-wave mixing11,12.

Here, within the general concept of spacetime
transformations13–16, we completely revisit the holographic
method and introduce a new way to create wideband time-reversed
wave fields in 2D or 3D by manipulating time boundaries. Time
boundaries have recently received much attention because they
have been shown to play a major role in several phenomena, such
as time refraction, the dynamic Casimir effect, Hawking radiation,
photon acceleration and self-phase modulation17–26. In addition,
different suggestions to process wideband time reversal have been
proposed in optics to associate both time and spatial modulation
of the medium refractive index. These suggestions, mainly for 1D
propagation, rely on a dynamic tuning of photonic crystals and
metamaterials27,28.

Our approach is related to the Cauchy theorem, which states that
the wave field evolution can be deduced from the knowledge of this
wave field (and its time derivative) at one single time (the so-called
initial conditions)29. It is the dual time equivalent of standard time
reversal based on spatial boundaries. We use a sudden modification
of the wave propagation properties of the medium to create a time-
reversed wave. This time disruption realizes an instantaneous time
mirror (ITM) in the entire space without the use of any antenna
or memory. The information stored in the whole medium at one
instant plays the role of a bank of memories.

We will subsequently introduce the concept of the ITM and show
its first experimental demonstration. The experiment is spectacular
because it is conducted with water waves and can therefore be
observed with the naked eye. We first interpret the backward wave
propagation in the ITM as an emission by isotropic sources created
during the time disruption. These ‘Cauchy sources’ define a new
set of initial conditions for the wave field propagation after the
ITM, allowing us to revisit the Huygens–Fresnel principle. We
then discuss this experiment in terms of time discontinuities and
conservation laws. Finally, we analyse the spacetime symmetries of
ITMs compared to standard mirrors.

In the nineteenth century, Loschmidt challenged Boltzmann’s
attempt to describe irreversible macroscopic processes with
reversible microscopic equations30,31. He imagined a daemon
capable of instantaneously reversing all velocities of all particles
in a gas. Such an operation can be ascribed to a change in initial
conditions resulting in a time-reversed motion of all particles that
would return to their initial positions. The extreme sensitivity
to initial conditions that lies at the heart of chaotic phenomena
in nonlinear dynamics renders any such particulate scheme
impossible. Waves are more amenable, because they can be
described in many situations by a linear operator, and any error
in initial conditions will not suffer from chaotic behaviour. The
wave analogue of this Loschmidt daemon is related to the Cauchy
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Figure 1 | Schematic of the instantaneous time mirror. A wave source
emits at time t0 a wavepacket which propagates in a given medium. A
sudden spatially homogeneous disruption of the wave propagation
properties occurs in the entire medium at time tITM= t0+1t. It results in
the production of a counter-propagating time-reversed wave in addition to
the initial forward-propagating wave. The counter-propagating wave
refocuses at the source position at time t0+21t.

theorem. The latter states that the future evolution of any wave field
φ(r , t) at position r and time t can be inferred from the knowledge
of the set of initial conditions (φ,∂φ/∂t)tm , with the field amplitude
φ(r , tm) and time derivative ∂φ/∂t(r , tm) at a given time tm, in the
whole space. The analogue of the particle velocity reversal is to
take the new set of initial conditions (φ,−(∂φ/∂t))tm that causes a
time-reversed wave whose time dependence is inverted. However,
because of the wave superposition principle, the emergence of
this time-reversed wave is not limited to this choice of initial
conditions. For instance, the new initial condition (φ, 0)tm can
be split into 1/2(φ,∂φ/∂t)tm associated with a forward wave and
1/2(φ,−(∂φ/∂t))tm associated with a backward time-reversed
wave. This particular choice erases the arrow of time by starting
from a ‘frozen’ picture of the wave field at time tm with no favoured
direction of propagation. Similarly, a new set of initial conditions
(0, ∂φ/∂t)tm in which the wave field is null would also comprise a
backward-propagating wave with a negative sign. More generally,
the superposition of backward- and forward-propagating waves
results from the decoupling of the wave field from its time derivative
at a given time (see Fig. 1 and the Supplementary Information).
Because both are bound together by the wave celerity, its disruption
can lead to such decoupling. This offers a straightforward way to
experimentally implement an ITM.

In this study, we use gravity–capillary waves to implement the
concept of ITMs. Because the surface wave celerity depends on
the effective gravity, the disruption of the celerity is achieved by
applying a vertical jolt to the whole liquid bath. Figure 2a shows the
experimental set-up. A bath of water is placed on a shaker to control
its vertical motion. A plastic tip fixed on another shaker is used to
hit the liquid surface and generate a point source of waves at time
t0=0. Figure 2b shows a typical time sequence of the vertical tip and
bath motions used to generate the surface waves and implement the
ITM. An image sequence of the wave propagation on the bath taken
from above is shown in Fig. 2c. A circular wavepacket centred on
the impact point is emitted as the tip hits the surface. The average
wave propagation velocity is of the order of magnitude of 10 cm s−1.
After time tITM= 60ms, a vertical downward jolt is applied to the
bath. The bath acceleration reaches γm=−21g in approximately
2ms. The propagation of the initial outward-propagatingwave is not
qualitatively affected by this disruption. However, at the time of the
disruption, we observe the appearance of a backward-converging
circular wavepacket that diverges again upon passing through the
original impact point source.

Figure 3a is a time sequence of the profile of a wavepacket
propagating originally from left to right. The wavelength spreading
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Figure 2 | ITM experimental implementation. a, Experimental set-up.
A bath of water is placed on a shaker to apply a vertical jolt. Another shaker
is used to hit the water surface with a tip to generate surface waves. The
deflection of a laser beam is used to measure the local surface slope. The
laser is placed on a computer-controlled translation device to scan the
surface. b, Typical time variations of the vertical position of the emitter
(a tip) in blue and of the bath (in red) together with the bath acceleration γ
in an ITM experiment. γm is the maximum downward acceleration.1t is the
time delay between the wave emission and the jolt. c, Image sequence of an
ITM experiment (top view) with a point source, showing the divergent wave
and the time-reversed wave which diverges again after focusing back at the
source position. γm=−21g and1t=60 ms. Scale bar, 1 cm (see
Supplementary Video 1).

induced by dispersion is clearly visible. The ITM generates a time-
reversed wavepacket propagating in the opposite direction. The
resulting surface profile can be decomposed into the propagating
and counter-propagating wavepackets using Fourier analysis. We
observe that the shape of the backward wavepacket is very similar to
that of the initial wavepacket. Both profiles almost superimpose in
shape and position when measured at symmetrical times 1t from
the ITM. A phase shift of approximately π/2 is observed between
the forward and backward wavepackets at the time of the ITM.
In contrast with standard reflection, the backward wavepacket is
not spatially reversed. The time-reversed nature of the backward
wave allows the wavepacket to compensate for dispersion. The fast
short wavelengths will catch upwith the slow longwavelengths, thus
refocusing the wavepacket. Its amplitude depends linearly on the
vertical acceleration of the bath (Fig. 3b). The ITM is a broadband
time-reversal mirror. The time-reversed spectrum is independent of
the jolt amplitude and is nearly identical to that of the initial wave
(Fig. 3c). Note that, after the ITM, the high frequencies of the time-
reversedwaves are damped during the refocusing process, due to the
viscosity of water (see Fig. 3a).

Figure 4 shows two examples of ITMs performed on sources with
complex source shapes. In both cases, the ITM disruption occurs
long after the wave field has lost any resemblance to its initial shape
at the time of emission. The refocussing back to its initial shape
indicates the time-reversal nature of the process.

We now focus on the underlying principles of ITMs. ITMs are
implemented through a wave celerity disruption induced by the
gravity jolt. For the sake of generality, let us consider waves governed
by d’Alembert’s wave equation. We introduce a time-dependent
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Figure 3 | ITM on a wavepacket. a, Evolution of the profile of a wavepacket produced by a point source and later subjected to an ITM (see Supplementary
Video 2). The surface height (black solid line) is obtained by integrating slope measurements carried out on a line going through the emission point (see
Fig. 1 and Supplementary Video 1). To the original wavepacket propagating from left to right, a time-reversed one propagating from right to left is added as
the ITM occurs. The two counter-propagating components of the surface profile are separated using Fourier analysis: the dark blue line represents the
ongoing forward wave while the light blue line represents the time-reversed wave. b, Relative amplitude of the time-reversed wave normalized by the
forward wave amplitude as a function of the jolt amplitude. The measurement is performed in water at 1.6 cm from the point source. The ITM is applied
with a time delay of1t= 170 ms. The solid line is a linear fit which is coherent with the theory (see Supplementary Information). The error bar represents
the standard deviation obtained from a series of ten measurements. c, Normalized spectra of the time-reversed wavepacket (light blue) and of the initial
forward wavepacket (dark blue). Both are similar, with respective maximum frequency ωmax≈35 Hz and full-width at half-maximum1ω≈35 Hz.

phase velocity c(t) = c0/n(t), where n(t) is a time-dependent
index and c0 is the phase velocity in the absence of the ITM. The
disruption undergone by the medium in an ITM can be modelled
by a δ-Dirac function such that c(t)2= c20 (1+ αδ(t − tITM)). The
wave equation can be written as a nonhomogeneous equation in
which the equivalent source term s(r , t) is induced by the velocity
disruption (see Supplementary Information):

1φ (r , t)−
1
c20

∂2φ

∂t 2
(r , t)= s (r , t) (1)

with s(r , t)=−(α/c20 )δ(t− tITM)(∂2φ/∂t 2)(r , t).
The source term is localized in time but delocalized in space.

It corresponds to an instantaneous source that is proportional to
the second time derivative of the wave field at the instant tITM of
the disruption. Equation (1) can also be applied in the Fourier
domain to water waves to take account of dispersion. All the results
subsequently presented for d’Alembert waves can thus be recovered
forwaterwaves (see Supplementary Information). Considering both
the specific dispersion relation of these waves and the experimental
profile of the jolt, we used equation (1) to simulate ITM action in
our experiments (see Supplementary Information).

This description with a source term allows us to revisit the
Huygens–Fresnel theory. To model the wave propagation, Huygens
hypothesized that every point on a wavefront emits secondary
spherical wavelets32. The wavefront at any later time t + 1t
conforms to the upper envelope of the wavelets emanating from
every point on the wavefront at a prior instant t (Fig. 5a). However,
neglecting the backward-propagating envelope was arbitrary. Only
later did Fresnel33, followed by Kirchhoff34, prove that the wavelets

interfere destructively in the backward direction and maintain the
expected forward propagation, by adding a dipolar component to
the secondary sources.

In our experiment, the temporal disruptionmodifies the classical
interplay between the dipolar and monopolar sources that causes
a propagating wave. It suddenly creates real monopolar sources
s(r , t) instantaneously in the whole space (see equation (1)). These
sources radiate isotropically, generating an additional wave field,
both forward and backward (see Fig. 5a). Because they modify the
initial conditions of the wave field on a time boundary, these sources
can be termed Cauchy sources.

What is the relation between these Cauchy sources and the
change of initial conditions induced by an ITM? Just before the
ITM at t−ITM, the wave field is (φ, ∂φ/∂t)t−ITM . It is modified by the
disruption into (φ, ∂φ/∂t)t+ITM just after the ITM at t+ITM. The new
initial state is given by (see Supplementary Information):

(
φ,
∂φ

∂t

)
t+ITM

=

(
φ
(
r , t−ITM

)
,
∂φ

∂t
(
r , t−ITM

)
+α

∂2φ

∂t 2
(
r , t−ITM

))
(2)

This new initial state can be decomposed as previously discussed,
by using the superposition principle, into the superposition of
the original state of the unperturbed wave field (φ, ∂φ/∂t)t−ITM
plus an added state (0, α(∂2φ/∂t 2))t−ITM . This latter term can
again be decomposed into two states: α/2(∂φ/∂t , ∂2φ/∂t 2)t−ITM and
−(α/2)(∂φ/∂t ,−(∂2φ/∂t 2))t−ITM , which correspond to a forward-
propagating wave field and a time-reversed backward-propagating
wave field, respectively. Both wave fields are proportional to the
time derivative of the original incident wave field. Provided that
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Figure 4 | Image sequence of the instantaneous time reversal of a complex wave field. a,b, Source composed of tips that hit the surface positioned in the
shape of a Smiley (a; see Supplementary Video 3) or air blowing between two sealed Plexiglas plates placed at 1 cm above the bath with holes positioned in
the shape of an Ei�el tower (b; see Supplementary Video 4). In the sequence shown in b, the image without blowing has been subtracted as a reference.
c, Numerical simulation of b using the ITM model for water waves and the experimental jolt profile (see Supplementary Information and Video 5). The
images on the left show this emission process. At the instant of the ITM, the wave field features a complex interference pattern in which the original shape
is no longer apparent. As the time-reversed wave refocuses, the shape of the source becomes visible again. Time interval between two successive images is
26 ms for a and 66 ms for b and c. Scale bars, 1 cm. White dots indicate the position of the sources in the simulation c.

the bandwidth of the time-reversed wave is not too large compared
to the central frequency, these wave fields are proportional to the
original wave field itself, as observed in the experiments. Note
that the expected π/2 phase shift between the wave field and its
derivative is the one observed in the experiment (see Fig. 3a). In
practice, the time-reversed bandwidth is limited by that of the ITM
disruption (see Fig. 3c), which should be non-adiabatic for wave
propagation.

It is interesting to compare standard time-reversal mirrors
(TRMs) and ITMs. In contrast with a standard TRM
implementation, an ITM does not require the introduction of
localized transducers, and thus does not introduce perturbative
elements in the medium, spatial confinement or sampling issues to
fulfil the Nyquist criteria. An ITM, however, requires strong non-
adiabatic variations of the refractive index, which can be difficult
to implement, for instance, in the case of light. For 1D and 2D wave
control, nonlinear optics can induce instantaneous refractive index
changes by taking advantage of the off-axis or off-plane dimensions.
Phase transitions can also be used to enhance the amplitude of
the refractive index change. Note that standard TRMs with digital
recording are too slow to perform phase measurements for light
frequencies. Whereas TRM performances are determined by the
spectral response of the transducers, the limitation of ITMs is
mainly associated with the characteristic time of the disruption. An
ITM can be performed instantly at any time in the whole medium,
whereas standard TRMs must be delayed. Note, however, that the
use of digital memories enables more complex operations on the
re-emitted signal (controlled delay, filtering,. . .), which proves
interesting in several applications. In the ITM configuration, the
time-reversed (TR) wave field is associated with the derivative
of the initial wave field, as discussed previously (see Fig. 3a, see
Supplementary Information). In the standard TRM, the TR wave

field is associated with the antiderivative of the initial wave field4.
In the case of relatively narrow band wavepackets, this leads
respectively to an advanced or a retarded π/2 phase shift on the
TR wave field. Note that this derivation or anti-derivation has no
importance for TR applications and does not affect the refocusing.

ITMs can be analysed in the framework of time refraction17–20.
The instantaneous time disruption for the wave speed can be
considered as the limiting case of a rectangular time profile with
two discontinuities: at time t−ITM, the wave speed jumps from c0
to c1= c0/n1, and then at time t+ITM, changes back to its original
value c0. A temporal discontinuity in a homogeneous medium
conserves the momentum but not the energy. In our experiment,
this energy brought to the wave field is provided by the jolt. The time
analogue of the Fresnel formula can be obtained from conservation
laws18,19. Hence, a monochromatic wave ei(k·r−ω0t) of wavevector k
and angular frequency ω0 is split at the time discontinuity into
a ‘transmitted’ wave t01ei(k·r−ω1t) and a ‘reflected’ wave r01ei(k·r+ω1t),
where ω1=ω0/n1 is the angular frequency in medium 1, and t01
and r01 are temporal Fresnel coefficients for time refraction and
reflection, respectively. Each wave emerging from the first temporal
discontinuity will be split again into two waves at the second
discontinuity (see Fig. 5b). This time slab is the time analogue of
a Fabry–Pérot resonator. However, because of causality, multiple
reflections are not permitted18,19. The time-reversed wave field is
thus the result of interference between two backward waves with
opposite signs (because r01t10 =−r10t01). This explains why the
resulting time-reversed field is not the perfect time reverse of
the incident wave field φ, but rather of its derivative ∂φ/∂t , in
the limiting case of an instant disruption (see the Supplementary
Information).

We now focus on the spatio-temporal symmetries of ITMs using
plane waves, without loss of generality. A standard ‘spatial’ mirror
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(see schematic Fig. 5c) changes the sign of the wavevector normal
component to its surface k⊥. It changes the wave characteristics
as (k⊥, k‖, ω)→ (−k⊥, k‖, ω) by performing a space reversal in
the normal direction. The incident wave φ(x , . . . , t) becomes the
reflected wave φ(2xm − x , . . . , t) for a mirror positioned along
the x axis at xm. For a point source, the reflected wave appear as
though it is emitted from a virtual image located on the other side
of the mirror. As previously mentioned, ITM symmetry is given
by (k⊥, k‖,ω)→ (k⊥, k‖,−ω). This corresponds to a time reversal:
the incident wave φ(x , . . . , t) becomes the time-reversed wave
φ(x , . . . , 2tITM− t) for an ITM at tITM. The direction of propagation
for a plane wave is given by its phase k · r − ωt , which depends
on the relative signs of k components and ω. Hence, in terms of
symmetries, an ITM is equivalent to (k⊥,k‖,ω)→ (−k⊥,−k‖,ω).
Because all components of k are reversed, waves are backward-
propagating. In the spacetime representation of the ITM (see
Fig. 5d), thewaves refocus at their emitter positions, but on the other
time side of the mirror in the time domain. This can be observed
directly in the experiment on the spatio-temporal graph of waves
emitted from the point source undergoing an ITM (see Fig. 5e).
Note that this transformation is also directly related to materials
with a negative index. Time reversal and negative refraction have
been shown to be intimately linked processes35.

Manipulating the wave propagation from the time boundaries
offers a new approach to control and manipulate wave propagation.
Time disruptions create instantaneous time mirrors acting
simultaneously in the entire space and without the use of external
emitters. This approach will be generalized to create dynamic
control of the spatio-temporal boundaries of the medium.
Water waves present unique advantages for implementation and
visualization. In this perspective, several possibilities of precise
and rapid spatio-temporal wave control are offered, for instance,
by using ultrasound or electrostatic forces on the liquid surface.
In the future, we intend to use these concepts of spacetime
transformation to perform water-wave time cloaking and to revisit
Faraday instability as a periodic time Bragg mirror. From this new

perspective, we will experimentally address fundamental issues
such as the dynamic Casimir effect.

Data availability
The data that support the plots within this paper and other
findings of this study are available from the corresponding author
upon request.
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