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Preface

This book originates from the activity on 3D data processing and compression of

still and dynamic scenes of the Multimedia Technology and Telecommunications

Laboratory (LTTM) of the Department of Information Engineering of the Univer-

sity of Padova, which brought us to use Time-of-Flight cameras since 2008 and

lately the Microsoft KinectTM depth measurement instrument. 3D data acquisition

and visualization are topics of computer vision and computer graphics interest with

several aspects relevant also for the telecommunication community active on multi-

media.

This book treats a number of methodological questions essentially concerning the

best usage of the 3D data made available by ToF cameras and KinectTM, within a

general approach valid independently of the specific depth measurement instrument

employed.

The practical exemplification of the results with actual data given in this book does

not only confirm the effectiveness of the presented methods, but it also clarifies them

and gives the reader a sense for their concrete possibilities.

The reader will note that the ToF camera data presented in this book are obtained

by the Mesa SR4000. This is because Mesa Imaging kindly made available their

ToF camera and their guidance for its best usage in the experiments of this book.

The products of any other ToF cameras manufacturers could be equivalently used.

This book has become what it is thanks to the contributions of a number of peo-

ple which we would like to acknowledge. First of all, we are very grateful to all the

students who lately worked in the LTTM laboratory and among them Enrico Cap-

pelletto, Mauro Donadeo, Marco Fraccaro, Arrigo Guizzo, Giulio Marin, Alessio

Marzo, Claudio Paolini, Mauro Tubiana, Lucio Bezze, Fabrizio Zanatta and in par-

ticular Fabio Dominio, who deserves our special acknowledgment for his great help

in the experiments reported in this book. We would also like to thank Davide Cerato

and Giuliano Pasqualotto (with 3Deverywhere) who worked on a number of data

fusion topics with us, Simone Carmignato and Stefano Pozza (with DIMEG of the

University of Padova) for their help on the metrological analysis of depth cameras,

Gerard Dahlman and Tierry Oggier for the great collaboration we received from

Mesa Imaging, Arrigo Benedetti (now with Microsoft, formerly with Canesta) and
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Abbas Rafii (formerly with Canesta) for the organization of student exchanges be-

tween Canesta and our laboratory.

This book benefited from the discussions and the supportive attitude of a number

of colleagues among which we would like to recall David Stoppa and Fabio Re-

mondino (with FBK), Roberto Manduchi (with U.C.S.C.), Luciano Gamberini (with

the Psychology Department of the University of Padova), Marco Andreetto (with

Google), Tim Drotz (with SoftKinetic), Eran Ripple (with Primesense) and Radu B.

Rusu (with Willow Garage). We must also thank Ruigang Yang, Lian Wang, Ryan

Crabb, Jiejie Zhu, James E. Davis, Zhigeng Pan, Chenxi Zhang, Cha Zhang, Timo

Kahlmann and Hilmer Ingesand for the figures showing the results of their research

activity in the book.

Padova, Carlo Dal Mutto

December 2011 Pietro Zanuttigh

Guido Maria Cortelazzo
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Chapter 1

Introduction

The acquisition of the geometry description of a dynamic scene has always been a

very challenging task which required state-of-the-art technology and instrumenta-

tion only affordable by research labs or major companies until not too long ago. The

recent arrival on the market of matricial Time-of-Flight range cameras (or simply

ToF cameras in this book) and the even more recent introduction of the Microsoft

KinectTM range camera (or simply Kinect in the sequel), accompanied by massive

sales of this product, has made widely available depth data streams at video rate of

generic still or dynamic scenes. A truly amazing possibility considering that until

now streaming at such rates was possible only with standard image sequences. In

the computer graphics, computer vision and image processing communities a large

interest arose for these devices and questions of the following kind have become

common: “What is a ToF camera?”, “How does the KinectTM work?”, “Are there

ways to improve the low resolution and high noise characteristics of ToF cameras

data?”, “How far can I go with the depth data provided by a 150 Euros KinectTM

with respect to those provided by a few thousand Euros ToF camera?”. The motiva-

tion of this book can be summarized by saying that it tries to address this kind of

questions from a data user (and not from a device technology developer) point of

view.

This book firstly describes the technology behind ToF cameras and the KinectTM

and then focuses on how to make the best from the data produced by ToF cam-

eras and KinectTM, i.e., on the data processing methods best suited to depth data.

The depth nature of the data is used as a leverage to present approaches as much

device-independent as possible. In this sense the book refers as often as possible

to depth cameras and it makes the distinction between ToF cameras and KinectTM

only when necessary.

The book perspective centered on the depth nature of the data, rather than on

the devices, gives a common framework not only suited to both ToF and KinectTM

current data, but also ready to be applied to the new devices of these families that

will reach the market in the next years.

Although ToF cameras and KinectTM as depth cameras, i.e, as providers of depth

data, are functionally equivalent, it is also important to remember that there exist

1



2 1 Introduction

fundamental technological differences between them which cannot be ignored.

The synopsis of distance measurement methods of Figure 1.1, derived from [1], of-

fers a good framework to introduce such differences. For the purposes of this

book it suffices to note that the reflective optical methods of Figure 1.1 are typically

classified into passive and active. Passive range sensing refers to 3D distance mea-

surement by way of radiation (typically, but not necessarily, in the visible spectrum)

already present in the scene, and stereo-vision systems are a classical example of

this family of methods; active sensing refers, instead, to 3D distance measurement

obtained by projecting in the scene some form of radiation as made, for instance, by

ToF cameras and by light coding systems of which the KinectTM is a special case.

The operation of ToF cameras and KinectTM involves a number of different con-

cepts about ToF sensors, imaging systems and computer vision recalled in the next

two sections of this chapter in order to equip the reader with the notions needed for

the remainder of the book. The next two sections can be safely skipped by readers

already acquainted with ToF technology and active triangulation. The depth or dis-

tance measurements taken by the systems of Figure 1.1 can be typically converted

into depth maps, i.e., data with each spatial coordinate (x,y) associated to depth in-

formation z, and the depth maps can be combined into full all-around 3D models [2].

NON-CONTACT DISTANCE MEASUREMENT METHODS

REFLECTIVE TRANSMISSIVE

NON-OPTICAL OPTICAL

PASSIVE ACTIVE

STERE0
STRUCTURE FROM 

MOTION

SHAPE FROM 

SILHOUETTE
...

LIGHT CODING

TRIANGULATION ACTIVE STEREO

TIME-OF-FLIGHT

Fig. 1.1 Taxonomy of distance measurement methods (derived from [1]).



1.1 Basics of ToF sensors 3

1.1 Basics of ToF sensors

A point-wise ToF sensor estimates its radial distance from a scene point by the

Time-of-Flight or RADAR (Radio Detection And Ranging) principle. In simple

words, since the electro-magnetic radiation travels in the air at light speed c ≈
3× 108[m/s] , the distance ρ covered at time τ by an optical radiation is ρ = cτ .

Figure 1.2 shows the typical ToF measurement scheme: the radiation emitted at time

0 by the ToF sensor transmitter on the left travels straight towards the scene for a

distance ρ , it is then reflected back by the scene surface, it travels back again for

a distance ρ and at time τ it reaches the ToF sensor receiver, ideally co-positioned

with the transmitter. Since at time τ the path length covered by the radiation is 2ρ ,

device 

scene ! 

Fig. 1.2 ToF operating principle.

the relationship between ρ and τ in this case is

ρ =
cτ

2
(1.1)

which is the basis of ToF cameras distance measurements.

In order to measure scene surfaces rather than scene points, a number of distance

measurement systems mount a point-wise ToF sensor on a scene scanning mecha-

nism. It is rather typical moving the ToF sensor along a linear support, as in the case

of air-bone land surveillance LIDARs (Light Detection And Ranging) systems, or

along a vertical linear support placed on a rotating platform, with consequent motion

both in vertical and horizontal directions, as in the case of the scan-systems used for

topographic or architectural surveys (e.g., [3, 4, 5, 6]). Since any time-sequential

scanning mechanism takes some time in order to scan a scene, such systems are

intrinsically unsuited to acquire dynamic scenes, i.e., scenes with moving objects.

Differently from the systems which acquire the scene geometry by a point-wise ToF

sensor mounted on time-sequential scanning mechanisms, matricial ToF cameras

estimate the scene geometry in a single shot by a matrix of NR ×NC ToF sensors

(where NR is the number of matrix rows and NC the number of columns) each one

independently but simultaneously measuring the distance of a scene point in front of

them. ToF cameras deliver depth maps at video rates, or measurement matrices with

entries giving the distance between the matrix pixel and the corresponding scene
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point.

In spite of the conceptual simplicity of relationship (1.1), its implementation

hides tremendous technological challenges because it involves the light speed. For

example, since according to (1.1) it takes 5[ps] to cover a 1[mm] path, distance mea-

surements of nominal distance resolution of 1[mm] need a clock capable to measure

5[ps] time steps. The implementation of this type of devices and their integration

into matricial configurations are fundamental issues of current ToF systems devel-

opment. Different clock technology choices lead to different ToF cameras types.

The most common choices are the continuous wave (CW) intensity modulation ap-

proach introduced in [7], the optical shutter (OS) approach of [8, 9] and the single-

photon avalanche diodes (SPAD) approach [10]. Since all the commercial solutions

of [11, 12, 13] are based on CW-ToF technology, this book focuses only on this

technology, which is presented in detail in Chapter 2. An exhaustive review of the

state-of-the-art in ToF technology can be found in [14].

1.2 Basics of imaging systems and KinectTM operation

The KinectTM is a special case of 3D acquisition systems based on light coding.

Understanding its operation requires a number of preliminary notions, such as the

concepts of pin-hole camera model, camera projection matrix and triangulation,

which are given in the next section. The technology behind the KinectTM will then

be described in detail in Chapter 3.

1.2.1 Pin-hole camera model

Consider a 3D reference system (with axes x, y and z), called Camera Coordinates

System (CCS), with origin at O, called center of projection, and a plane parallel to

the (x,y)-plane intersecting the z-axis at negative z-coordinate f , called sensor or

image plane S as shown in Figure 1.3. The axis orientations follow the so-called

right-hand convention. Consider also a 2D reference system

u = x+ cx (1.2)

v = y+ cy (1.3)

associated to the sensor, called S-2D reference system, oriented as shown in Figure

1.3 a. The intersection c of the z-axis with the sensor plane has coordinates c =
[u = cx,v = cy]

T . The set of sensor points p, called pixels, of coordinates p = [u,v]T

obtained from the intersection of the rays connecting the center of projection O with

all the 3D scene points P with coordinates P = [x,y,z]T is the scene footprint on the

sensor S. The relationship between P and p, called central or perspective projection,

can be readily shown by triangles similarity (see Figure 1.3 b and c) to be
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O 

P 

x 

z 

y 

p 

f 

u 

v 

a)

O 

P 

z 

x 

f 

O

f

z

x

f

cu x
=

-

b)

O 

P 

z 

y 

f 

O

f

z

y

f

cv y
=

-

c)

Fig. 1.3 Perspective projection: a) scene point P is projected to sensor pixel p; b)horizontal section

of a); c) vertical section of a).
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u− cx = f x
z

v− cy = f
y
z

(1.4)

where the distance | f | between the sensor plane and the center of projection O is

typically called focal length. In the adopted notation f is the negative coordinate

of the location of the sensor plane with respect to the z-axis. The reader should be

aware that other books adopt a different notation, where f denotes the focal length,

hence it is a positive number and the z coordinate of the sensor plane is denoted as

− f .

Perspective projection (1.4) is a good description of the geometrical relationship

between the coordinates of the scene points and those of an image of them obtained

by a pin-hole imaging device with pin-hole positioned at center of projection O.

Such a system allows a single light ray to go throughout the pin-hole at O. For a

number of reasons in imaging systems it is more practical to use optics, i.e., suitable

sets of lenses, instead of pin-holes. Quite remarkably the ideal model of an optics,

called thin-lens model, maintains relationship (1.4) between the coordinates of P

and of p if the lens optical center (or nodal point) is in O and the lens optical axis,

i.e., the line orthogonally intersecting the lens at its nodal point, is orthogonal to the

sensor. If a thin lens replaces a pin-hole in Fig. 1.3 c, the optical axis coincides with

the z-axis of the CCS.

1.2.2 Intrinsic and extrinsic camera parameters

Projective geometry associates to each 2D point p with Cartesian coordinates

p = [u,v]T of a plane a 3D representation, called homogeneous coordinates p̃ =
[hu,hv,h]T , where h is any real constant. The usage of h = 1 is rather common and

[u,v,1]T is often called the extended vector of p [15].

The coordinates of p= [u,v]T can be obtained from those of p̃= [hu,hv,h]T dividing

them by the third coordinate h. Vector p̃ can be interpreted as the 3D ray connecting

the sensor point p with the center of projection O.

In a similar way each 3D point P with Cartesian coordinates P = [x,y,z]T can be

represented in homogeneous coordinates by a 4D vector P̃ = [hx,hy,hz,h]T where h

is any real constant. Vector [x,y,z,1]T is often called the extended vector of P.

The coordinates of P = [x,y,z]T can be obtained from P = [hx,hy,hz,h]T dividing

them by the fourth coordinate h. An introduction to projective geometry suitable to

its computer vision applications can be found in [16].

The homogeneous coordinates representation of p allows to rewrite non-linear

relationship (1.4) in a convenient matrix form, namely:

z




u

v

1


=




f 0 cx

0 f cy

0 0 1






x

y

z


 (1.5)
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Note that the left side of (1.5) represents p in 2D homogeneous coordinates but the

right side of (1.5) represents P in 3D cartesian coordinates. It is straightforward to

add a column with all 0 entries at the right of the matrix in order to represent P

in homogeneous coordinates too. This latter representation is more common than

(1.5), which nevertheless is often adopted [15] for its simplicity.

Digital sensor devices are typically planar matrices of rectangular sensor cells

hosting photoelectric conversion systems in CMOS or CCD technology in the case

of photo-cameras or video-cameras or single ToF receivers in the case of ToF cam-

eras, as explained in the next chapter. Customarily they are modeled as a rectangular

lattice ΛS with horizontal and vertical step-size ku and kv respectively as shown in

Figure 1.4 a.

Given the finite sensor size, only a rectangular window of ΛS made by NC columns

and NR rows is of interest for imaging purposes. In order to deal with normalized

(cu,cv) u 

v 

(ku,0) (2ku,0) (3ku,0) ((NC-1)ku,0) 

(0,kv) 

(0,2kv) 

(0,3kv) 

(0,(NR-1)kv) 

(0,0) ((NC-1),0) u 

(0, (NR-1)) 

v 

(1,0) (2,0) 

(0,1) 

(0,2) 

(0,3) 

(3,0) 

a) b)

Fig. 1.4 2D sensor coordinates: a) rectangular window of a non-normalized orthogonal lattice; b)

rectangular window of a normalized orthogonal lattice.

lattices with origin at (0,0) and unitary pixel coordinates uS ∈ [0, ...,NC − 1] and

vS ∈ [0, ...,NR −1] in both u and v direction, relationship (1.5) is replaced by

z




u

v

1


= K




x

y

z


 (1.6)

where K is the intrinsic parameters matrix defined as

K =




fx 0 cx

0 fy cy

0 0 1


 (1.7)

with fx = f ku the x-axis focal length of the optics, fy = f kv the y-axis focal length

of the optics, cx and cy the (u,v) coordinates of the intersection of the optical axis

with the sensor plane. All these quantities are expressed in [pixel], i.e., since f is in

[mm], ku and kv are assumed to be [pixel]/[mm].
In many practical situations it is convenient to represent the 3D scene points not
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with respect to the CCS, but with respect to a different easily accessible reference

system conventionally called World Coordinate System (WCS), in which a scene

point denoted as PW has coordinates PW = [xW ,yW ,zW ]T . The relationship between

the representation of a scene point with respect to the CCS, denoted as P, and its

representation with respect to the WCS, denoted as PW is

P = RPW + t (1.8)

where R and t are a suitable rotation matrix and translation vector respectively.

By representing PW at the right side in homogeneous coordinates P̃W = [hxW ,hyW ,hzW ,h]T

and choosing h = 1, relationship (1.8) can be rewritten as

P = [R t ]P̃W (1.9)

In this case the relationship between a scene point represented in homogeneous

coordinates with respect to the WCS and its corresponding pixel in homogeneous

coordinates too, from (1.6) becomes

z




u

v

1


= KP = K[R t ]P̃W = MP̃W = M




xW

yW

zW

1


 (1.10)

where the 3×4 matrix

M = K[R t ] (1.11)

is called projection matrix. Matrix M depends on the intrinsic parameters matrix K

and on the extrinsic parameters R and t of the imaging system.

As a consequence of distortions and aberrations of real optics, the coordi-

nates p̂ = (û, v̂) of the pixel actually associated to scene point P with coordinates

P = [x,y,z]T in the CCS system do not satisfy relationship (1.6). The correct pixel

coordinates (u,v) of (1.6) can be obtained from the distorted coordinates (û, v̂) ac-

tually measured by the imaging system by inverting suitable distortion models, i.e.,

as pT =Ψ−1(p̂T), where Ψ(·) denotes the distortion transformation.

Anti-distortion model (1.12), also called Heikkila model, has become popular since

it is adequate for the distortions of most imaging systems and there are effective

methods for computing its parameters [17]:

[
u

v

]
= Ψ−1(p̂T) =

[
û(1+ k1r2 + k2r4 + k3r6)+2d1v̂+d2(r

2 +2û2)
v̂(1+ k1r2 + k2r4 + k3r6)+d1(r

2 +2v̂2)+2d2û)

]
(1.12)

where r =
√
(û− cx)2 +(v̂− cy)2, parameters ki with i = 1,2,3 are constants ac-

counting for radial distortion and di with i = 1,2 for tangential distortion. A number

of other more complex models, e.g. [18], are also available.

Distortion parameters
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d = [k1,k2,k3,d1,d2] (1.13)

are intrinsic parameters to be considered together with [ f ,ku,kv,cx,cy].
The estimation of intrinsic and extrinsic parameters of an imaging system is called

geometrical calibration as discussed in Chapter 4. Suitable tools for this task are

given by [19] and [20].

1.2.3 Stereo vision systems

A stereo vision (or just stereo) system is made by two standard (typically identical)

cameras partially framing the same scene. Such a system can always be calibrated

and rectified [15]. It then becomes equivalent to a stereo vision system made by

two (identical) standard cameras with coplanar and aligned imaging sensors and

parallel optical axis. Chapter 4 reports about popular calibration and rectification

procedures. The theory behind them, known as epipolar geometry, can be found in

classical computer vision books such as [15, 16].

Let us introduce next the minimal stereo vision notation. The two cameras of the

(calibrated and rectified) stereo vision system S are the left camera L (also called

reference camera) and the right camera R (also called target camera). Each camera,

as seen above, has its own 3D CCS and 2D reference systems as shown in Figure

1.5. Namely the L camera has CCS with coordinates (xL,yL,zL), also called L-3D

reference system, and a 2D reference system with coordinates (uL,vL). The R cam-

era has CCS with coordinates (xR,yR,zR), also called R-3D reference system, and a

2D reference system with coordinates (uR,vR). A common convention is to consider

!" 

#$ 

%$ 

&" 

'" 

!( 

#) 

%) 

&( 

'( 

* + 

Fig. 1.5 Stereo vision system coordinates and reference systems.

the L-3D reference system as the reference system of the stereo vision system, and

to denote it as S-3D reference system.

In the case of a calibrated and rectified stereo vision system, a 3D point P with

coordinates P = [x,y,z]T with respect to the S-3D reference system is projected to

the pixels pL and pR of the L and R cameras with coordinates pL = [uL,vL]
T and

pR = [uR = uL − d,vR = vL]
T respectively as shown in Figure 1.6. From the rela-

tionships concerning the triangle with vertices at pR, P and pL it can be shown that
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in a rectified setup, where points pL and pR have the same vertical coordinates, the

difference between their horizontal coordinates d = uL −uR, called disparity, is in-

versely proportional to the depth value z of P through the well-known triangulation

relationship

z =
b | f |

d
(1.14)

The reader interested in the derivation of Equation 1.14 is referred to [15, 16]. In

(1.14) b is the baseline, i.e, the distance between the origins of the L-3D and the

R-3D reference systems, and | f | is the focal length of both cameras. Pixels pL and

pR are called conjugate. From the 2D coordinates of pL and the associated depth z

obtained from (1.14), the coordinates x and y of the corresponding 3D point P rep-

resented with respect to the CCS can be computed by inverting projection equation

(1.6) relatively to camera L, i.e.:




x

y

z


= K−1

L




uL

vL

1


z (1.15)

where K−1
L is the inverse of the rectified intrinsic parameters matrix (1.7) of camera

L. Therefore, once a couple of conjugate pixels pL and pR of a stereo image pair

becomes available, from them the 3D coordinates P= [x,y,z]T of a scene point P can

be computed from (1.14) and (1.15), usually called triangulation or computational

stereopsis.

The availability of a pair of conjugate pixels is a tricky part of the above proce-

dure, first of all because such a pair may not exist because of occlusions and even if

it exists it may not be straightforward finding it.

Detecting conjugate pixels between the stereo image pair, typically called the corre-

spondence problem, is one of the major challenges of a stereo vision algorithm. The

methods proposed for this task are typically divided in local and global approaches.

Local methods consider only local similarity measures between the region surround-

ing pL and regions of similar shape around all the candidate conjugate points pR of

the same row. The selected conjugate point is the one maximizing the similarity

measure, a method typically called Winner Takes All (WTA) strategy.

Global methods do not consider each couple of points on its own but estimate all

the disparity values at once exploiting global optimization schemes. Global meth-

ods based on Bayesian formulations are currently receiving great attention. Such

techniques generally model the scene as a Markov random field (MRF) and in-

clude within a unique framework cues coming from the local comparisons between

the two images and scene depth smoothness constraints. Global stereo vision algo-

rithms typically estimate the disparity image by minimizing a cost function made

by a data term representing the cost of local matches, similar to the one of local

algorithms (e.g., covariance) and a smoothness term defining the smoothness level

of the disparity image by explicitly or implicitly accounting for discontinuities [15].

Although specific algorithms may have a considerable impact on the solution

of the correspondence problem, the ultimate quality of 3D stereo reconstruction
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xL xR 
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z 
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pL pR 

Fig. 1.6 Triangulation with a pair of aligned and rectified cameras.

inevitably depends also on scene characteristics. This can be readily realized con-

sidering the case of a scene without geometric or color features, such as a straight

wall of uniform color. The stereo images of such a scene will be uniform, and since

no corresponding pixels can be obtained from them, no depth information about the

scene can be obtained by triangulation. Active triangulation used in the so called

light coding systems introduced next, offers an effective way to cope with the corre-

spondence problem issues.

1.2.4 Light coding systems

Equation (1.14) derives from the relationships concerning the triangles in Figure

1.6. The fact that pL and pR in standard stereo systems are due to the light reflected

by P towards the two cameras is secondary. The main point is the triangle geometry

between rays PpL, PpR and pL pR. In this perspective inspired by a projective geom-

etry point of view, in which image points are equivalent to rays exiting two centers

of projection, any device capable of projecting rays between its center of projection
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and the scene points can be considered functionally equivalent to a standard cam-

era. This is the case of light projectors, since any light ray emitted by them connects

their center of projection to the scene point P by the light pattern pixel pA projected

to P, as shown in Figure 1.7.

A stereo vision system where one of the two cameras is replaced by a projector,

i.e., made by a camera C and a projector A as shown in Figure 1.7, is called active

or light coding system. Camera C has CCS system with coordinates (xC,yC,zC) also

called C-3D reference system and a 2D reference system with coordinates (uC,vC) as

shown in Figure 1.7. Projector A similarly has CCS with coordinates (xA,yA,zA) also

called A-3D reference system and a 2D reference system with coordinates (uA,vA).
As in the case of standard passive stereo systems, active systems of the type shown

C A 

pC pA vA vC 

uC uA 
xC 

yC 

zC 

P = [x, y, z]T 

xA 

zA 

yA 

Fig. 1.7 Active triangulation by a system made by a camera C (blue) and a light projector A

(green).

in Figure 1.7 can be calibrated and rectified [21] in order to simplify the depth esti-

mation process.

Figure 1.7 shows the projection of light pattern pixel pA with coordinates pA =
[uA,vA]

T in the A-2D reference system to 3D scene point P with coordinates

P = [x,y,z]T in the C-3D reference system. If P is not occluded it projects the light

radiant power received by the projector to pixel pC of camera C establishing tri-

angle pCPpA. If the active system is calibrated and rectified, pC has coordinates

pC = [uC = uA+d,vC = vA]. As in the case of standard stereo systems, since pA and

pC are conjugate points, once their coordinates are known the depth z of P can be

computed from (1.14), which in this case is called active triangulation since A is an

active system, and the 3D coordinates of P can be computed from (1.15) as above.

The effectiveness of active systems with respect to the correspondence problem
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can be easily appreciated in the previously considered example of a straight wall of

uniform color. In this case the light pattern pixel pA of the projector “colors” with

its radiant power the scene point P to which it projects. In this way the pixel pC of

the camera C where P is projected (obviously in presence of a straight wall there are

not occlusions) receives from P the “color” of pA and becomes recognizable among

its neighboring pixels. In this case conjugate points pA and pC exist and can also be

easily detected by adopting suitable light patterns [21].

Light coding systems can therefore provide depth information also in case of scenes

without geometry and color features where standard stereo systems fail to give any

depth data.

The characteristics of the projected patterns are fundamental for the correspon-

dence problem solution and the overall system performance and their study attracted

a lot of attention. The projection of sequences of various tens of light patterns was

typical of early light coding methods and this limited the range of measurable dis-

tances and their usage to still scenes. This type of systems were and continue to be

the common choice for 3D modeling of still scenes. For the 3D modeling methods

used in this field see for instance [2, 22]. In general, active techniques are recognized

to be more expensive and slower than passive methods but way more accurate and

robust than them. In order to measure distances of dynamic scenes, i.e., scenes with

moving objects, subsequent light coding methods focused on reducing the num-

ber of projected patterns to few units or to a single pattern, e.g., [23, 24, 25]. The

KinectTM belongs to this last family of methods as seen in greater detail in Chapter

3.

1.3 Plan of the book

This introduction motivates the book and provides the basics for understanding the

ToF sensors and the imaging systems behind light coding systems and KinectTM.

The two subsequent chapters are devoted to the operation principles of ToF cam-

eras and KinectTM, both because they are not yet widely known and also because

this helps understanding the general characteristics of their data (e.g., the high noise

and limited resolution typical of current ToF camera data or the strong edge-artifacts

of current KinectTM data).

Chapter 2 describes the continuous wave ToF sensors operation, their practical is-

sues and the projection aspects of ToF cameras, i.e., of the imaging systems support-

ing such sensors. Chapter 3 considers the operation of KinectTM and the artifacts

typical of its depth measurements.

Given the relatively short life-time of matricial ToF cameras and KinectTM tech-

nologies it cannot come as a surprise that the current quality of their depth data may

not be comparable with that of the images provided by today’s photo-cameras or

video-cameras (simply called standard cameras in the sequel). In front of the high

quality/price ratio offered by image and video technology, the idea of combining

low-resolution and high noise depth data with high resolution and low-noise images



14 1 Introduction

is rather intriguing. The interest is both of the conceptual nature for its methodolog-

ical implications and of the practical nature for the substantial depth data improve-

ments at very low costs this synergy promises. The second part of this book focuses

on the data processing methods suited to depth information and to the combination

of this information with standard images and video streams.

Clearly the effective joint usage of depth and color data streams requires first

the calibration of all the deployed acquisition devices and their accurate registra-

tion. This is a fundamental and delicate issue, addressed in Chapter 4. Chapter 4

considers first the calibration of the single devices (standard cameras, ToF cameras,

Kinect) and then the joint calibration between a ToF camera or KinectTM and one

or more standard cameras.

Chapter 5 presents methods for improving the characteristics of an original depth

data stream, such as spatial resolution, depth resolution accuracy, signal-to-noise ra-

tio, edge-artifacts and similar with the assistance of one or two standard cameras.

In particular improving the spatial resolution of depth data (operation typically re-

ferred as super-resolution) is of special interest since one of the major drawbacks of

the data currently produced by ToF cameras is their low spatial resolution. Super-

resolution can be obtained just by pairing a depth camera with a single standard

camera, which is a setup extremely interesting for its simplicity and inexpensive-

ness. The super-resolution processing techniques used for depth data often extend

methods originally proposed for images by suitably taking into account, together

with the high resolution color stream, the depth nature of the considered data, which

is rather different from the radiometric intensity nature of images. Data fusion refers

to the more general task of synergycally combining two or more depth descriptions

of the same scene captured by different systems operating synchronously but inde-

pendently with the purpose of delivering a unique output stream with characteristics

(e.g., resolution accuracy, signal-to-noise ratio, edge-artifacts and similar) improved

with respect to those of the original inputs. The data fusion procedures introduced

in Chapter 5 concern setups made by a depth camera and a pair of standard cameras,

i.e., concern a depth data stream coming from a depth camera and another one com-

ing from a stereo vision algorithm fed by the two standard cameras. A major point of

interest of this approach is the vast variety of stereo vision techniques available for

this application, each one contributing different cost/performance characteristics.

The last chapter of this book presents an example of application where depth

data can be a major asset: scene segmentation, or the recognition of the regions cor-

responding to the different scene objects. This is a classical problem traditionally

dealt by way of images. Unfortunately this approach, called image segmentation, is

an ill-posed problem, not completely solved after decades of research. The use of

depth together with color can drastically simplify the segmentation task and deliver

segmentation tools based on combined depth and color information which outper-

form the segmentation techniques based on a single cue only (either depth or color).

This fact has received special attention in video-matting, a strictly related applica-

tion (namely the separation of foreground objects from the background) widely used

in the film-making industry.



References 15

References

1. J.-Y. Bouguet, B. Curless, P. Debevec, M. Levoy, S. Nayar, and S. Seitz, “Overview of active

vision techniques. siggraph 2000 course on 3d photography.” Workshop, 2000.

2. F. Bernardini and H. Rushmeier, “The 3d model acquisition pipeline,” Comput. Graph. Forum,

vol. 21, no. 2, pp. 149–172, 2002.

3. “Leica.” http://hds.leica-geosystems.com.

4. “Riegl.” http://www.riegl.com/.

5. “Faro.” http://faro.com.

6. “Zoller and Frolich.” http://www.zf-laser.com/.

7. R. Lange, 3D Time-Of-Flight distance measurement with custom solid-state image sensors in

CMOS/CCD-technology. PhD thesis, University of Siegen, 2000.

8. G. Iddan and G. Yahav, “G.: 3d imaging in the studio (and elsewhere,” In: SPIE, pp. 48–55,

2001.

9. G. Yahav, G. Iddan, and D. Mandelboum, “3d imaging camera for gaming application,” in

ICCE, 2007.

10. L. Pancheri, N. Massari, F. Borghetti, and D. Stoppa, “A 32x32 spad pixel array with nanosec-

ond gating and analog readout,” in International Image Sensor Workshop (IISW), 2011.

11. “Mesa imaging.” http://www.mesa-imaging.ch.

12. “Pmd technologies.” http://www.pmdtec.com/.

13. “Softkinetic.” http://www.softkinetic.com/.

14. D. Stoppa and F. Remondino, eds., TOF Range-Imaging Cameras. Springer, 2012.

15. R. Szeliski, Computer Vision: Algorithms and Applications. New York: Springer, 2010.

16. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press, 2004.

17. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image cor-

rection,” in CVPR, 1997.

18. D. Claus and A. Fitzgibbon, “A rational function lens distortion model for general cameras,”

in CVPR, 2005.

19. J.-Y. Bouguet, “Camera calibration toolbox for matlab.”

20. “OpenCV.” http://opencv.willowgarage.com/wiki/.

21. M. Trobina, “Error model of a coded-light range sensor,” tech. rep., Communication Technol-

ogy Laboratory Image Science Group, ETH-Zentrum, Zurich, 1995.

22. B. Curless and M. Levoy, “A volumetric method for building complex models from range

images,” in Proceedings of the 23rd annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’96, (New York, NY, USA), pp. 303–312, ACM, 1996.

23. L. Zhang, B. Curless, and S. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,”

in Proceedings. 2003 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, CVPR 2003., 2003.

24. L. Zhang, B. Curless, and S. Seitz, “Rapid shape acquisition using color structured light and

multi-pass dynamic programming,” in In The 1st IEEE International Symposium on 3D Data

Processing, Visualization, and Transmission, pp. 24–36, 2002.

25. J. Salvi, J. Pags, and J. Batlle, “Pattern codification strategies in structured light systems,”

Pattern Recognition, vol. 37, pp. 827–849, 2004.





Chapter 2

CW Matricial Time-of-Flight Range Cameras

Matricial Time-of-Flight range cameras (simply ToF cameras in this book) are ac-

tive sensors capable to acquire the three-dimensional geometry of the framed scene

at video rate (up to 50 [ fps]). Commercial products are currently available from

independent manufacturers, such as MESA Imaging [1] (Figure 2.1), PMD Tech-

nologies [2] and Optrima SoftKinetic [3]. Microsoft [4] is another major actor in

the ToF camera technology arena since at the end of 2010 it acquired Canesta, a

U.S. ToF camera manufacturer. Other companies (e.g., Panasonic [5] and IEE [6])

and research institutions (e.g., CSEM [7] and Fondazione Bruno Kessler [8]) are

also working on ToF cameras.

Fig. 2.1 Example of commercial ToF camera: MESA Imaging SR4000TM.

As anticipated in Section 1.1, this chapter examines the continuous wave ToF

technology, the one adopted in the sensors of all the current commercial products.

Section 2.1 presents the operating principles of such technology and Section 2.2 the

practical issues at the basis of its performance limits and noise characteristics. The

characteristics of ToF cameras, i.e., of the imaging system supporting ToF sensors,

are considered in Section 2.3. Section 2.4 has the conclusion and the further reading.

17
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2.1 CW ToF sensors: operation principles

According to the scheme of Figure 1.2, continuous wave ToF cameras send towards

the scene an infra-red (IR) optical signal sE(t) of amplitude AE modulated by a

sinusoid of frequency fmod , namely

sE(t) = AE [1+ sin(2π fmodt)] (2.1)

Signal sE(t) is reflected back by the scene surface and travels back towards a re-

ceiver co-positioned with the emitter.

The signal reaching the receiver, because of the energy absorption generally associ-

ated to the reflection, because of free-path propagation attenuation (proportional to

the square of the distance) and because of the non-instantaneous propagation of IR

optical signals leading to a phase delay ∆φ , can be written as

sR(t) = AR[1+ sin(2π fmodt +∆φ)]+BR (2.2)

where AR is the attenuated amplitude of the received signal and BR is the interfering

radiation at the IR wavelength of the emitted signal reaching the receiver. Figure 2.2

shows an example of emitted and received signals. Quantity AR (from now denoted
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Fig. 2.2 Example of emitted signal sE(t) (in blue) and received signal sR(t) (in red).

by A) is called amplitude, since it is the amplitude of the useful signal. Quantity

AR +BR (from now denoted by B) is called intensity or offset, and it is the aver-

age1 of the received signal (with a component AR due to the modulation carrier and

1 It is common to call A and B amplitude and intensity respectively, even though both A and B are

IR radiation amplitudes (measured in [V ]). A is also the amplitude of the received sinusoidal signal.
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an interference component BR due to background illumination). According to this

notation, Equation (2.2) can be rewritten as

sR(t) = Asin(2π fmodt +∆φ)+B (2.3)

The unknowns of Equation (2.3) are A, B and ∆φ , where A and B as IR radiation

amplitudes are measured in volt [V ] and ∆φ as a phase value is a pure number. The

most important unknown is ∆φ , since CW ToF cameras infer distance ρ from ∆φ
from (1.1) and (2.2)

∆φ = 2π fmodτ = 2π fmod

2ρ

c
(2.4)

or equivalently

ρ =
c

4π fmod

∆φ (2.5)

Unknowns A and B as it will be seen are important for SNR considerations.

In order to estimate the unknowns A, B and ∆φ , the receiver samples sR(t) at

least 4 times per period of the modulating signal [9]. For instance, if the modulation

frequency is 30[MHz], the received signal must be sampled at least at 120[MHz].
Assuming a sampling frequency FS = 4 fmod , given the 4 samples per period s0

R =
sR(t = 0), s1

R = sR(t = 1/FS), s2
R = sR(t = 2/FS) and s3

R = sR(t = 3/FS), the receiver

estimates values Â,B̂ and ∆̂φ as

(Â, B̂, ∆̂φ) = arg min
A,B,∆φ

3

∑
n=0

{sn
R − [Asin(

π

2
n+∆φ)+B]}2 (2.6)

As described in [10] and [11], after some algebraic manipulations from (2.6) one

obtains

Â =

√(
s0

R − s2
R

)2
+
(
s1

R − s3
R

)2

2
(2.7)

B̂ =
s0

R + s1
R + s2

R + s3
R

4
(2.8)

∆̂φ = arctan2
(
s0

R − s2
R,s

1
R − s3

R

)
(2.9)

The final distance estimate ρ̂ can be obtained combining (2.5) and (2.9) as

ρ̂ =
c

4π fmod

∆̂φ (2.10)

2.2 CW ToF sensors: practical implementation issues

The above derivation highlights the conceptual steps needed to measure the distance

ρ of a scene point from a CW ToF sensor, with co-positioned emitter and receiver.
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In practice a number of non-idealities, such as phase wrapping, harmonic distortion,

noise sources, saturation and motion blur, must be taken into account.

2.2.1 Phase wrapping

The first fundamental limitation of CW ToF sensors comes from the fact that the

estimate of ∆̂φ is obtained from an arctangent function, which as well-known has

codomain [−π
2
, π

2
]. Therefore the estimates of ∆̂φ can only assume values in this

interval. Since the physical delays entering the phase shift ∆φ of Equation (2.4) can

only be positive, it is possible to shift the arctan(·) codomain to [0,π] in order to

have a larger interval available for ∆̂φ . Moreover, the usage of arctan2(·, ·) allows

to extend the codomain to [0,2π]. From Equation (2.10) it is immediate to see that

the estimated distances are within range [0, c
2 fmod

]. If for instance fmod = 30[MHz],

the interval of measurable distances is [0−5][m].

Since ∆̂φ is estimated modulo 2π from (2.10) and the distances greater than c
2 fmod

correspond to ∆̂φ greater than 2π , they are wrongly estimated. In practice the dis-

tance returned by (2.10) corresponds to the remainder of the division between the

actual ∆φ and 2π , multiplied by c
2 fmod

, a well-known phenomenon called phase

wrapping since it may be ragarded as a periodic wrapping around 2π of phase val-

ues ∆̂φ . Clearly if fmod increases, the interval of measurable distances becomes

smaller, and vice-versa. Possible solutions to overcome phase wrapping include the

usage of multiple modulation frequencies or of non-sinusoidal wave-forms (e.g.,

chirp wave-forms).

2.2.2 Harmonic distortion

The generation of perfect sinusoids of the needed frequency is not straightfor-

ward. In practice [12], actual sinusoids are obtained as low-pass filtered versions

of squared wave-forms emitted by LEDs. Moreover, the sampling of the received

signal is not ideal, but it takes finite time intervals, as shown in Figure 2.3. The

combination of these two factors introduces an harmonic distortion in the estimated

phase-shift ∆̂φ and consequently in the estimated distance ρ̂ . Such harmonic dis-

tortion leads to a systematic offset component dependent on the measured distance.

A metrological characterization of this harmonic distortion effect is reported in [13]

and [14].

Figure 2.4 shows that the harmonic distortion offset exhibits a kind of oscillatory

behavior which can be up to some tens of centimeters, clearly reducing the accuracy

of distance measurements. As reported in Chapter 4, this systematic offset can be

fixed by a look-up-table (LUT) correction.
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Fig. 2.3 Pictorial illustration of non instantaneous sampling of the received signal sR(t).
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Fig. 2.4 Left: systematic distance measurements offset due to harmonic distortion before compen-

sation (from [13]). Right: systematic distance measurements offset after compensation (courtesy

of MESA Imaging).

2.2.3 Photon-shot noise

Because of the light-collecting nature of the receiver, the acquired samples s0
R, s1

R, s2
R

and s3
R are affected by photon-shot noise, due to dark electron current and photon-

generated electron current as reported in [10]. Dark electron current can be reduced

by lowering the sensor temperature or by technological improvements. Photon-

generated electron current, due to light-collection, cannot be completely eliminated.

Photon-shot noise is statistically characterized by a Poisson distribution. Since Â, B̂,

∆̂φ and ρ̂ are computed directly from the corrupted samples s0
R, s1

R, s2
R and s3

R, their

noise distribution can be computed by propagating the Poisson distribution through

Equations (2.7-2.10). A detailed analysis of error and noise propagations can be

found in [11].

Quite remarkably the probability density function of the noise affecting estimate
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ρ̂ according to [10] and [11] can be approximated by a Gaussian 2 with standard

deviation

σρ =
c

4π fmod

√
2

√
B

A
(2.11)

Standard deviation (2.11) determines the precision (repeatability) of the distance

measurement and it is directly related to fmod , A and B. In particular, if the re-

ceived signal amplitude A increases, the precision improves. This suggests that the

precision improves as the measured distance decreases and the reflectivity of the

measured scene point increases.

Equation (2.11) indicates also that as the interference intensity B of the received sig-

nal increases, the precision gets worse. This means that the precision improves as

the scene background IR illumination decreases. Note that B may increase because

of two factors: an increment of the received signal amplitude A or an increment of

the background illumination. While in the second case the precision gets worse, in

the first case there is an overall precision improvement, given the squared root de-

pendence of B in (2.11). Finally observe that B cannot be 0 as it depends on carrier

intensity A.

If modulation frequency fmod increases the precision improves. The modulation

frequency is an important parameter for ToF sensors, since fmod is also related to

phase wrapping and to the maximum measurable distance. In fact, if fmod increases

the measurement precision improves, while the maximum measurable distance de-

creases (and vice-versa). Therefore there is a trade-off between distance precision

and range. Since generally fmod is a tunable parameter, it can be adapted to the

distance precision and range requirements of the specific application.

2.2.4 Other noise sources

There are several other noise sources affecting the distance measurements of ToF

sensors, namely flicker and a kTC noise. The receiver amplifier introduces a Gaussian-

distributed thermal noise component. Since the amplified signal is quantized in or-

der to be digitally treated, quantization introduces another error source, customarily

modeled as random noise. Quantization noise can be controlled by the number of

used bits and it is typically neglectable with respect to the other noise sources. All

the noise sources, except photon-shot noise, may be reduced by adopting high qual-

ity components. A comprehensive description of the various ToF noise sources can

be found in [9, 10, 11, 12].

Averaging distance measurements over several periods is a classical provision to

2 An explicit expression of the Gaussian probability density function mean is not given in [10, 11].

However, the model of [11] provides implicit information about the mean which is a function of

both A and B, and contributes to the distance measurement offset. For calibration purposes the

non-zero mean effect can be included in the harmonic distortion.
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mitigate the noise effects. If N is the number of periods, the estimated values Â, B̂

and ∆̂φ become

Â =

√(
1
N ∑

N−1
n=0 s4n

R − 1
N ∑

N−1
n=0 s4n+2

R

)2
+
(

1
N ∑

N−1
n=0 s4n+1

R − 1
N ∑

N−1
n=0 s4n+3

R

)2

2
(2.12)

B̂ =
∑

N−1
n=0 s4n

R +∑
N−1
n=0 s4n+1

R +∑
N−1
n=0 s4n+2

R +∑
N−1
n=0 s4n+3

R

4N
(2.13)

∆̂φ = arctan2
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N
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s4n
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N

N−1
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s4n+2
R ,

1

N

N−1
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s4n+1
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N

N−1

∑
n=0

s4n+3
R

)
(2.14)

where s4n
R = sR(4n/FS), s4n+1

R = sR((4n + 1)/FS), s4n+2
R = sR((4n + 2)/FS) and

s4n+3
R = sR((4n+3)/FS).

This provision reduces but does not completely eliminate the noise effects. The

averaging intervals used in practice are typically between 1[ms] and 100[ms]. For

instance in case of fmod = 30MHz, where the modulating sinusoid period is 33.3×
10−9[s], the averaging intervals concern a number of modulating sinusoid periods

from 3×104 to 3×106. The averaging interval length is generally called integration

time, and its proper tuning is very important in ToF measurements. Long integration

times lead to good ToF distance measurements repeatability.

2.2.5 Saturation and motion blur

Although rather effective against noise, averaging over multiple periods introduces

dangerous side effects, such as saturation and motion blur. Saturation occurs when

the received photons quantity exceeds the maximum quantity that the receiver can

collect. This phenomenon is particularly noticeable in presence of external IR illu-

mination (e.g., direct solar illumination) or in case of highly reflective objects (e.g.,

specular surfaces). The longer the integration time, the higher is the quantity of col-

lected photons and the most likely is the possibility of saturation. Specific solutions

have been developed in order to avoid saturation, i.e., in-pixel background light sup-

pression and automatic integration time setting [12, 10].

Motion blur is another important phenomenon accompanying time averaging. It

is caused, as in the case of standard cameras, by the fact that the imaged objects

may move during integration time. Time intervals of the order of 1−100[ms] make

likely objects movement unless the scene is perfectly still. In case of moving ob-

jects, the samples entering Equations (2.12 - 2.14) do not concern a specific scene

point at subsequent instants as it should be, but different scene points at subse-

quent instants and expectedly cause distance measurement artifacts. The longer the

integration time, the higher the likelihood of motion blur (but better the distance
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measurement precision). Integration time is another parameter to set in light of the

specific application characteristics, needed for their imaging operation.

2.3 Matricial ToF cameras

Let us recall that the ToF sensors considered so far are single devices made by

a single emitter and a co-positioned single receiver. Such an arrangement is only

functional to single point distance measurements. The structure of actual ToF cam-

eras is more complex than that of the ideal single ToF sensor cells considered so

far, both because of the matrix nature of their ToF sensors and because of the optics

needed for their imaging operation.

2.3.1 Matricial ToF sensors

A ToF camera sensor may be conceptually interpreted as a matricial organization

of a multitude of single devices, each one made by an emitter and a co-positioned

receiver as considered so far. In practice implementations based on a simple jux-

taposition of a multitude of the previously considered single-point measurement

devices are not feasible. Currently it is not possible to integrate NR ×NC emitters

and NR ×NC receivers in a single chip, especially for high values of NR and NC as

needed in imaging applications. However, it is not true that each receiver requires

a specific co-positioned emitter, instead a single emitter may provide an irradiation

that is reflected back by the scene and collected by a multitude of receivers close

to each other. Once the receivers are separated from the emitters, the former can

be implemented as CCD/CMOS lock-in pixels [9, 10] and integrated in a NR ×NC

matrix. The lock-in pixels matrix is commonly called ToF camera sensor (or simply

sensor), and for example in the case of the MESA Imaging SR4000 it is made by

176×144 lock-in pixels.

The current matricial ToF sensor IR emitters are common LEDs and they cannot

be integrated, but can be positioned in a configuration mimicking the presence of

a single emitter co-positioned with the center of the receivers matrix, as shown in

Figure 2.5 for the case of the MESA Imaging SR4000. Indeed the sum of all the IR

signals emitted by this configuration can be considered as a spherical wave emitted

by a single emitter, called simulated emitter (Figure 2.5), placed at the center of the

emitters constellation.

The fact that the actual emitters arrangement of Figure 2.5 is only an approxima-

tion of the non-feasible juxtaposition of single ToF sensor devices with emitter and

receiver perfectly co-positioned introduces artifacts, among which a systematic dis-

tance measurement offset larger for the closer than for the further scene points.

Figure 2.6 shows the actual emitters distribution of the MESA Imaging SR4000.
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EMITTERS 

SIMULATED EMITTER 

RECEIVERS 

Fig. 2.5 Scheme of a matricial ToF camera sensor. The CCD/CMOS matrix of lock-in pixels is

in red. The emitters (blue) are distributed around the lock-in pixels matrix and mimic a simulated

emitter co-positioned with the center of the lock-in pixel matrix (light blue).

Fig. 2.6 The emitters of the MESA Imaging SR4000 are the red LEDs.

2.3.2 ToF Camera imaging characteristics

ToF cameras can be modeled as pin-hole imaging systems since their structure,

schematically shown in Figure 2.7, similarly to standard cameras, has two major

components, namely the sensor made by a NR ×NC matrix of lock-in pixels as ex-

plained in Section 2.3.1 and the optics.

ToF cameras, differently from standard cameras, have also a third important compo-

nent, namely an IR emitters set, typically placed near the optics as shown in Figure

2.7. Figure 2.7 also shows that the IR signal sent by the emitters set travels toward

the scene (blue arrow), it is reflected by the different scene portions, it travels back

to the camera and through the optics (red arrow) it is finally received by the differ-

ent lock-in pixels of the ToF sensor. The signaling process shown by Figure 2.7 is

the basis of the relationship between the various scene portions and the respective
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emitters 

sensor 

optics 

Fig. 2.7 ToF camera structure and signaling: propagation towards the scene (blue arrow), reflection

(from the black surface on the right), back-propagation (red arrow) towards the camera through the

optics (green) and reception (red sensor).

sensor pixels.

All the pin-hole imaging system notation and concepts introduced in Section

1.2 apply to ToF cameras. The notation will be used with pedix T in order to re-

call that it refers to a ToF camera. The CCS of the ToF camera will be called the

uT 

vT 

xT 

yT 

zT 

Fig. 2.8 2D T -reference system (with axes uT − vT ) and 3D T -reference system (with axes xT −
yT − zT ).

3D−T reference system. The position of a scene point with respect to the 3D−T

reference system will be denoted as PT and its coordinates as PT = [xT ,yT ,zT ]
T

.

Coordinate zT of PT is called the depth of point PT and the zT -axis is called

depth axis. The coordinates of a generic sensor pixel pT of lattice ΛT with the re-

spect to the 2D-T reference system are represented by vector pT = [uT ,vT ]
T

, with

uT ∈ [0, ...,NC] and vT ∈ [0, ...,NR]. Therefore the relationship between the 3D coor-

dinates PT = [xT ,yT ,zT ]
T

of a scene point PT and the 2D coordinates pT = [uT ,vT ]
T
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of the pixel pT receiving the IR radiation reflected by PT is given by the perspective

projection equation rewritten next for clarity’s sake

zT




uT

vT

1


= KT




xT

yT

zT


 (2.15)

where the ToF camera intrinsic parameters matrix KT is defined as in (1.7).

Because of lens distortion, coordinates pT = [uT ,vT ]
T of (2.15) are related to the co-

ordinates p̂T = [ûT , v̂T ]
T actually measured by the system by a relationship of type

p̂T = [ûT , v̂T ]
T =Ψ(pT), where Ψ(·) is a distortion transformation as described in

Section 1.2.2. Model (1.12) supported by the camera calibration procedure [15] is

widely used also with ToF cameras, as well as other more complex models, e.g.,

[16].

As already explained, each sensor pixel pT directly estimates the radial distance

r̂T from its corresponding scene point PT . With minor and neglectable approxima-

tion due to the non-perfect localization between emitters, pixel pT and 3D−T ref-

erence system origin, the measured radial distance r̂T can be expressed as

r̂T =
√

x̂2
T + ŷ2

T + ẑ2
T =

∣∣∣
∣∣∣
[
x̂2

T , ŷ
2
T , ẑ

2
T

]T
∣∣∣
∣∣∣
2

(2.16)

From radial distance r̂T measured at pixel pT with distorted coordinates p̂T =
[ûT , v̂T ]

T
the 3D coordinates of PT can be computed according to the following

steps:

1. Given the lens distortion parameters, estimate the non-distorted 2D coordinates

pT = [uT ,vT ]
T =Ψ−1(p̂T ), where Ψ−1(·) is the inverse of Ψ(·);

2. The value ẑT can be computed from 2.15 and 2.16 as

ẑT =
r̂T∣∣∣

∣∣∣K−1
T [uT ,vT ,1]

T
∣∣∣
∣∣∣
2

(2.17)

where K−1
T is the inverse of KT ;

3. The values x̂T and ŷT can be computed by inverting (2.15), i.e., as




x̂T

ŷT

ẑT


= K−1

T




uT

vT

1


 ẑT (2.18)

The operation of a ToF camera as imaging system can be summarized as follows.

Each ToF camera sensor pixel, at each period of the modulation sinusoid, collects

four samples s0
R, s1

R, s2
R and s3

R of the IR signal reflected by the scene. Every N peri-

ods of the modulation sinusoid, where N is a function of the integration time, each

ToF sensor pixel estimates an amplitude value Â, an intensity value B̂, a phase value

∆̂φ , a radial distance value r̂T and the 3D coordinates P̂T = [x̂T , ŷT , ẑT ]
T

of the cor-

responding scene point.
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Since amplitude Â, intensity B̂ and depth ẑT are estimated at each sensor pixel, ToF

cameras handle them in matricial structures, and return them as 2D maps. Therefore

a ToF camera, every N periods of the modulation sinusoid (which certainly corre-

spond to several tens of times per second), provides the following types of data:

• An amplitude map ÂT , i.e., a matrix obtained by juxtaposing the amplitudes es-

timated at all the ToF sensor pixels. It is defined on lattice ΛT and its values,

expressed in volt [V ], belong to the pixel non-saturation interval. Map ÂT can

be modeled as realization of a random field AT defined on ΛT , with values (ex-

pressed in volt [V ]) in the pixel non-saturation interval.

• An intensity map B̂T , i.e., a matrix obtained by juxtaposing the intensity values

estimated at all the ToF sensor pixels. It is defined on lattice ΛT and its values,

expressed in volt [V ], belong to the pixel non-saturation interval. Map B̂T can

be modeled as realization of a random field BT defined on ΛT , with values (ex-

pressed in volt [V ]) in the pixel non-saturation interval.

• A depth map ẐT , i.e, a matrix obtained by juxtaposing the depth values estimated

at all the ToF sensor pixels. It is defined on lattice ΛT and its values, expressed

in [mm], belong to interval
[
0,rMAX = c

2 fmod

)
. Map ẐT can be considered as re-

alization of a random field ZT defined on ΛT , with values (expressed in [mm]) in

[0,rMAX ).

By mapping amplitude, intensity and depth values to interval [0,1] the three maps

ÂT , B̂T and ẐT can be represented as images as shown in Figure 2.9 for a sample

scene. For the scene of Figure 2.9 images ÂT and B̂T are very similar because the

scene illumination is rather constant.

Fig. 2.9 Example of ÂT , B̂T and ẐT (in this order from left to right in the figure).

2.3.3 Practical imaging issues

As expected the actual imaging behavior of ToF cameras is more complex than that

of a simple pin-hole system and some practical issues must be taken into account.

First of all, it is not true that a sensor pixel is associated to a single scene point,

but it is associated to a finite scene area, as shown in Figure 2.10. For this reason,

each pixel receives the radiation reflected from all the points of the corresponding
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Fig. 2.10 Finite size scene area (blue) associated to a ToF sensor pixel (red).

scene area. If the scene area is a flat region with somehow constant reflectivity,

the approximation that there is a single scene point associated to the specific pixel

does not introduce any artifact. However, if the area crosses a reflectivity discon-

tinuity, the values of ÂT (pT ) and B̂T (pT ) estimated by the correspondent pixel pT

average somehow its different reflectivity values. A worse effect occurs if the area

associated to pT crosses a depth discontinuity. In this case assume that a portion of

the area is at closer depth, called znear, and another portion at further depth, called

z f ar. The resulting depth estimate ẐT (pT ) is a convex combination of znear and z f ar,

where the combination coefficients depend on the percentage of area at znear and at

z f ar respectively reflected on pT . The pixels associated to such depth estimates are

commonly called flying pixels. The presence of flying pixels leads to severe depth

estimation artifacts, as shown by the example of Figure 2.11.

Multi-path propagation is a major interference in ToF camera imaging. As shown

Fig. 2.11 An example of flying pixels at the depth edge between object and wall.

in Figure 2.12, an optical ray (red) incident to a non-specular surface is reflected in

multiple directions (green and blue), a phenomenon commonly called scattering.

The ideal propagation scenario of Figure 1.2, with co-positioned emitters and re-

ceivers, considers only the presence of the green ray of Figure 2.12, i.e., the ray
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back reflected in the direction of the incident ray and disregards the presence of

the other (blue) rays. In practical situations, however, the presence of the other rays

may not always be neglectable. In particular, the ray specular to the incident ray

direction with respect to the surface normal at the incident point (thick blue ray) is

generally the reflected ray with greatest radiometric power. All the reflected (blue)

Fig. 2.12 Scattering effect.

rays may first hit others scene points and then travel back to the ToF sensor, affecting

therefore the distance measurements of other scene points. For instance, as shown

in Figure 2.13, an emitted ray (red) may be firstly reflected by a point surface (A)
with a scattering effect. One of the scattered rays (orange) may then be reflected by

another scene point (B) and travel back to the ToF sensor. The distance measured by

the sensor pixel relative to B is therefore a combination of two paths, namely path

to ToF camera - B - ToF camera and path ToF camera-A-B-ToF camera. The coeffi-

cients of such a combination depend on the optical amplitude of the respective rays.

Since the radial distance of a scene point P from the ToF camera is computed from

A 

B 

Fig. 2.13 Multi-path phenomenon: the incident ray (red) is reflected in multiple directions (blue

and orange rays) by the surface at point A. The orange ray reaches then B and travels back to the

ToF sensor.
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the time-length of the shortest path between P and the ToF camera, the multi-path

effect leads to over-estimate the scene points distances.

Multi-path is one of the major error sources of ToF cameras distance measure-

ments. Since multi-path is scene dependent it is very hard to model. Currently there

is no method for its compensation, but there are practical provisions that might alle-

viate the multi-path effects, as explained in [17].

2.4 Conclusion and further reading

This chapter introduces the basic operation principles of continuous wave ToF sen-

sors. A comprehensive review of current ToF technology, not only of CW type, is

given by in [18]. A classical and accurate description of CW ToF operation and

technology is given by [9]. In depth analysis of ToF noise sensor sources and prac-

tical provisions against noise can be found in [12, 13, 10, 11]. ToF cameras image

formation can be approximated by the pinhole model, typical of standard cameras,

recalled in Section 1.2. More extensive treatments on topics such as image forma-

tion, projective geometry and camera calibration can be found in [19, 20, 15, 16].

More on ToF camera calibration will be seen in Chapter 4.

ToF cameras can be considered as special Multiple Input - Multiple Output

(MIMO) communication systems, where the emitters array is the input array and

the lock-in matrix of the ToF sensor the output array. This kind of framework in

principle would allow to approach multi-path as customarily done in communica-

tion systems. However the number of input and output channels of a ToF camera (for

the MESA SR4000 there would be 24 input channels, associated to the emitters, and

176×144 output channels associated to the lock-in pixels of the sensor) is way su-

perior to the complexity of the MIMO systems used in telecommunications (where

the number of inputs and outputs rarely exceeds the 10 units). The current multi-path

analysis methods used for MIMO systems cannot be applied to ToF cameras, how-

ever the application of communications systems techniques for characterizing ToF

cameras operations and improving their performances is an attractive possibility.

References

1. “Mesa imaging.” http://www.mesa-imaging.ch.

2. “Pmd technologies.” http://www.pmdtec.com/.

3. “Softkinetic.” http://www.softkinetic.com/.

4. “Microsoft R©.” http://www.microsoft.com.

5. “Panasonic d-imager.” http://www.panasonic-electric-works.com.

6. “Iee.” http://www.iee.lu.

7. “Csem.” http://www.csem.ch.

8. “Fbk.” http://www.fbk.eu.

9. R. Lange, 3D Time-Of-Flight distance measurement with custom solid-state image sensors in

CMOS/CCD-technology. PhD thesis, University of Siegen, 2000.



32 2 CW Matricial Time-of-Flight Range Cameras

10. B. Buttgen, T. Oggier, M. Lehmann, R. Kaufmann, and F. Lustenberger, “Ccd/cmos lock-in

pixel for range imaging: Challenges, limitations and state-of-the-art,” in 1st range imaging

research day, 2005.

11. F. Muft and R. Mahony, “Statistical analysis of measurement processes for time-of flight cam-

eras,” Proceedings of SPIE the International Society for Optical Engineering, 2009.

12. B. Buttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel

structures,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, pp. 1512

–1525, july 2008.

13. T. Kahlmann and H. Ingensand, “Calibration and development for increased accuracy of 3d

range imaging cameras,” Journal of Applied Geodesy, vol. 2, pp. 1–11, 2008.

14. C. Uriarte, B. Scholz-Reiter, S. Ramanandan, and D. Kraus, “Modeling distance nonlinear-

ity in tof cameras and correction based on integration time offsets,” in Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications, Springer Berlin / Heidel-

berg, 2011.

15. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image cor-

rection,” in CVPR, 1997.

16. D. Claus and A. Fitzgibbon, “A rational function lens distortion model for general cameras,”

in CVPR, 2005.

17. M. Imaging, “Sr4000 user manual.” http://www.mesa-imaging.ch.

18. D. Stoppa and F. Remondino, eds., TOF Range-Imaging Cameras. Springer, 2012.

19. R. Szeliski, Computer Vision: Algorithms and Applications. New York: Springer, 2010.

20. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press, 2004.



Chapter 3

Microsoft KinectTM Range Camera

The Microsoft KinectTM range camera (for simplicity just called KinectTM in the

sequel) is a light-coded range camera capable to estimate the 3D geometry of the

acquired scene at 30 fps with VGA (640×480) spatial resolution. Besides its light-

coded range camera, the KinectTM also has a color video-camera and an array of

microphones. In the context of this book the KinectTM light-coded range camera is

the most interesting component, and the name KinectTM will be often referred to it

rather than to the whole product.

From the functional point of view the KinectTM range camera is very similar to

the ToF cameras introduced in the previous chapter, since they both estimate the

3D geometry of dynamic scenes, but current KinectTM technology is totally differ-

ent. The KinectTM range camera is based on the PrimesensorTM chip produced by

Primesense [1]. Although the KinectTM (Figure 3.1) is the most popular consumer

electronic product based on such a chip, it is not the only one. Asus X-tion Pro and

X-tion Pro Live [2] are other products with a range camera based on the same chip.

All these range cameras, as it will be seen, support an IR video-camera and an IR

Fig. 3.1 Microsoft KinectTM.

projector projecting on the scene IR light coded patterns in order to obtain a matri-

cial implementation of the active triangulation principle for estimating scene depth

and 3D geometry.

This chapter firstly describes how active triangulation can be implemented in a

33
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matricial form by means of different light coding techniques. The general opera-

tion of KinectTM can be inferred from that of light-coding systems, of which the

KinectTM is a special case, but its implementation details are still undisclosed. Nev-

ertheless some characteristics of its functioning can be derived from its operation as

reported by some reverse engineering studies [3, 4].

The practical imaging issues responsible for the KinectTM error sources and data

characteristics are finally considered in the last section of this chapter, as previously

done for ToF cameras.

3.1 Matricial active triangulation

The KinectTM range camera has the structure shown in Figure 1.7, reported also in

Fig. 3.2, with a camera C and a projector A, and in principle it implements active

triangulation. Namely, given a point pC in the image acquired by C and its conjugate

point pA in the pattern projected by A, the depth z of the 3D point P associated to

pC with respect to the C-3D reference system is computed by active triangulation as

described in Section 1.2.4.

In order to use a pattern invisible to human eyes, both projector and camera operate

at IR wavelengths. The data made available from the KinectTM range camera at

30 [ fps] are:

• the image acquired by C, that in the KinectTM case is an IR image called IK and

it is defined on the lattice ΛK associated to the C sensor. The axes that identify

ΛK coincide with uC and vC of Figure 1.7. The values of IK belong to interval

[0,1]. Image IK can be considered a realization of a random field IK defined on

ΛK , with values in [0,1].
• The estimated disparity map, called D̂K is defined on the lattice ΛK associated

to the C sensor. The values of D̂K belong to interval [dmin,dmax], where dmin and

dmax are the minimum and maximum allowed disparity values. Disparity map D̂K

can be considered a realization of a random field DK defined on ΛK , with values

in [dmin,dmax].
• The estimated depth map computed by applying (1.14) to D̂K , called ẐK is de-

fined on the lattice ΛK associated to the C sensor. The values of ẐK belong to

the interval [zmin,zmax], where zmin =
b f

dmax
and zmax =

b f
dmin

are the minimum and

maximum allowed depth values respectively. Depth map ẐK can be considered

as a realization of a random field ZK defined on ΛK , with values in [zmin,zmax].

The spatial resolution of IK , D̂K and ẐK is 640× 480. The minimum measurable

depth is 0.5[m] and the nominal maximum depth is15[m]. According to [3], the

values of b and f are 75[mm] and 585.6[pxl] respectively. Therefore the minimum

allowed disparity is 2[pxl] and the maximum is 88[pxl]. Figure 3.3 shows an exam-

ple of IK , D̂K and ẐK acquired by the KinectTM range camera.

Section 1.2 introduced active triangulation applied to single pixels pC of the

NR ×NC images IK acquired by camera C. The KinectTM, instead, simultaneously
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Projected Pattern Acquired Image 

Scene 

A C 

P 

pC pA 

Fig. 3.2 Matricial active triangulation flow: pixel pA (green dot) is coded in the pattern. The pattern

is projected to the scene and acquired by C. The 3D point associated to pA is P and the conjugate

point of pA (green dot) in IK is pC (blue dot). The correspondence estimation algorithm (red dashed

arrow) estimates the conjugate points.

applies active triangulation to all the NR×NC pixels of IK , a procedure called matri-

cial active triangulation, which requires a number of special provisions discussed

in the next subsection.

The major difficulty with matricial active triangulation is keeping the correspon-

dence problem as simple as in the single point case seen in Section 1.2. This issue

can be handled by designing the patterns projected by A by the light coding methods

described next. The specific design of the light-coded pattern is the actual core of

the KinectTM range camera. The next two subsections present current light coding

techniques and give some hints about the specific KinectTM operation.
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3.1.1 Light Coding Techniques

Let us assume that the projected pattern has NA
R ×NA

C pixels pi
A, i = 1, ...,NA

R ×NA
C

where NA
R and NA

C are the number of rows and columns of the projected pattern re-

spectively. In order to apply active triangulation, each pixel needs to be associated

to a code-word, i.e., a specific local configuration of the projected pattern. The pat-

tern undergoes projection by A, reflection by the scene and capture by C (see Figure

3.2). A correspondence estimation algorithm analyzes the received code-words in

the acquired images IK in order to compute the conjugate of each pixel of the pro-

jected pattern. The goal of pattern design (i.e., code-words selection) is to adopt

code-words effectively decodable even in presence of non-idealities of the pattern

projection/acquisition process, as pictorially indicated in Fig. 3.2 .

Let us first consider what makes a code-word highly decodable. It is intuitive that

a) b) c)

Fig. 3.3 Example of IK , D̂K and ẐK acquired by the KinectTM range camera.

the more the code-words are different the more robust is the coding against distur-

bances and self-interferences. For a given cardinality of the total number of possible

code-words, the smaller is the number of used code-words, the greater become the

differences between the various code-words and the more robust is the code. Since

for a calibrated and rectified setup conjugate points lie on horizontal lines, the cod-

ing problem can be independently formulated for each row in order to keep as low

as possible the cardinality of the total number of possible code-words. Assume that

for each row of the projected pattern there are N = NA
C pixels p1

A, p2
A, ..., pN

A to be

encoded with N code-words w1,w2, ...,wN . Each code-word is represented by a spe-

cific local pattern distribution. Clearly, the more the local pattern distribution of a

single pixel differs from the local pattern distribution of the other pixels of the same

row, the more robust will be the coding.

A code-words alphabet can be implemented by a light projector considering that

it can produce nP different illumination values called pattern primitives (e.g., nP = 2

for a binary black-and-white projector, nP = 28 for a 8−bit gray-scale projector and

nP = 224 for a RGB projector with 8−bit color channels). The local distribution of

a pattern for a pixel pA is given by the illumination values of the pixels in a window

around pA. If the window has nW pixels, there are n
nW
P possible pattern configura-

tions on it. From the set of all possible configurations, N configurations need to be

chosen as code-words. What is projected to the scene and acquired by C is the pat-
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tern resulting from the code-words relative to all the pixels of the projected pattern.

Let us recall that, because of the geometrical properties of a calibrated and rec-

tified system described in Section 3.1, a pixel pA of the pattern, with coordinates

pA = [uA,vA]
T , is projected to the scene point P, with coordinates P = [x,y,z]T , and

acquired by C in pC, with coordinates pC = [uA+d,vA]
T . The projection/acquisition

process introduces an horizontal shift d proportional to the inverse of the depth z of

P according to (1.14). Disparity shift d is the most important quantity in the active

triangulation process, and it needs to be accurately estimated since it carries the

3D geometry information relative to the considered scene point P (obtainable from

(1.15)). The disparity values in matricial active triangulation are handled as arrays,

like the disparity map D̂K of KinectTM introduced in Section 3.1.

In the pattern projection/acquisition process, there are a number of factors trans-

forming the projected pattern and introducing artifacts which must be taken into

consideration:

a) Perspective distortion. Since the scene points may have different depth value z,

neighboring pixels of the projected pattern may not be mapped to neighboring

pixels of IC. In this case the local distribution of the acquired pattern becomes a

distorted version of the relative local distribution of the projected pattern.

b) Color or gray-level distortion due to scene color distribution and reflectivity

properties of the acquired objects. The projected pattern undergoes reflection

(and absorption) by the scene surfaces. The ratio between incident and reflected

radiant power is given by the scene reflectance, which is generally related to

the scene color distribution. In particular in the case of IR light, used by the

KinectTM projector, the appearance of the pixel pC on the camera depends on

the reflectance of the scene surface at the IR frequency used by the projector.

An high intensity pixel of the projected pattern at pA for instance may undergo a

strong absorption because of the low reflectance value of the scene point to which

it is projected, and the values of its conjugate pixel pC on IK may consequently

appear much darker. This is a very important issue, since it might completely

distort the projected code-words. The second row of Figure 3.4 shows how the

radiometric power of the projected pattern is reflected by surfaces of different

color.

c) External illumination. The color acquired by the color camera depends on the

light falling on the scene surfaces, which is the sum of the projected pattern and

of the scene illumination (i.e. sunlight, artificial light sources, etc..). This second

contribution with respect to code-word detection acts as a noise source added to

the information signal of the projected light.

d) Occlusions. Because of occlusions, not all the pattern pixels are projected to 3D

points seen by C. Depending on the 3D scene geometry, in general between the

pattern pixels and the pixels of IK (the image acquired by C), there may not be a

biunivocal association. It is important therefore to correctly identify the pixels of

IK that do not have a conjugate point in the pattern, in order to discard erroneous

correspondences.
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e) Projector and camera non-idealities. Both projector and camera are not ideal

imaging systems. In particular, they generally do not behave linearly with respect

to the projected and the acquired colors or gray-levels.

f) Projector and camera noise. The presence of random noise in the projection

and acquisition processes is typically modeled as Gaussian additive noise in the

acquired images IK .

Figure 3.4 shows some examples of the considered transformations/distortions. As

result of the above transformations/distortions, an acquired code-word may be very

different from the projected one and due to occlusions some pixels of IK may even

not correspond to any pixel of the projected pattern.

In order to understand how to possibly mitigate such potentially disruptive ef-

fects for the correspondence problem by comparison methods assisted by suitable

patterns, let us make two considerations. The first one is that the correspondences

estimation process is characterized by two fundamental decisions, namely:

• what code-word assign to each pixel pA of the projected pattern. The code-word

corresponds to a pattern to be projected on a window centered at pA (all the local

pattern distributions of neighboring pixels are fused together in a single projected

pattern);

• what code-word assign to each pixel pC of IK , or equivalently how to detect the

code-word most similar to the local pattern distribution around pC in order to

correctly identify the conjugate pixel pC of the projected pattern pixel pA.

The second consideration is that there are mainly three possible coding schemes,

pictorially exemplified in Figure 3.5:

a) Direct coding: the code-word associated to each pixel pA is represented by the

pattern value at the pixel itself (i.e., the gray-level or the color of the pattern at

pA). In this case there may be up to nP code-words, since nW = 1. Therefore the

maximum number of pattern columns to decode is NC = nP.

b) Time-multiplexing coding: a sequence of T patterns is projected to the surface to

be measured at T subsequent times. The code-word associated to each pixel pA

is the sequence of the T pattern values (i.e., of gray-level or color values) at pixel

pA. In this case there may be up to nT
P code-words and the maximum number of

pattern columns to decode is NC = nT
P .

c) Spatial-multiplexing coding: the code-word associated to each pixel pA is the

spatial pattern distribution in a window of nW pixels centered around pA. In this

case there might be up to n
nw
P code-words. For instance if the window has 9 rows

and 9 columns, which is a common choice, nW = 81. It is important to note how

in this case neighboring pixels share parts of their code-words, thus making their

coding interdependent.

Each one of the considered coding strategies have different advantages and dis-

advantages as described in [5], which gives an exhaustive review of all these tech-

niques. In particular, direct coding methods are the easiest to implement and allow
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Fig. 3.4 Examples of different artifacts affecting the projected pattern (in the depth maps black

pixels correspond to locations without a valid depth measurement). First row: projection of the

IR pattern on a slanted surface and corresponding depth map; observe how the pattern is shifted

when the depth values change and how perspective distortion affects the pattern on the slanted

surfaces. Second row: KinectTM pattern projected on a color checker and corresponding depth-

map; observe how the pattern appearance depends also on the surface color. Third row: a strong

external illumination affects the acquired scene; the acquired IR image saturates in correspondence

of the strongest reflections and the KinectTM is not able to acquire the depth of those regions.

Fourth row: the occluded area behind the ear of the teddy bear is visible from the camera but not

from the projector viewpoint; consequently the depth of this region can not be computed.
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Fig. 3.5 Examples of coding strategies: a) direct coding; b) time-multiplexing coding; c) spatial-

multiplexing coding.

for the capture of dynamic scenes, since they require the projection of a single pat-

tern. They have the advantage to be potentially able to deal with occlusions as well

as with projective distortion, and the disadvantage to be extremely sensitive to color

or gray-level distortion due to scene color distribution, reflectivity properties and ex-

ternal illumination. Furthermore they are also very sensitive to projector and camera

noise and non-idealities. Examples of these approaches are [6, 7].

Time-multiplexing coding allows to adopt a very small set of pattern primitives (e.g.,

a binary set), in order to create arbitrarily different code-words for each pixel. Such

code-words are therefore robust with respect to occlusions, projective distortion,

projector and cameras non-idealities and noise. They are also able to deal with color

and gray-level distortion due to scene color distribution, reflectivity properties and

external illumination. Their major disadvantage is that they require the projection of

a time sequence of T patterns for a single depth measurement, hence their applica-

tion is not suited to dynamic scenes. Examples of time-multiplexing approaches are

the ones based on binary coding [8] and gray coding with phase-shifting [9].

The spatial-multiplexing techniques are the most interesting for the acquisition of

dynamic scenes since they require the projection of a single pattern, like direct cod-

ing methods. They are generally robust with respect to projector and cameras non-

idealities. They can also handle noise and color or gray-level distortion due to scene

color distribution, reflectivity properties and external illumination. Difficulties come

with occlusions and perspective distortion, because of the finite size of the pattern

window associated to each code-word. The choice of the window size nW associated

to each code-word is crucial. Indeed, on one hand, the smaller is nW the more robust

is the coding with respect to perspective distortion, since it is more likely that all

the scene points on which the pattern window is projected share the same dispar-

ity. On the other hand, the greater is nW the greater is the robustness with respect

to projector and cameras non-idealities and noise or color distortion. Examples of

spatial-multiplexing coding are the ones based on non-formal codification [10], the

ones based on De Bruijns sequences [11] and the ones based on M-arrays [12].
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3.1.2 About KinectTM range camera operation

3.1.2.1 Horizontal uncorrelation of the projected pattern

The KinectTM is a proprietary product and its algorithms are still undisclosed, how-

ever some characteristics of the adopted light coding system can be deduced from

its operation [13, 3, 4].

The KinectTM range camera adopts a spatial-multiplexing approach that allows

to robustly capture dynamic scenes at high frame-rate (30 [ fps]). The spatial resolu-

tion of the output depth maps is 640× 480 pixels, although the camera C and pro-

jector A probably have a different internal resolution still undisclosed. The projected

pattern, a picture of which is shown in Figure 3.6, is characterized by an uncorre-

lated distribution across each row [13]. This means that the covariance between the

Fig. 3.6 Picture of the pattern projected to a planar surface acquired by a high-quality photo-

camera.

spatial-multiplexing window centered at a given pattern point pi
A, with coordinates

pi
A = [ui

A,v
i
A]

T and the projected pattern on the spatial multiplexing windows cen-

tered at point p
j
A with coordinates p

j
A = [u j

A,v
j
A]

T , assuming vi
A = v

j
A, is 0 if i 6= j and

1 if i = j. More precisely, if s(u,v) denotes the projected pattern and W (uA,vA) the

support of the spatial multiplexing window centered at pA, the above property can

be written as
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C(ui,u j,vi) =∑(u,v)∈W (uA,vA)[s(u−ui
A,v− vi

A)−s(ui
A,v

i
A)]·[s(u−u

j
A,v− vi

A)− s(u j
A,v

i
A)]

=

{
1 i = j

0 i 6= j
(3.1)

where s(uA,vA) = ∑(u,v)∈W s(u−uA,v− vA) is the average of the spatial multiplex-

ing window on W centered at (uA,vA)
T and C(ui,u j,vi) is the horizontal covariance

of the projected pattern between supports centered at pi
A and p

j
A.

Some reverse engineering analysis suggest 7× 7 [3] or 9× 9 [4] as support of the

spatial multiplexing window adopted by KinectTM.

It is important to note that (3.1) strictly holds only for the covariance of the pro-

jected ideal pattern. The patterns actually measured by the KinectTM range camera,

as expected, are affected by all the already described transformations/distortions

among which the non-idealities of camera and projector. The pattern acquired by

the KinectTM IR camera (in front of a flat surface) is shown in Figure 3.7. Figure

3.8 shows its covariance with pi
A = [19,5]T and p

j
A = [u,5]T , u ∈ {1,2, ...,200} and

a 9× 9 support W . Figure 3.8 shows a plot of C(19,u,5) as defined in (3.1) versus

u and, in spite the acquired pattern is a distorted version of the projected one, it

exhibits a very clear peak at u = 19 where it is expected.

Fig. 3.7 Pattern acquired by the KinectTM IR camera.

The horizontal uncorrelation of the projected pattern is common to a variety of

spatial multiplexing methods, such as [11, 14], since it is rather useful for the effec-

tive solution of the correspondences problem.
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Fig. 3.8 Covariance of the pattern acquired by the KinectTM for pi
A with coordinates pi

A = [19,5]T

and p
j
A = [u,5]T and u ∈ {1, ...,200}.

Indeed, in this case, for a given pixel p
j
C of IK and for all the pixels pi

A of the same

row in the projected pattern, the covariance ideally presents a unique peak in cor-

respondence of the actual couple of conjugate points, provided the introduced dis-

tortions and non-idealities are moderately disruptive. In a number of real situations,

conjugate points can be simply detected from the covariance maximum between a

window centered around the specific pixel pC in IK and all the possible conjugates

pi
A in the same row of the projected pattern, as shown by the example of Figure 3.8.

The covariance maximum is not well-defined when there are no conjugate points

because of occlusions or when the impact of one of the above mentioned sources of

distortion is too strong and the acquired code-words in IK are too distorted to give

significant auto-covariance values.

3.1.2.2 Rerence image and correspondence detection

The direct comparison between the images IK acquired by C with the patterns pro-

jected by A would be affected by all the non-idealities of both systems. Such limita-

tion can be overcome by means of a calibration procedure schematically shown in

Figure 3.9.

The procedure requires the off-line acquisition in absence of background illumina-

tion of a highly reflective surface oriented orthogonally to the optical axis of the

camera C, positioned at a known distance from C. In this case the acquired surface

is characterized by a constant and known distance zREF and therefore by a constant

and known disparity dREF that can be computed by (1.14). The acquired image is

called reference image [13].

In any subsequent generic scene acquisition, it is possible to associate each point
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pREF with coordinates pREF = [uREF ,vREF ]
T

of the reference image to a point p

of the acquired image and express its coordinates with respect to those of pREF , as

p = [u,v]T = [uREF +dREL,vREF ]. In this way the actual disparity value dA of each

scene point can be computed by adding dREF to the relative disparity value dREL

directly computed from the acquired image

dA = dREF +dREL (3.2)

The usage of such a reference image allows to overcome a number of difficulties

induced by the various transformations distorting the acquired pattern with respect

to the projected one, among which, notably, the camera and projector non-idealities.

In other words, the comparison of image IK relative to a generic scene with the ref-
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Fig. 3.9 Pictorial illustration of the reference image usage: (left) The KinectTM in front of a flat

surface at known distance zREF ; (middle) reference image and computation of dREF from zREF ;

(right) generic IK with pixel coordinates referred to the reference image coordinates.

erence image (which is an acquired version of the projected pattern under known

scene conditions) is an implicit way to avoid the non-idealities and distortions due

to C and A.

Disparity estimation with respect to the reference image is a procedure very sim-

ilar to the computational stereopsis between two rectified images [15, 16]. In this

context estimating the conjugate pixels from the covariance maximum, as described

above, is a local algorithm, i.e., a method which considers a measure of the local

similarity (covariance) between all the pairs of possible conjugate points and simply

selects the pair that maximizes it. As observed at the end of Section 1.2.3, there is

a great number of more complex and way more effective computational stereopsis

techniques that do not consider each couple of points on its own but exploit global

optimization schemes. It is rather likely that the KinectTM, besides the reference

image scheme, adopts a global method for computing the disparities.
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3.1.2.3 Subpixel refinement

Once the disparity values of all the pixels of IK are available, some further refine-

ment is appropriate. In particular, the disparity values computed by covariance max-

imization or other techniques are implicitly assumed to be integers. It is well known

from the stereo literature that this limits somehow the depth resolution and that

these estimates can be improved by the so-called sub-pixel refinement techniques

[15, 16], which are generally adopted in spite they increase the computational com-

plexity. According to the analysis of [4], the KinectTM uses a sub-pixel refinement

process with an interpolation factor of 8.

3.2 Practical imaging issues

As already explained in the previous section, there are multiple error sources po-

tentially leading to non correct correspondence estimates, thus resulting in depth

estimation errors. Some of these error sources are due to the camera and projector,

some to the adopted correspondence estimation algorithm and some to the geometry

of the acquired scene. From an experimental analysis of the data produced by the

KinectTM range camera, the main depth estimation errors are due to:

• Low reflectivity and background illumination. In case of low reflectivity (e.g.,

the foot of the teddy bear of Figure 3.10a) and excessive background illumina-

tion (Figure 3.10b), the camera is unable to acquire any information about the

reflected pattern and the correspondence estimation algorithm does not produce

any result. Hence in these situations there is typically no depth information avail-

able.

• Excessively slanted surfaces. In this case (e.g., the table plane of Figure 3.10.a),

the perspective distortion is so strong that in the spatial multiplexing window

support there are too many pixels characterized by different disparities and the

correspondence estimation algorithm is unable to give any result. Hence also in

these situations there is no depth information available.

• Depth discontinuities and occlusions (Figure 3.10c). Near depth discontinuities,

the spatial multiplexing window support may include pixels associated to differ-

ent disparities, with consequent possibility of errors. Moreover, close to depth

discontinuities, there are occlusions due to scene points on the furthest surface

not visible from either the camera or the projector. Hence depth estimation is

not feasible for these points. The KinectTM range camera however adopts some

heuristics and delivers depth estimates also for these points by interpolating the

depth values of neighbor pixels. Such heuristic assignments sometimes lead to

misalignments between real and estimated depth discontinuities (up to 10 pix-

els).

Some examples of the artifacts due to the above issues are shown in Figure 3.10.

The spatial resolution of stereo vision systems typically derives from that of the
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a) b) c)

Fig. 3.10 Different depth estimation errors: a) low reflectivity (teddy bear) and tilted surfaces

(table) issues (black pixels correspond to missing depth data); b) same flat surface acquired with

(top) and without (bottom) background illumination; c) depth discontinuities and occlusion effects

are visible on the baby’s arm.

adopted sensor. In the case of the KinectTM IK , D̂K and ẐK all have a spatial res-

olution coinciding with the sensor resolution of 640× 480. As previously said, the

actual internal resolutions of camera C and projector A are not known.

It is worth recalling another issue of depth estimates obtained by triangulation,

i.e., it is possible to manipulate Equation (1.14) to show that the depth estimate res-

olution decreases with the square of the distance [17]. Therefore the quality of the

depth measurements obtained by matricial active triangulation is worse for the fur-

thest scene points than for the closest ones [3].

3.3 Conclusion and further reading

Originally introduced for gesture recognition in the gaming context [18], the KinectTM

has readily been adopted for several other purposes such in robotics [19] and 3D

scene reconstruction [20]. Already just one year after its introduction, the number

of applications based on KinectTM is dramatically growing and its usefulness and

relevance for 3D measurement purposes are becoming apparent.

The KinectTM range camera is based on a Primesense proprietary light-coding

technique and neither Microsoft nor Primesense have disclosed yet all the sensor

implementation details. Several patents, among which [13], cover the technological

basis of the range camera, and the interested reader might look at them or to current

reverse engineering works [3, 4].

This chapter presents the KinectTM range camera emphasizing its general opera-

tion principles rather than its implementation details, not only because the latters are

not available, but also because the technology behind KinectTM is likely to rapidly

evolve. In a longer term perspective the general light coding operation principles

are likely to be more useful than the characteristics of the first generation product.

A comprehensive review of light-coding techniques can be found in [5]. The last

section of this chapter presents the main characteristics of KinectTM depth mea-

surements.
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Metrological studies about KinectTM data are not available yet but they are ex-

pected soon in light of the great potential of KinectTM as depth measurement in-

strument.
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Chapter 4

Calibration

Color imaging instruments, such as photo and video-cameras, and depth imaging

instruments, such as ToF cameras and the KinectTM, require a preliminary calibra-

tion in order to be used for measurement purposes. Calibration must usually account

both for the internal characteristics and the spatial positions of the considered instru-

ments, and it needs to be accurate and precise for meaningful measures.

The first part of this chapter formalizes calibration for generic measurement in-

struments in order to give a unified framework to the calibration of the imaging in-

struments considered in this book, i.e. standard cameras, ToF cameras, the KinectTM

range camera and stereo vision systems. The KinectTM and the stereo vision sys-

tems, although made by a pair of devices, will be considered as single depth mea-

surement instruments.

The second part of this chapter considers the calibration of heterogeneous imag-

ing systems made by a standard camera and a ToF camera or a KinectTM, or by a

stereo system and a ToF camera or a KinectTM, because of their great interest for

the applications described in the subsequent chapters.

4.1 Calibration of a generic measurement instrument

Consider a generic instrument measuring one (or more) attribute a of an object. Let

us denote with â the measured value and with a∗ the actual quantity to be measured,

taking values in interval [amin,amax]. Measurements are generally characterized by

two types of errors:

• systematic errors, reducing measurements accuracy;

• stochastic errors, reducing measurements precision (repeatability).

Stochastic errors are characterized by a mean and a variance. The variance, as well

known, can be reduced by averaging multiple measurements. The mean can be in-

corporated with systematic errors. The calibration of a measurement instrument is

49
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usually an off-line procedure aimed to reduce systematic errors (and indirectly af-

fecting the mean of stochastic errors and their variance when multiple measurements

are averaged). More precisely:

Statement 4.1. The calibration of an instrument measuring a quantity a is the esti-

mation of the relationship between the measured quantity â and the actual quantity

a∗ ∈ [amin,amax] (also called ground-truth quantity in the calibration procedure).

The relationship between â and a∗ can be derived by two approaches:

• By means of a parametric function: a∗ = f (â,θ), where θ is a set of param-

eters and f (·) a suitable function relating â and θ to a∗. In this case the cal-

ibration becomes a parameter estimation problem and the optimal parameters

value θ̂ can be obtained from a set of ground-truth and measured quantities

(a∗1, â1),(a
∗
2, â2), ...,(a

∗
N , âN). For instance, it is rather common to estimate the

calibration parameters θ̂ by a Mean Squared Error (MSE) approach:

θ̂ = argmin
θ

1

N

N

∑
i=1

[a∗i − f (âi,θ)]
2 (4.1)

Since in this case the calibration is computed as a parameter estimation problem,

it is addressed as parametric calibration or model-based calibration.

• By a “brute force” approach. Since the set of possible attribute values is well

known (a∗ ∈ [amin,amax]), one may sample the attribute interval obtaining N

ground truth sampled values a1 = a∗1,a2 = a∗2, ..,aN = a∗N . One can perform a

measurement with respect to each ground truth value a∗i , i = 1,2, ...,N, obtain-

ing therefore a set of relative measurements â1, â2, .., âN and establish a relation-

ship between ground-truth a∗1,a
∗
2, ..,a

∗
N and measurements â1, â2, .., âN , by a table

with N couples (a∗1, â1),(a
∗
2, â2), ...,(a

∗
N , âN) as entries. Of course, the higher is

the number of interval samples (N), the more accurate is the estimated relation-

ship but the more laborsome the calibration process. This calibration approach is

usually called non-parametric calibration or model-less calibration.

The two calibration methods above have each one advantages and disadvantages.

On one hand, model-based calibration needs a model which may not be always

available and which may be hard to obtain. On the other hand, modeling the mea-

surement process generally has the advantage of reducing the number of parameters

to be estimated to a small set (e.g., 8 parameters for the case of a standard camera

calibration), thus reducing the number N of required calibration measurements with

respect to the model-less calibration case. The availability of an analytical corre-

spondence between each possible ground-truth attribute a∗ and its relative measure-

ment â is another advantage.

Model-less calibration clearly does not need any model, but it requires a large num-

ber N of calibration measurements in order to reduce the sampling effects. This
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approach is more prone to over-fitting than the previous one, because N is generally

way greater than the number of parameters to be estimated. There is not an analyt-

ical correspondence between each possible ground-truth value a∗ and its measured

value â. Moreover a direct although not analytical correspondence is available only

for the set of sampled ground truth values. For the other values the correspondence

can be approximated by interpolation with inevitable sampling artifacts.

4.1.1 Calibration error

Calibration is not a completely precise operation, in the sense that once calibra-

tion is performed there will remain an error between estimated and actual values,

commonly called calibration error. An estimate of such calibration error is very

important since it may become the bottleneck for accuracy and precision of specific

applications.

The calibration error can be computed in different ways for the case of model-

based and model-less calibration upon a set of M measurements â j, j = 1,2, ...,M
with relative ground-truth values a∗j , j = 1,2, ..,M. Note that this set of measure-

ments is different from the set of N measurements adopted in the calibration min-

imization, in order to adopt a rigorous cross-validation approach. In the case of

model-based calibration, calibration error e can be computed from the M error esti-

mates as

e =
1

M

M

∑
j=1

∣∣a∗j − f (â j, θ̂)
∣∣ (4.2)

In the case of model-less calibration, there is no model to use in (4.2). However,

given a measured quantity â j, its corresponding ground-truth value a∗j can be ap-

proximated by interpolation: F (â j,(a
∗
1, â1), ..,(a

∗
N , âN)) where F (·) is a suitable

interpolation method (e.g., nearest-neighbor, bilinear, bicubic or splines interpola-

tion). Calibration error e in the case of model-less calibration can be computed from

the M error estimates as

e =
1

M

M

∑
j=1

∣∣a∗j −F (â j,(a
∗
1, â1), ..,(a

∗
N , âN))

∣∣ (4.3)

In both the cases, the goal of a calibration method is to provide a consistent proce-

dure (several calibrations of the same device should provide similar results) giving

the lowest possible calibration error.
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4.1.2 Error compensation

Once the relationship between measured and actual attribute values is known, one

may define a way to map the measured values to the corresponding actual values in

order to compensate for the systematic differences between such quantities.

The compensation may increase the accuracy but not the precision (repeatability) of

the instrument measurements, since it does not consider the error randomness. In the

calibration process, and also in the actual measurement process when feasible, the

precision of the device measurements can be improved by averaging over multiple

measurements. However when the measurements are not performed for calibration

purposes, specially in the case of dynamic scenes, averaging may not be used to

reduce stochastic errors. As a simple example, consider the case of a video-camera

that may only operate at 30 [ fps] used in a specific application requiring 30 [ fps],
clearly in this case multiple frames cannot be averaged over time.

4.2 Calibration of color and depth imaging systems

In the specific case of computer vision or computer graphics, the attributes of in-

terest typically are the color and/or the geometry information of a scene. The re-

mainder of this section covers the calibration of the imaging instruments of typical

computer vision and computer graphics interest, i.e., standard cameras, ToF cam-

eras, KinectTM and stereo vision systems. In this connection the KinectTM range

camera and stereo vision systems are considered as single instruments, in spite they

are actually made by pairs of different devices, which in the case of stereo are two

standard cameras and in the case of the KinectTM range camera are an IR projector

and an IR camera. Although each camera of a stereo system individually considered

is a color imaging system, in the stereo set-up they just become components of a

single measurement system providing data (depth) of nature completely different

with respect to that of the data acquired by its two cameras (color). It is reasonable

to consider the KinectTM range camera as a single instrument since the IR projec-

tor only irradiates the scene in order to allow depth measurements and only the IR

camera acts as an imaging system.

4.2.1 Calibration of a standard camera

First of all, let us recall that “standard camera” in this book refers to a digital photo-

camera or to a digital video-camera, since image formation is the same for both

these instruments.

The attributes measured by a standard camera are the attributes measured by

all its sensor pixels. Under the hypothesis of infinitesimal size pixels, each pixel

measures the color of the scene point associated to it by the perspective projection



4.2 Calibration of color and depth imaging systems 53

model of Section 1.2.1. Consequently, the attribute measured by a standard camera

is the color set of the scene points associated to its sensor pixels.

Since the camera operation is characterized by two different processes, namely the

association of the standard camera sensor pixels with the corresponding scene points

and the measurement of the colors of these scene points, its calibration is divided in

two parts:

• geometric calibration, i.e., the estimate of the relationship between sensor pixels

positions and relative scene points;

• photometric calibration, i.e., the estimate of the relationship between the actual

scene point color and the color measured by the camera at the corresponding

pixel.

A comprehensive treatment of photometric calibration can be found in [1, 2]. Photo-

metric calibration is not considered in this chapter, since for the applications treated

in this book only geometrical calibration is relevant.

Statement 4.2. The geometric calibration of a video camera is the estimation of

the relationship concerning measured and actual correspondences between camera

sensor pixels and 3D scene points.

In order to clarify the above statement, let us recall that according to the pin-hole

camera model introduced in Section 1.2.1, the image of a standard camera is ob-

tained by perspective projection, i.e., as intersection on the sensor plane of all the

rays connecting the scene points P with O (corresponding to the position of the

nodal point of the optics).

As pictorially shown in Figure 4.1, the same 3D scene point P is always projected to

the same camera pixel p as long as the camera stays still, but any point of the optical

ray (green line) is associated to the same pixel p (green point on the sensor). From

the set of all the scene points projected to p, the scene point P actually projected to

p is the one with the smallest radial distance from p.

The geometrical calibration of a standard camera can be regarded as the estimation

of the relationship between the actual and the measured optical rays relative to each

camera sensor pixel. In case of ideal (i.e., distortion-free) optics the optical ray is de-

termined by the camera intrinsic parameters only by (1.6). In the case of real optics

characterized by radial and tangential distortion the geometry of the optical rays is

determined by both the camera intrinsics and the optics distortion parameters. As al-

ready seen, the directions of the optical rays can be modeled by the Heikkila model

(1.12) [3] or by more complex models such as the fractional model [4].

Rephrasing the above according to the notation of Section 4.1, the attribute a of

geometrical camera calibration is the geometry (origin and orientation) of the opti-

cal ray. Its measured value â in the case of the Heikkila camera model1 is given by

1 For conciseness sake, this is the only camera distortion model considered in this book, however

all the presented consideration can be similarly applied to the case of the fractional camera model.
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Fig. 4.1 Non-univocal association of a single camera sensor pixel (green dot) to 3D scene points

(green line).

all the parameters of the camera projection matrix (1.11) plus the distortion param-

eters, namely by the intrinsic parameters of matrix (1.7), i.e., f̂x, f̂y,ĉx and ĉy by the

estimated radial and tangential distortion parameters d̂ = [k̂1, k̂2, k̂3, d̂1, d̂2] of (1.12)

and in general by the extrinsic parameters R̂ and t̂ of (1.9) relating the optical ray

geometry with respect to the CCS to the WCS. The relationship between the camera

parameters, measured quantities and actual values a∗ = f (â, θ̂) is given by (1.11)

and (1.12).

A detailed analysis of calibration parameters and relationships is beyond the scope

of this book and can be found in classical computer vision readings, such as

[3, 4, 5, 6, 7].

Any calibration technique adopts calibration objects of known size, offering

highly identifiable saliency points to be used as ground truth values a∗.

A popular calibration object [3, 5] is a black and white checkerboard, with checkers

of known size. In this case the saliency points serving as a∗ are the the checkerboard

corners (that can be easily detected), as shown by Figure 4.2.

The WCS can be defined as the reference system with origin at the checkerboard

top left corner, x and y axis on the checkerboard plane and z axis orthogonal to the

checkerboard plane as shown in Figure 4.3.

Due to the planar shape of the sensor and checkerboard, the position of the sen-

sor plane with respect to the WCS, associated to the checkerboard, can be derived

by a 3D homography [5,4], characterized by 9 coefficients. Once the 3D position

of the sensor with respect to the checkerboard is known, as shown by Figure 4.3,

the 3D coordinates of the checkerboard corners, P∗
i , serving as ground truth, can be

projected to the sensor by (1.10) giving ground-truth pixel values p∗i .

The coordinates of the ground-truth pixels p∗i can be compared with those of the

pixels p̂i, directly detected from the measured checkerboard image, obtaining an er-

ror expression which depends on projection matrix (1.11) and distortion parameters

(1.12). The sum of such errors, corresponding to the M different spatial checker-
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Fig. 4.2 Corners detection on a calibration checkerboard.
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board positions, gives an expression of the model-based calibration error of the type

of Equation (4.2), which is function of camera calibration parameters (1.11) and

(1.12). This expression can be used to determine the intrinsic camera parameters,

together with the extrinsic parameters (Rk, tk) with k = 1,2, ...,M giving the camera

sensor position with respect to each spatial checkerboard position. This procedure,

due to [5], is the standard method for the estimate of the Heikkila model parame-

ters, also available in popular open source camera calibration projects, such as the

MATLAB Camera Calibration Toolbox [8] and OpenCV [9].

4.2.1.1 Standard camera systematic error compensation: undistortion

In the case of standard cameras, lens distortion causes a systematic error of the type

indicated in Section 4.1.2. Once the standard camera is calibrated, its distortion

parameters are known and the image undistortion procedure (1.12) can be applied

to all the images acquired by the standard camera in order to compensate for its

radial and tangential distortion, i.e., for its systematic error in the measure of the

optical rays orientations.

4.2.2 Calibration of a ToF camera

Since ToF camera image formation can be modeled by perspective projection, ToF

camera calibration is strongly reminiscent of standard camera calibration. As in that

case, indeed, the attributes measured by a ToF camera are the attributes measured

by the ToF camera sensor pixels. Under the hypothesis of infinitesimal size pixels,

each pixel measures the radial distance from the scene points associated to it by the

perspective projection model of Section 1.2.1. Therefore, the attribute measured by

a ToF camera is the radial distance of the points associated to the ToF camera sensor

pixels. The ToF operation is characterized by two different processes:

• the association of the ToF camera sensor pixels to the relative scene points;

• the measurements of the radial distances of the scene points.

ToF camera calibration reflects this measurements sub-division according to [10],

and, with the terminology introduced for standard camera calibration, it can be di-

vided in:

• geometrical calibration, i.e., the estimate of the relationship between sensor pix-

els positions and relative scene points;

• photometric calibration, i.e., the estimate of the relationship between the actual

radial distance of the scene point and the radial distance measured by the ToF

camera at the corresponding pixel.

The geometrical calibration of a ToF camera is identical to the one of a standard

camera and it can be made by the techniques indicated in the previous sub-section
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with the peculiarity that ToF camera geometrical calibration must use amplitude

images AT instead of standard color (or gray-level) images as shown by Figure 4.4.

Fig. 4.4 Example of the IR image of a checkerboard acquired by a ToF camera with the corners

detected.

The amplitude images can be collected in two different ways, either in the so-called

standard mode, i.e., with the ToF camera illuminators active during acquisition, or

in the so-called common-mode, i.e., with ToF camera illuminators off during acqui-

sition, namely using the ToF camera as a standard IR camera. The first solution is

more direct and generally produces better results, but it requires proper integration

time setting in order to avoid saturation. The second solution requires an external

auxiliary IR illumination system.

The photometric ToF camera calibration deals with the so-called systematic off-

sets of ToF camera radial distance measurements, due to various factors, such as

harmonic distortion and non-zero mean Poisson distributed photon-shot noise (as

explained in Chapter 2). It is worth recalling that harmonic distortion depends on

the distance from the object to be measured, and that the photon-shot noise depends

on the received signal intensity and amplitude. Therefore the systematic offsets ul-

timately depend on the measured distance, amplitude and intensity. The calibration

of systematic offsets can be performed by measuring targets characterized by dif-

ferent reflectivity placed at known distances and by comparing the measured dis-

tances against the actual ones. A comprehensive description and analysis of such

procedures can be found in [10, 11, 12]. Such measurements can be used both in a

model-based approach as in [11] where the model is a polynomial function, or in

a model-less approach as in [10] where a table describes the relationship between

measured and actual radial distances.

4.2.2.1 Compensation of ToF cameras systematic errors

The compensation of the systematic ToF cameras errors includes both the geometri-

cal calibration errors (i.e., undistortion) and the radial distance measurements errors.
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The two compensations can be performed independently, like the relative calibra-

tions. Undistortion can be implemented as for the case of standard cameras. System-

atic radial distance measurements errors in the case of model-based calibration can

be compensated by inverting the fitted functional-model and in the case of model-

less calibration by a look-up-table correction.

4.2.3 Calibration of the KinectTM range camera

As in the previous cases, the attributes measured by the KinectTM range camera

are the attributes measured by its IR camera sensor pixels. Under the hypothesis of

infinitesimal size pixels, each pixel measures the disparity of the associated scene

point with respect to a reference image. Therefore, the attributes measured by the

KinectTM range camera are the disparities of the scene points associated to its IR

camera sensor pixels. The set of acquired disparity values defines the disparity map

of the scene.

Since the KinectTM range camera is made by an IR camera and an IR projector,

its calibration in principle could be performed by the method of [13], which also

provides a way to compensate for the systematic measurements errors.

Figure 4.5 shows the IR image of a checkerboard taken by the KinectTM range

camera with the corners detected. This kind of images can be used to calibrate the

KinectTM if its calibration parameters are not accessible by the users and it can

prove useful when the KinectTM is used together with a standard camera, as it will

be shown in Section 4.3.1.

Fig. 4.5 Example of the IR image of a checkerboard acquired by a KinectTM range camera.

The actual procedures adopted by Primesense in order to calibrate and compen-

sate the KinectTM range camera measurements have not been disclosed yet. This

omission however does not penalize the usage of KinectTM range cameras, since

they are supplied already calibrated and with built-in compensation.
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4.2.4 Calibration of a stereo vision system

The attribute measured by a stereo vision system S is the depth of the scene points

framed by both of its cameras. Let us recall that the 3D coordinates P = [x,y,z]T of

P with respect to the S reference system can be estimated by triangulation from the

2D coordinates of conjugate points pL and pR via (1.14) and (1.15). The triangula-

tion procedure depends on the properties of the two standard cameras L and R and

on their relative position. The properties of L and R are parametrically modeled as

seen in Section 4.2.1 by their intrinsic and distortion parameters, while their rela-

tive position is parametrically modeled by the relative roto-translation between the

L-3D and the R-3D reference systems. Therefore stereo vision system calibration is

customarily approached as a parametric model-based calibration problem.

Statement 4.3. The calibration of a stereo vision system (or stereo calibration) is

the estimation of the following quantities:

• the intrinsic parameters matrices KL and KR

• the distortion parameters (such as dL and dR defined by (1.12)) of the L and R

cameras respectively

• the 3×3 rotation matrix R and the 3×1 translation vector t describing the roto-

translation between the L-3D and the R-3D reference systems.

Clearly the two intrinsic parameters matrices KL and KR and the distortion param-

eters can be derived independently by single L and R camera calibrations. Therefore,

common stereo calibration procedures usually perform first the two standard camera

calibrations in order to obtain the intrinsic parameters, and then estimate the stereo

system extrinsic parameters R and t. Such a two-step operation allows to reduce the

size of the estimated parameters space, greatly simplifying the estimation problem.

A comprehensive treatment of stereo calibration can be found in [6]. Popular open-

source stereo calibration are in the MATLAB Camera Calibration Toolbox [8] and

in the OpenCV Library [9]. Figure 4.6 shows the relative positions of the L and R

camera sensors with respect to the calibration checkerboards.

4.2.4.1 Compensation and Rectification

Stereo images rectification is a procedure transforming the images acquired by a

stereo vision system in such a way that conjugate points (pL and pR) share the same

vertical coordinate (vL = vR) in the L-2D and in the R-2D reference systems re-

spectively. Stereo images rectification is often associated to stereo calibration since

stereo images rectification simplifies and makes more robust 3D depth estimation

by stereo vision algorithms. Once a stereo vision system is calibrated, it is always

possible to apply a stereo image rectification procedure [2]. A popular stereo images

rectification algorithm is given in [14].
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Fig. 4.6 3D position of the L and R camera sensors with respect to the checkerboards.

The images acquired by the two cameras of a stereo vision system are typically

affected by radial and tangential distortion. Undistortion and rectification can be ap-

plied in a single step. The possibility of combining the two procedures may hide the

fact that only the former is about systematic errors compensation but not the latter.

Namely, the undistortion of the images acquired by L and R is actually a compensa-

tion of systematic errors, but rectification does not compensate for systematic errors,

since it just transforms the acquired images in order to simplify the tasks of stereo

vision algorithms.

4.3 Calibration of heterogeneous imaging systems

An heterogeneous measurement system is a set-up made by multiple measurement

instruments of different nature measuring the attributes of the same object. Het-

erogeneous acquisition systems can be subdivided into two different groups, i.e.,

systems made by devices measuring the same attribute and systems made by de-

vices measuring different attributes.

This section considers only instruments measuring visual quantities, i.e., imaging

systems measuring color and geometry. The visual attribute measured by a specific

imaging instrument depends on its spatial position, hence the measurements of dif-

ferent imaging systems can only be related upon the knowledge of their relative

positions. These considerations can be summarized as follows.
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Statement 4.4. The calibration of an heterogeneous imaging system is the proce-

dure made by the calibration of each imaging system forming the heterogeneous

system and by the estimate of their relative positions.

The remainder of this section considers the calibration of a system made by a ToF

camera and a color camera, of a system made by a KinectTM range camera and

a color camera (which are both examples of imaging systems measuring different

visual attributes such as geometry and color) and of a system made by a ToF camera

and a stereo vision system (which is an example of imaging systems measuring the

same visual attribute, i.e., the scene geometry).

4.3.1 Calibration of a system made by a standard camera and a

ToF camera or a KinectTM

Let us consider first the calibration of a system made by a standard camera and a ToF

camera or a KinectTM, i.e., an heterogeneous system supporting an imaging system

measuring the scene color and an imaging system measuring the scene geometry

(the ToF camera or the KinectTM range camera).

The first step is the independent calibration of all the instruments forming the sys-

tem. In the case of the first system, made by a ToF camera and a standard camera,

it is therefore necessary to calibrate and compensate the measurements of the ToF

camera and to calibrate and compensate the measurements of the standard camera.

In the case of the second system, made by a KinectTM range camera and a standard

camera, it is therefore necessary to calibrate and compensate the measurements of

the KinectTM range camera and to calibrate and compensate the measurements of

the standard camera. Once the ToF camera or the KinectTM range camera are cali-

brated, they can be considered functionally equivalent, since they both perform the

same kind of measurements, i.e., they provide depth or 3D geometry measurements.

The second step is the estimation of the relative positions of the two instruments

forming the heterogeneous system, i.e., the estimate of the relative roto-translation

between the reference systems associated to the two instruments. This can be ac-

complished by the recognition of saliency points of suitable calibration objects (e.g.,

checkerboards) by the different instruments. For instance, it is possible to identify

the corners of a (black and white) checkerboard both on the images IC acquired by

the standard cameras and on the IR images AT acquired by a ToF camera or on the

IR images IK acquired by a KinectTM range camera, as exemplified in Figures 4.4

and 4.5.

From the 2D coordinates pi = [ui,vi]T of a point pi in a undistorted image acquired

by a calibrated camera (either C, T or K), obtained as a corner of a calibration

checkerboard, one may compute the 3D coordinates Pi = [xi,yi,zi]T of the corre-
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sponding scene point Pi with respect to the 3D camera reference system and esti-

mate the 3D homography between the sensor plane and the checkerboard plane as

depicted in Figure 4.7. This procedure is described in [5] and implemented in [8, 9].
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Fig. 4.7 Estimation of the 3D coordinates of the corners in [mm] of a checkerboard (corners of the

blue grid) from their 2D coordinates on an image acquired by a calibrated standard camera C (red

pyramid) and from an image acquired by a depth camera (green pyramid). The distance between

OC and OD should be as small as possible: the pictorial camera models are out of scale.

In the case of a range camera D (either a ToF camera T or a KinectTM range

camera K), the 3D coordinates of the checkerboard corners can also be directly

estimated by the depth information acquired by the depth camera. Indeed, a depth

camera D can provide both the undistorted 2D coordinates pi
D = [ui

D,v
i
D]

T of a point

pi
D (checkerboard corner) on its IR image, here denoted as ID for notation semplicity,

and a direct estimate of the depth zi
D of the corresponding 3D point Pi

D. From this

datum the 3D coordinates Pi
D = [xi

D,y
i
D,z

i
D]

T of Pi
D can be computed by inverting

the projection Equation (1.6), as hinted by Figure 4.8 where the 3D positions of the

checkerboard corners, directly estimated by the depth cameras, are denoted by green

dots.

Therefore for a range camera D there are two different ways of computing the 3D

coordinates of the checkerboard, namely the homography-based procedure and the

direct depth measurement. The main difference between the two approaches is that

the homography-based approach exploits the ground-truth geometrical properties of

the calibration checkerboard, while the direct depth measurements does not.

For practical purposes some details need to be underlined. In the case of a ToF
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Fig. 4.8 Direct computation of the 3D coordinates of the corners of a checkerboard (green dots) by

a depth camera (D) (green pyramid) and 3D position with respect to the checkerboard of a standard

camera (red pyramid).

camera T it is possible to extrapolate both the 2D coordinates pi
D from AT and the

depth estimate of zi
D from ZT in a single step. In the case of a KinectTM range cam-

era K, instead, this requires two steps since the acquisition of the 2D coordinates of

the checkerboard corner needs to acquire IR images IK without pattern projection

and the acquisition of their 3D coordinates needs the depth map ZK which requires

the pattern projection. Summarizing, the needed information for each position of

the checkerboard requires a single acquisition in the case of a ToF camera and two

acquisitions in the case of a KinectTM range camera.

The 3D coordinates Pi
C = [xi

C,y
i
C,z

i
C]

T of the checkerboard corners Pi
C, i= 1, ...,N

computed from the measurements of standard camera C with respect to the C-3D

reference system, and the 3D coordinates Pi
D = [xi

D,y
i
D,z

i
D]

T of the checkerboard

corners Pi
D, i = 1, ...,N computed from the measurements of D with respect to the

D-3D reference system, are related by the rototranslation (R, t) between the C-3D

and the D-3D reference systems. In other words, the standard camera C and depth

camera D provide the same cloud of points expressed with respect to two differ-

ent reference systems. The computation of the roto-translation between the same

point-clouds in two different reference systems is known as the absolute orientation

problem and has a closed-form solution given by the Horn Algorithm [15], which

estimates the rotation matrix R̂ and the translation vector t̂ minimizing the distance

between the 3D positions of the checkerboard corners measured by the two imaging

systems C and D, namely
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[
R̂, t̂

]
= argmin

[R,t]

1

N

N

∑
i=1

‖Pi
C − [RPi

D + t]‖2 (4.4)

An alternative way of computing (R̂, t̂) is to reproject points Pi
D on the camera

sensor by the camera intrinsic matrix KC and estimate the R and t which minimize

the difference between the pixels pi
C, i = 1,2, ...,N with coordinates pi

C = [ui
C,v

i
C] of

the images acquired by the standard camera IC corresponding to the checkerboard

corners and the projection of Pi
D on the camera sensor image plane, as

[
R̂, t̂

]
= argmin

[R,t]

1

N

N

∑
i=1

∣∣∣∣
∣∣∣∣
[

pi
C

1

]
−KC[RPi

D + t]

∣∣∣∣
∣∣∣∣
2

(4.5)

This minimization can be solved by classical optimization techniques (e.g., gradient

descent) starting from the estimates of R and t obtained from the Horn algorithm.

As it will be shown in the subsequent chapters of this book, there are applications

requiring to associate the 3D coordinates of a scene point acquired by a depth cam-

era D with its color acquired by a color camera C. The color of the point is typically

obtained by back-projecting the 3D point computed by D to the color image IC (and

by interpolating the color value in correspondence of the typically non-integer co-

ordinates of the back-projected point).

Summarizing, there are two main algorithmic choices in the calibration of a sys-

tem made by a standard camera C and a range camera D (either a ToF camera T or

a KinectTM range camera K), namely:

• the first choice is the selection between the homography-based and the direct

depth measurement approach for obtaining the 3D coordinates of the checker-

board corners acquired by D. The main advantage of the former approach is

that the calibration precision and accuracy are not affected by the precision and

the accuracy of the depth measurements of D. The main advantage of the latter

approach, instead, is that the calibration accounts for the nature of the measure-

ments performed by D, leading therefore to a better synergy between the data

acquired by the two imaging systems.

• The second choice concerns the selection of the optimization criterion for the

estimation of R and t. The two options are the absolute-orientation approach

and the reprojection-error minimization approach. The former generally implies

an easier task and an exact solution, but the latter leads to better performances

for most applications.

The calibration errors can be computed with respect to a set of 3D points P j,

j = 1,2, ...,M different from the points Pi, i = 1,2, ...,N used to compute R̂ and t̂ in

(4.4) or (4.5). In the case of
[
R̂, t̂

]
obtained from (4.4) it can be computed as:

e1 =
1

J

M

∑
j=1

‖P
j
C − [R̂P

j
D + t̂]‖2 (4.6)

Instead in case of
[
R̂, t̂

]
obtained from (4.5) it is given by:
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e2 =
1

J

M

∑
j=1

∣∣∣∣
∣∣∣∣
[

p
j
C

1

]
−KC

[
P

j
C − [R̂p

j
D + t̂

]∣∣∣∣
∣∣∣∣
2

(4.7)

Calibration error e1 is measured in [mm] and it is typically smaller than 10[mm].
Calibration error e2 is measured in [pxl] and it is typically smaller than 1[pxl], with

XGA camera with 3.5mm optics.

4.3.2 Calibration of a system made by a stereo vision system and a

ToF camera or a KinectTM

The calibration of a system made by a stereo vision system S and an alternate depth

measurement system D made by a ToF camera T or a KinectTM range camera K is

considered next. The most common methods proposed in order to accomplish this

task are the ones of [10, 16]. The heterogeneous system in this case is made by two

depth cameras of different type.

As in the cases of Section 4.3.1, the first step of the heterogeneous systems cali-

bration is the independent calibration of the depth camera D and of the stereo vision

system S. The two standard cameras of S must also be rectified, and the images IS

acquired by S are assumed to be compensated (i.e., undistorted) and rectified.

The second step of the heterogeneous systems calibration is the estimation of

the relative positions of S and D, i.e., the estimation of the roto-translation (R, t)
between the S-3D and the D-3D reference systems. The procedure for estimating

(R, t) can be summarized as:

1. Extraction of the calibration checkerboard corners from the color images IS.

This gives a set of pixels pi
L, i = 1, ...,N with coordinates pi

L = [ui
L,v

i
L]

T on the

images acquired by the left camera L of the stereo pair and the conjugate pixels

pi
R, i = 1, ..,N with coordinates pi

R = [ui
L − d,vi

L]
T on the images acquired by

the right camera R, where d is the disparity.

2. Extraction of the checkerboard corners from the IR images ID acquired by D.

This gives a set of pixels pi
D, i = 1,2, ...,N on the images ID.

3. Computation of the 3D coordinates of the two sets of corners with respect to the

S-3D and D-3D reference systems respectively. The stereo system S computes

by triangulation 3D points Pi
S, i = 1,2, ...,N with coordinates Pi

S = [xi
S,y

i
S,z

i
S]

T ,

with respect to the S-3D reference system relative to the pairs (pi
L, pi

R), i =
1, ..,N.

The depth camera D associates the pixels pi
D, i = 1,2, ...,N of the IR images to

the points Pi
D, i = 1,2, ...,N directly computed by the depth-camera, which have

coordinates Pi
D = [xi

D,y
i
D,z

i
D]

T with respect to the D-3D reference system.

4. Estimation of the roto-translations (R, t) between the 3D reference systems of

the two depth cameras either by solving the absolute orientation problem or by

minimizing the reprojection error.

The estimation of (R, t) by Horn algorithm in this case can be written as
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[
R̂, t̂

]
= argmin

[R,t]

1

N

N

∑
i=1

∣∣∣
∣∣∣Pi

S −
[
RPi

D + t
]∣∣∣
∣∣∣
2

(4.8)

The estimation of (R, t) can also be performed similarly to (4.5) by accounting for

the reprojection error on the L and R images, as

[
R̂, t̂

]
= argmin

[R,t]

1

2N

N

∑
i=1

[∣∣∣∣∣
∣∣∣∣∣

[
pi

L

1

]
−KS[RPi

D+t]

∣∣∣∣∣

∣∣∣∣∣
2

+

∣∣∣∣∣

∣∣∣∣∣

[
pi

R

1

]
−KS[RPi

D+t−b]

∣∣∣∣∣

∣∣∣∣∣
2

]
(4.9)

where KS is the intrinsic parameters matrix of both the L and R cameras of the rec-

tified stereo vision system with baseline b and b = [−b,0,0]T is the vector with

the coordinates of the origin of the R-3D reference system with respect to the L-3D

reference system. The expression of b assumes that the L-3D and R-3D reference

systems have the axis oriented according to the right-hand orientation convention

as shown in Figure 1.6 (we assumed that the L-3D reference system is the S-3D

reference system).

In the case of an heterogeneous system made by a range camera and a stereo

vision system, the choice between absolute orientation or reprojection error mini-

mization depends on the specific application. For instance, if the application calls

for the fusion of the 3D scene geometry estimates of the stereo vision system and

of the depth camera, it is worth optimizing absolute orientation, since in this case a

good synergy between the data acquired by the two depth imaging systems is impor-

tant. If the application, instead, reprojects the 3D geometry estimates performed by

D on the images acquired by L and R for further processing, it is worth minimizing

the reprojection error.

The calibration error can be computed with respect to a set of points P
j

S and P
j

D

with j = 1,2, ...,M different from the points used to estimate R and t in (4.8) and

(4.9). In case of
[
R̂, t̂

]
given by (4.8) the calibration error is

e1 =
1

J

M

∑
j=1

‖P
j
S − [R̂P

j
D + t̂‖2 (4.10)

and it is measured in [mm], while in case of
[
R̂, t̂

]
given by (4.9) it is

e2 =
1

2J

M

∑
j=1

[∣∣∣∣∣∣

∣∣∣∣∣∣


 p

j
L

1


−KS

[
R̂P

j
D+t̂

]
∣∣∣∣∣∣

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣

∣∣∣∣∣∣


 p

j
R

1


−KS

[
R̂P

j
D+t̂−b

]
∣∣∣∣∣∣

∣∣∣∣∣∣
2

]
(4.11)

and it is measured in [pxl].
Calibration error e1 is typically smaller than 10[mm] and e2 is typically smaller than

1[pxl], with XGA cameras with 3.5[mm] optics.
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4.4 Conclusions and further readings

The ultimate goal of this chapter is to give the notions needed to jointly calibrate

standard cameras and depth cameras, such as a ToF camera and a KinectTM range

camera, for their combined usage. This requires to consider first the calibration of

individual color and depth imaging systems.

The calibration of a standard camera is of fundamental relevance for the calibra-

tion of all the other imaging systems, both from the conceptual and the operational

point of view. The reader interested to more details about camera calibration can find

image processing and corner detection techniques in [17, 18], projective geometry

in [7, 19] and numerical methods in [20]. Classical camera calibration approaches

are the ones of [3, 4, 5]. Some theoretical and practical hints can also be found in

[6].

The principles of stereo vision system calibration are reported in [6], and open

source implementations of stereo vision calibration algorithms are in the MATLAB

Camera Calibration Toolbox [8] and in the calibration routines of OpenCV [9].

ToF camera calibration theory and practice is presented in [10, 12, 11]. A basic

fundamental reading for the calibration of matricial active triangulation cameras,

such as the KinectTM range camera, is [13]. An example of calibration of a system

made by a standard camera and a range camera is reported in [21] and the calibration

of heterogeneous systems made by a stereo vision system and by a range camera is

reported in [10, 16, 11].
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Chapter 5

Fusion of Depth Data with Standard Cameras
Data

Depth camera possibilities and limitations seen in the previous chapters may natu-

rally prompt questions like “Is a depth camera enough for my application?” or “May

one or more standard cameras help it?”.

Depth cameras can only provide 3D geometry information about the scene. If an

application needs color, the usage of one or more color standard cameras becomes

necessary. This is for instance the case of scene segmentation by means of color and

geometry (treated in Chapter 6).

ToF cameras are generally characterized by low spatial resolution (Chapter 2)

and KinectTM by poor edge localization (Chapter 3). Hence a depth camera alone

is not suited for the estimate of precise high-resolution 3D geometry near depth dis-

continuities. If such information is desired, it is worth coupling a depth camera with

a standard camera. For instance, hand or body gesture recognition and alpha-matting

applications might benefit from this kind of heterogeneous acquisition systems.

If the accuracy or the robustness of depth cameras measurements are not adequate,

in particular in the near range, one may consider an acquisition system made by a

depth camera and a stereo system. This solution can also reduce occlusions effects

between color and 3D geometry information. 3D video production and 3D recon-

struction are applications where this kind of setup may be beneficial.

This chapter analyzes all the issues related to the combination of depth data with

standard cameras. For a synergic data combination it is firstly necessary to register

the depth and standard camera data as discussed in the next section. The usage of a

standard camera together with a depth camera allows to increase the spatial resolu-

tion of the depth map. This is why this possibility is called spatial super-resolution.

Super-resolution can be obtained either by deterministic or probabilistic methods,

each one with advantages and disadvantages, as explained in Section 5.2 and 5.3.

Another intriguing possibility, treated in Section 5.4 is the fusion of the depth data

obtained from a depth camera with the depth data obtained by a stereo system.

69
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5.1 Acquisition setup and data registration

Figure 5.1 shows some examples of the two types of acquisition systems considered

in this chapter. The first one is made by a depth camera (either a KinectTM or a ToF)

and a single standard camera, while the second one by a depth camera and a couple

of standard cameras.

a) b)

c) d)

Fig. 5.1 Acquisition setup made by a) a MESA Imaging SR4000 and one color camera; b) the

KinectTM supports an internal color camera; c) a MESA Imaging SR4000 and two color cameras

used as an autonomous stereo vision system; d) a KinectTM and two color cameras used as an

autonomous stereo vision system.

Let us consider first the setup made by a ToF camera T and a standard color cam-

era C. Note that if C and T are in different positions the color and depth streams refer

to two different viewpoints. This can only be avoided by using an optical splitter on

both devices as proposed in [1]. This approach, however, increases system costs and

introduces a number of undesirable effects. Notably the splitter affects the optical

power and thus the distances measured by the ToF [19] and the IR emitters must be

moved out of the ToF camera. For all these reasons, it is way simpler to place a ToF

and a standard camera on a rig as close as possible.

In the case of the KinectTM both its depth and color cameras are embedded in it,

but even though camera and depth sensor are placed very close, they are not co-

positioned.

Either in the case of a color camera coupled with a ToF camera or in the case of the

KinectTM, the output data will be of the same type, i.e., a color and a depth stream

relative to two slightly different viewpoints.

Figure 5.2 (a-d) shows an example of the data acquired by a color camera (i.e., an

high resolution color image a)) combined with a ToF camera (i.e., a low resolution

depth map b), a low resolution intensity image c) and a low resolution confidence

map d)). Figure 5.2 (e-g) shows the data of the same scene acquired by the KinectTM.
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Figure 5.3 shows instead an example of how, no matter how closely a standard cam-

era and a ToF camera are placed, their two images will refer to slightly different

viewpoints, and some regions visible from the camera viewpoint will not be visible

from the ToF viewpoint or vice-versa.

a) b) c) d)

e) f) g)

Fig. 5.2 Example of data acquired by a setup made by a ToF camera and a standard camera (a-d)

and by a KinectTM (e-g): a) color image acquired by the standard camera; b) depth map acquired

by the ToF camera ; c) amplitude image acquired by the ToF camera; d) confidence map of the

ToF camera; e) color image acquired by the Kinect; f) depth map acquired by the KinectTM; g)

amplitude image acquired by the KinectTM.

Camera ToF ToF

(color image) (amplitude) (depth)

Fig. 5.3 Example of occlusion issues: note how the background in the region between the teddy-

bear and the collector is visible from the camera viewpoint but not from the viewpoint of the ToF

camera.

Let us recall that it is necessary to calibrate the acquisition set-up as seen in Chap-

ter 4 in order to obtain a common reference system for the color and the depth data

streams provided by the two imaging systems. Once a common reference system is

available, one may obtain the following types of output:
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• a color image and a depth map corresponding to the viewpoint of the color cam-

era;

• a color image and a depth map corresponding to the viewpoint of the ToF camera

(or of the KinectTM IR camera);

• a colored 3D point cloud representing the scene;

• a textured 3D mesh representing the scene.

Images and depth maps are typically more suited to 3D video applications, while 3D

textured meshes or colored point clouds are more suited to applications concerning

3D scene reconstruction or navigation.

In order to obtain an image IC and a depth map ZC referred to the viewpoint of

the color camera C defined on lattice ΛC, each sample pD ∈ ZC which is associated

to a 3D point PD with coordinates PD = [xD,yD,zD]
T acquired by the range camera

D (either a ToF camera or a KinectTM range camera) must be reprojected to pixel

pC ∈ IC with coordinates pC = [uC,vC]
T according to:

[
pC

1

]
=

1

zC

K̂C

[
R̂ t̂

][PD

1

]
(5.1)

where zC = r3
T PD + tz. In expression (5.1) rT

3 is the third row of R̂, tz the third

component of t̂, K̂C the estimated intrinsic parameters matrix of C and (R̂, t̂) the

roto-translation between C and D estimated by calibration, as described in Chapter

4. The reprojection of the depth data samples pD ∈ ZC on the color image IC defined

on the 2D lattice ΛC associated to the C-2D reference frame by (5.1) produces a

low resolution depth map ZL
C defined on a subset of ΛC, since the resolution of IC is

higher than that of ZD. This is clearly shown by the examples of Figure 5.4.

a) b)

Fig. 5.4 a) Reprojection of the samples acquired by the ToF camera on the color image; b) repro-

jection of the samples acquired by the KinectTM range camera on the KinectTM color image.

The reprojected depth samples need to be interpolated in order to associate a

depth value to each pixel of ΛC and to obtain from ZL
C a depth map ZC with spatial
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resolution equal to that of IC. Interpolation strategies for this task will be seen in

Section 5.2. The artifacts introduced by the interpolation of depth information might

however cause errors in the occlusion detection and the projection of some depth

samples to wrong locations.

Reprojection (5.1) may also include samples occluded from the camera C point

of view. Occluded samples must be removed, since this may be critical for many ap-

plications. Removal can be achieved by building a 3D mesh from the depth map ZD

and then by rendering it from the color camera viewpoint. The Z-buffer associated

to the rendering can then be used in order to recognize the occluded samples. An

example of Z-buffer-based algorithm is presented in [18]. Another possibility [21]

is to use the 3D geometry acquired from the range camera D in order to convert IC
to an orthographic image where all the optical rays are parallel. Such a conversion

makes trivial the fusion of depth and color data.

A different approach is needed for a representation of depth and color data from

the D viewpoint. The color camera provides only 2D information and the acquired

pixels can not be directly reprojected to the D viewpoint. In order to obtain a color

image from the D viewpoint it is, instead, necessary to build a 3D mesh from the

depth map ZD acquired by D, reproject to IC the 3D vertices of the mesh visible

from the C viewpoint in order to associate a color to the corresponding pixel of

ZD. Therefore from the D viewpoint one may obtain a low resolution color image

ID defined on the 2D lattice ΛD associated to the D-2D reference frame, and a low

resolution depth map ZD defined on ΛD. Since in this case the final resolution is the

one of the ToF data, there is hardly any resolution change and no special interpola-

tion strategies are needed. Interpolation is only needed for associating a color to the

pixels of ZD occluded from the C viewpoint.

As previously said, representations in term of images and depth maps are typical

of 3D video applications, but in other fields such as 3D reconstruction or 3D ob-

ject recognition, are more common 3D scene descriptions by way of colored point-

clouds or textured meshes. In this case, the geometrical description, i.e., the point

cloud or the mesh, can be obtained from the depth measurements by either a ToF

or a KinectTM range camera. The color of each acquired point or mesh triangle can

then be obtained by projecting on the color camera image the point cloud points or

the triangle vertexes by (5.1). After computing the point coordinates on the camera

image, the actual color value can be computed from the closest image samples by

image interpolation (e.g., bilinear, bicubic, spline, etc.). A similar procedure can be

used for the texture coordinates of each 3D mesh triangle.

If the setup features a stereo system S made by two color cameras and a depth

camera D, multiple color and depth data streams are available and there are two

major possibilities. The first one is to independently apply the previously described

methods to each of the two cameras in order to reproject the acquired data on the

D viewpoint or on the viewpoint of one of the two cameras. The second possibility

is the usage of stereo vision techniques [23] applied to the data acquired from the

stereo system S in order to compute the 3D positions of the acquired points. The

3D points obtained from the stereo can then be combined with the 3D data obtained

from the depth camera D with respect to a 3D reference system (either the D-3D or
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the S-3D reference systems) as described in Section 5.4. In this particular case, the

adopted approach generally depends on the employed data fusion algorithm.

5.2 Depth data super-resolution: deterministic approaches

As seen in the previous section, calibration and reprojection make available an im-

age IC (or ID) and a depth map ZL
C (or ZD) referring to the same viewpoint. Depth data

typically have lower resolution and poorer edges localization. The better edges lo-

calization of color images is therefore suited to improve edges localization and spa-

tial resolution of depth data, an operation often called depth data super-resolution.

A first possibility is to extract edge information from the color data by edge de-

tection or segmentation techniques and to use it to assist the interpolation process.

A segmentation process divides the color image in a set of regions called segments

ideally corresponding to the different scene objects. It is reasonable to assume that

inside a segment the depth varies smoothly and that sharp depth transitions between

different scene objects occur at the boundaries between different segments.

Figure 5.5 shows an example of segments containing the reprojected depth samples

ZL
C from a range camera. The spatial resolution of depth map ZL

C may be increased to

that of ZC by interpolation schemes computing the missing depth values only from

the neighboring depth values inside each segment, i.e., each interpolated depth sam-

ple is only function of the samples within the same segment. This is equivalent to

confine the low-pass action of the interpolation within each segment and to preserve

sharp transitions between different segments.

a) b)

Fig. 5.5 Reprojection of the depth samples on the segmented color image in case of: a) an acqui-

sition system made by a ToF camera and a standard camera; b) an acquisition system made by a

KinectTM and a standard camera.

This concept inspires the method of [10], where the depth values are computed

by bilinear interpolation of the reprojected depth samples inside each segment. In
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particular this approach uses some heuristics on the 3D surface shape to compute the

position that the depth samples reprojected outside the current segment would have

if they lay on an extension of the surface corresponding to the considered segment.

The samples predicted in this way are then used to improve interpolation accuracy

at edge regions. This approach outperforms standard image interpolation techniques

and can produce very accurate depth maps as shown in Figure 5.6. Its performance

is limited by two main issues, namely by segmentation errors and by inaccuracies

due to depth acquisition or to the calibration between depth and color cameras.

a) b) c) d) e) f)

Fig. 5.6 Super-resolution assisted by color segmentation: a) low resolution depth map acquired

by a ToF camera; b) image acquired by a color camera; c) high resolution depth map obtained by

Lanczos interpolation; d) high resolution depth map obtained with the aid of color information and

segmentation by the method of [10]; e) detail of the high resolution depth map of c); f) detail of

the high resolution depth map of d).

Segmentation is a very challenging task and, despite the large research activity

in this field, currently there are no procedures completely reliable for any scene.

As expected, segmentation errors or inaccuracies can lead to wrong depth sample

assignments with artifacts in the estimated depth maps of the type shown in Fig-

ure 5.7. For example, the reprojected depth sample inside the green circle of Figure

5.7a belongs to the foreground but it has been wrongly assigned to the background

because of calibration and segmentation inaccuracies. Figure 5.7b shows how the

wrongly assigned depth sample is propagated inside the background by the inter-

polation algorithm. Inaccuracies in the calibration process or in the acquired depth

samples can similarly bring the reprojected depth samples close to the boundaries

between segments to “cross” them and to be assigned to wrong regions.

A possible solution to segmentation issues is to replace segmentation by edge detec-

tion, which is a simpler and more reliable operation. However, cracks of the edges

may allow the reprojected depth samples to be propagated out of the corresponding

segments with consequent artifacts in the interpolated depth. False or double edges

can affect the interpolation process as well. The artifacts due to the second issue

may be reduced by more accurate calibration procedures, as described in Chapter

4. A further possibility is to either exclude or underweight reprojected depth values

too close to the edges [10] in order to eliminate unreliable data from the interpo-

lation process. Figure 5.7c shows how this provision eliminates some interpolation

artifacts.
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a) b) c)

Fig. 5.7 Artifacts due to segmentation and calibration inaccuracies: a) one reprojected depth value

(circled in green) has been assigned to the background but it belongs to the foreground; b) high

resolution depth map obtained by interpolating the depth data inside the different segments; c) high

resolution depth map obtained by method [10] which takes into account also data reliability.

Instead of explicitly detecting color image edges, several recent works [28, 15]

resort to range domain filtering techniques guided by color data to interpolate and

filter depth information. The bilateral filter [25] is one of the most effective and

commonly used edge-preserving filtering schemes. This filter computes the output

value I f (pi) at pixel pi with coordinates pi = [ui,vi]T as the weighted average of the

pixels pn, n = 1, ...,N with coordinates pn = [un,vn]T in a window W i surrounding

pi as most standard filters used in image processing. The key difference with respect

to standard approaches is that the weights do not depend only on the spatial distance

between pi and each pn in W i but also on the difference between the color value of

pi and pn. More precisely I f (pi) is computed as the followings:

I f (pi) =
1

n f
∑

pn∈W i

Gs(pi, pn)Gr(I(pi), I(pn))I(pn) (5.2)

where:

n f = ∑
pn∈W i

Gs(pi, pn)Gr(I(pi), I(pn)) (5.3)

Expression (5.2) shows that the filter output at pi is the weighted average of the

image samples in W i with weights obtained as product of a function Gs depending

on the spatial distance between pi and pn with a function Gr depending on the

color difference between I(pi) and I(pn). The spatial weighting function Gs is the

standard Gaussian function used in low-pass filtering, i.e.:

Gs(pi, pn) =
1

2πσ2
s

e
− (ui−un)2+(vi−vn)2

2σ2
s (5.4)

In [25] the color weighting term Gr is also a Gaussian function applied to the differ-

ence between the color of the two samples:
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Gr(pi, pn) =
1

2πσ2
r

e
− δ (I(pi),I(pn))2

2σ2
r (5.5)

where δ (I(pi), I(pn)) is a suitable measure of the difference between the colors

of the two samples pi and pn. It can be computed, for instance, as the euclidean

distance between the colors of pi and pn in the CIELab color space [7].

In the considered setup where one has available a low resolution depth map ZD

acquired by a depth camera D and a high resolution color image IC acquired by

a color camera C, a modified version of the bilateral filter allows to obtain a high

resolution depth map defined on lattice ΛC. As noted in Section 5.1, the reprojection

of of ZD on ΛC gives a low resolution sparse depth map ZL
C defined on a subset

ΓL ,
{

pl , l = 1, ...,L
}

of ΛC. The high resolution color image IC associates a color

value IC(pi) to each sample pi ∈ΛC. Two different approaches can be considered in

order to apply bilateral filtering .

The first one is to compute the filter output I f (pi) for each sample of the high

resolution depth map using only the samples I f (pl) that are inside the window W i

and have an associated depth value, i.e., Equation (5.2) can be rewritten as:

ZC, f (pi) =
1

ni
f

∑
pl∈W

i

Gs(pi, pl)Gr(IC(pi), IC(pl))ZL
C(pl) (5.6)

where W
i
=W i ∩ΓL is the set of the low resolution depth map points falling inside

window W i, and the normalization factor ni
f is computed as

ni
f = ∑

pl∈W
i

Gs(pi, pl)Gr(IC(pi), IC(pl)) (5.7)

It is important to note how in this case the range weighting factor Gr is not com-

puted on the depth values but as the difference between the color of pi and of pl

on the corresponding color image C acquired by the color camera. This approach is

commonly called cross bilateral filtering to underline that the range weights come

from a domain different from the one of the filtering operation, i.e. the filtering con-

cerns depth data and Gr is computed from associated color data. Figure 5.8 shows an

example of the results that can be achieved by this approach, note how the exploita-

tion of the high resolution color information through the range weighting factor Gr

allows to correctly locate and preserve the edges.

The second possibility is given by the following two-steps procedure:

a) interpolate the depth map ZL
C by a standard image interpolation algorithm (e.g.

spline interpolation) in order to obtain a high resolution depth map ZC defined

on the high resolution lattice ΛC;

b) obtain the final high resolution depth map ZC, f by applying the bilateral filter to

ZC with the range weighting factor Gr computed as before, i.e., as the difference

between the color of pi and of pn on the corresponding color image IC, i.e.:
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ZC, f (pi) =
1

ni
f

∑
pn∈W i

Gs(pi, pn)Gr(IC(pi), IC(pn))ZC(pn) (5.8)

with ni
f = ∑pn∈W i Gs(pi, pn)Gr(IC(pi), IC(pn)).

Note that after the interpolation of step a) depth and color are defined on the same

lattice, and this allows to use all the samples of window W i for the interpolation.

A similar approach has been employed in [15] with the non-local means filter [6]

in place of the bilateral filter. The main difference between non-local means and

bilateral filter is that the range weighting factor of the former is computed from

two windows surrounding the two samples pi and pn instead of just from the two

samples pi and pn. Furthermore this approach explicitly handles depth data outliers,

which are quite common in the data acquired by current depth cameras.

a) b)

Fig. 5.8 Bilateral upsampling of depth data from a ToF camera (a) and from KinectTM (b).

5.3 Depth data super-resolution: probabilistic approaches

Probabilistic approaches offer an interesting alternative for depth data super-resolution.

Before describing this family of methods, it is worth introducing some basic con-

cepts and notation. A depth map Z can be considered as the realization of a random

field Z defined over a 2D lattice ΛZ . The random field Z can be regarded as the

juxtaposition of the random variables Zi , Z (pi), with pi being a pixel of ΛZ . The

neighbors of pi are denoted as pi,n ∈ N(pi), where N(pi) is a neighborhood of pi.

Neighborhood N(pi) can be either the 4-neighborhood, the 8-neighborhood or even

a generic window W i centered at pi. The random variable Zi assumes values in the

discrete alphabet zi, j, j = 1, ...,Ji in a given range R i. The specific realization of Zi

is denoted as zi.

In the considered case the high resolution version of the depth distribution can
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be seen as a Maximum-A-Posteriori (MAP) estimate of the most probable depth

distribution Ẑ given the acquired depth measurements M1, i.e.:

Ẑ = argmax
Z∈Z

P(Z|M) (5.9)

where Z is the random field of the framed scene depth distribution and Z is a

specific realization of Z . The random field Z is defined on a lattice ΛZ that can

be either the depth camera lattice ΛD or the color camera lattice ΛC or an arbitrary

lattice different from the source data lattices (e.g., a lattice associated to a virtual

camera placed between D and C). The choice of this lattice is a first major design

decision. In this section we assume to operate on a suitable high resolution lattice

(e.g., ΛC) where depth and color data have been reprojected and interpolated as

described in Sections 5.1 and 5.2. The random field Z is therefore made by a set of

random variables Zi , Z (pi), pi ∈ Λ .

From Bayes rule, Equation (5.9) can be rewritten as

Ẑ = argmax
Z∈Z

P(M|Z)P(Z)
P(M)

= argmax
Z∈Z

P(M|Z)P(Z) (5.10)

where in the considered case P(M|Z) = P(ZD|Z) is the likelihood of the measure-

ments made by the depth camera D given scene depth distribution Z, and P(Z) is

the prior probability of the scene depth distribution. Field Z can be modeled as a

Markov Random Field (MRF) defined on the considered lattice. Markov Random

Fields extend the concept of Markov chains to regular 2D fields such as images or

depth maps. A detailed presentation of the theory behind these representations is out

of the scope of this book but can be found in many places, e.g. [17]. The MRF are

suited to model the relationships between neighboring pixels in the high resolution

lattice, i.e., the typical structure of depth information made by smooth regions sep-

arated by sharp edges.

Let us recall that by definition Z is a MRF if

P(Zi|Zn : Zn , Z (pn),∀pn ∈ ΛZ \
{

pi
}
) =

P(Zi|Zn : Zn , Z (pn),∀pn ∈ N(pi)), ∀pi ∈ ΛZ
(5.11)

in which N(pi) is a suitable neighborhood of pi. It is possible to demonstrate [17]

that Z is characterized by a Gibbs distribution. Therefore the MAP problem of

Equation (5.10) after some manipulation can be expressed as the minimization of

energy function

U(Z) =Udata(Z)+Usmooth(Z) = ∑
pi∈ΛZ

Vdata(pi)+ ∑
pi∈ΛZ

∑
pn∈N(pi)

Vsmooth(pi, pn)

(5.12)

1 In this section the set of depth measurements M comes from a single depth camera, i.e., either a

KinectTM or a ToF camera, while in Section 5.4 depth data come from two different depth cameras

of which one is a stereo vision system.
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Energy U(Z) it is the sum of two energy terms: a data term Udata modeling the

probability that depth assumes a certain value at pi, and a smoothness term Usmooth

modeling the dependency of the depth value at pi from its neighbors pn ∈N(pi). The

first term typically accounts for the depth camera measurements, while the second

term models the fact that depth maps are made by smooth regions separated by sharp

edges. A simple possibility is to just use Usmooth to enforce the smoothness of the

depth map. In this way the available high resolution color information would not be

exploited and an interesting alternate option used in several approaches [9, 20, 14]

is taking into account color information in the construction of the MRF associated

to the depth data. As shown in Figure 5.9, the basic idea is that the dependency

of Zi from its neighbors Zn ,
{
Z (pn), pn ∈ N(pi)

}
is stronger when the samples

have similar colors and weaker when the samples have different colors. This models

the fact that samples with similar colors are more likely to lie on the same object

and thus to have similar depth values, while depth information edges are probably

aligned with color data edges.

Fig. 5.9 Pictorial illustration of the energy functions used in depth super-resolution: the Vdata term

(shown in blue) depends on the depth camera measurements, while the Vsmooth term affects the

strength of the links (in red) representing the dependency of each depth sample from its neighbors.

Typically the data term Udata is the sum of a set of potentials Vdata(pi), one for

each sample of the lattice (the blue circles in Figure 5.9). The potential Vdata(pi)
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based on the depth camera measurements can be expressed as a function of the

difference between the considered value and value ZD(pi) actually measured by the

depth camera. All the proposed approaches use an expression of the form

Vdata(pi) = k1[z
i −ZD(pi)]2 (5.13)

where k1 is a constant weighting factor used to balance the data term with respect to

the smoothness term Usmooth.

The smoothness term Usmooth modeling the dependency of each sample from

its neighbors (represented by the links with the red squares in Figure 5.9) can be

expressed as the sum of a set of potentials Vsmooth(pi, pn) defined on each couple

of neighboring points on the considered lattice. The potentials Vsmooth(pi, pn) can

be defined in different ways, but the most common solution is to model them as a

function of the difference between the considered value zi and its neighbors zn, i.e.:

Vsmooth(pi, pn) =Vsmooth(z
i,zn) = wi,n[z

i − zn]2 (5.14)

where wi,n are suitable weights modeling the strength of the relationship between

close points. They are the key element for this family of approaches: weights wi,n

not only model the depth map smoothness but also provide the link between the

depth data and the associated color image acquired by the standard camera. If zi

and zn are associated to samples of similar color on the camera image they probably

belong to the same region and thus there should be a strong link between them. If

they correspond to samples of different color the smoothness constraint should be

weaker. The simplest way to account for this rationale is to compute the weight wi,n

linking zi to zn as a function of the color difference between the associated color

samples IC(pi) and IC(pn), for instance by an exponential function [9, 14]:

wi,n = e−k2δ (IC(pi),IC(pn))2

(5.15)

where δ (IC(pi), IC(pn)) is a measure of the color difference between the two sam-

ples at location pi and pn (e.g., in the simplest case, the absolute value of the differ-

ence between their intensity values) and k2 is a tuning parameter. Needless to say,

this simple model can be easily extended in order to feed the probabilistic model

with many other clues, such as the segmentation of the color image, the output of

an edge detection algorithm, or other image characteristics [20].

Depth distribution Ẑ is finally computed by finding the depth values that max-

imize the Maximum-A-Posteriori (MAP) probability (5.12) modeled by the MRF.

This problem can not be subdivided into smaller optimization problems and needs to

be solved by complex global optimization algorithms, such as Loopy Belief Propa-

gation [22] or Graph-cuts [4]. The theory behind these optimization methods, rather

general and powerful, can be found in [17, 3, 23, 24]. The choice of the specific

optimization algorithm is another important element for the depth interpolation al-

gorithm.
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5.4 Fusion of data from a depth camera and a stereo vision

system

Another interesting possibility to overcome the data limitations of current depth

cameras and to provide both color and 3D geometry information is to use an acqui-

sition setup made by a range camera D (either a ToF camera or a KinectTM) and a

couple of color cameras used as an autonomous stereo vision system S. In this case,

both the stereo vision system S and the range camera D are able to independently

estimate the 3D scene geometry. Moreover each camera of the stereo vision system

provides color information.

The quantities that characterize such an acquisition system are:

• the color images pair IS = {IL, IR} acquired by the stereo system S (being IL

the image acquired by the left camera L and IR the image acquired by the right

camera R). IL is defined on lattice ΛL associated to the L-2D reference system,

and IR is defined on lattice ΛR associated to the R-2D reference system;

• The depth map ZS estimated by the stereo vision system from the color images

IS, conventionally defined on lattice ΛL;

• The full information FD = {AD,ZD,(BD)} acquired by the depth camera D, where

AD is an amplitude image, ZD a depth map and BD an intensity image (AD and BD

may not be made available by all the commercial products). All these quantities

are defined on lattice ΛD associated to the D-2D reference system.

Calibration (that can be performed as described in Chapter 4) allows to spatially

relate the 3D geometry information provided by D and the 3D geometry and color

information provided by S. Calibration is both a necessary and a critical step for the

fusion of the data acquired by D and S.

The rationale behind the fusion of data from a depth camera and a stereo vision

system is to provide 3D geometry estimates with characteristics of accuracy, pre-

cision, depth resolution, spatial resolution and robustness superior in all or some

aspects to those of the original data from the range camera or the stereo system.

Most of the proposed methods were originally tailored to the case of ToF cameras,

as the introduction of the KinectTM is very recent and the combination of this de-

vice with stereo systems is still a quite unexplored field. Anyway, most of the actual

approaches can be generally adapted to the case of a KinectTM.

The fusion of depth information coming from a range camera D and a stereo

vision system S, seen in the previous section, can be formalized by the MAP proba-

bilistic approach (5.9) that can be rewritten by Bayes rule as in (5.10).

In this case the data M measured by the acquisition system are the full information

FD acquired by D and the color images IS acquired by S. Z is the random field of

the framed scene depth distribution, defined on ΛZ , which as in the case of super-

resolution can be ΛD, ΛS or another lattice (e.g., a lattice associated to a virtual

camera placed between L and D). The choice of lattice ΛZ is a major design deci-

sion when fusing data from S and D. Approaches like [30, 29, 31] adopt ΛZ = ΛS,

while other approaches such as [8] adopt ΛZ = ΛD. The choice of ΛS leads to high
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resolution depth map estimates (i.e., to depth maps with the resolution of stereo im-

ages IS), while the choice of ΛD leads to low resolution depth map estimates. It is

worth noting that although the choice of ΛD does not improve the depth map resolu-

tion, it may also be of interest since it leads to more accurate estimates, as explained

later in this section.

Another fundamental characteristic that defines the random field Z is the range

of values that each random variables Zi = Z (pi) can assume. Each random vari-

able Zi assumes values in the discrete alphabet zi, j , i = 1,2, ..,Ji in a given range

Ri ⊂ [zmin,zmax] where zmin is the nearest measurable distance (e.g., 500[mm] for a

KinectTM) and zmax is the furthest measurable distance (e.g., 5×103[mm] for a ToF

camera with modulation frequency fmod = 30[MHz]). Note that also the distances

measured by a stereo vision system are bounded by the choice of a minimum and

a maximum disparity value. The choice of zmin and zmax is the second major design

decision which has to account for the characteristics of D, S and of the framed scene

(prior knowledge of minimum and maximum depth of the scene to be acquired is

rather common). It is also worth pointing that alphabet values zi, j and alphabet car-

dinality Ji depend on pi.

The likelihood term P(IS,FD|Z) accounts for the depth information acquired

by both D and S. Under the common assumption that the measurement likeli-

hoods of the two 3D acquisition systems (in this case D and S) are independent

[13, 8, 30, 29, 31], the likelihood term can be rewritten as

P(IS,FD|Z) = P(IS|Z)P(FD|Z) (5.16)

where P(IS|Z) is the likelihood of the S measurements and P(FD|Z) the likelihood

of the D measurements. Therefore in this case the MAP problem of Equation (5.10)

can be rewritten as:

Ẑ = argmax
Z∈Z

P(Z|IS,FD) = argmax
Z∈Z

P(IS|Z)P(FD|Z)P(Z) (5.17)

Each one of the two likelihoods P(IS|Z) and P(FD|Z) can be computed indepen-

dently for each pixel pi ∈ ΛZ . Let us consider first P(IS|Z) and observe that from

(1.15) the left camera pixel pi with coordinates pi = [ui,vi]T and the depth values

zi, j identify a set of 3D points Pi, j with coordinates Pi, j = [xi, j,yi, j,zi, j]T j = 1, ...,Ji.

Such points are projected on the conjugates pairs (p
i, j
L , p

i, j
R ). Therefore the likelihood

P(IS|Z) can be regarded as the set of P(IS|Pi, j), P(IS/Zi = zi, j) j = 1,2, ...,Ji. The

stereo measurements likelihood for Pi, j can be computed by comparing the IL im-

age in W
i, j
L , a window centered at p

i, j
L , and the IR image in W

i, j
R , a window centered

at p
i, j
R . In principle the two windows are very similar if zi, j is close to the correct

depth value, while they are different if zi, j is different from the correct depth value.

The likelihood therefore assumes high values if the windows W
i, j
L and W

i, j
R have

a high similarity score and low values if the windows have low similarity score.

Most stereo vision systems compute a cost function ci, j = C (p
i, j
L , p

i, j
R ) representing

the similarity between the two windows and the likelihood of a set of points Pi, j,
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i = 1,2, ...,Ji can be computed as a function of ci, j, for instance by an exponential

model as:

P(IS|Pi, j) ∝ e
− ci, j

σ2
S (5.18)

where σS is a normalization parameter, experimentally found on the basis of the

color data variance. The cost function C can be any of the different functions used in

stereo vision techniques [23], such as a simple Sum of Squared Differences (SSD):

ci, j = ∑
pn

L∈W
i, j
L ,pn

R∈W
i, j
R

[IL(pn
L)− IR(pn

R)]
2 (5.19)

The windows W
i, j
L and W

i, j
R can be for instance rectangular windows centered at p

i, j
L

and p
i, j
R respectively. Stereo cost computation is pictorially shown in Figure 5.10,

where the cost value ci, j relative to a specific realization zi of Zi is simply denoted

as ci.
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Fig. 5.10 Pictorial illustration of stereo costs computation. Different 3D points associated to dif-

ferent depth measurements (green dots) project to different pairs of possible conjugate points. For

each pair of possible conjugate points a matching cost (shown in the plot) is computed by locally

comparing the stereo images in windows (red rectangles) centered at the relative conjugate points.
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The depth cameras likelihood P(FD|Z) for a given point Pi, j can be regarded as

the set of P(FD|Pi, j) , P(FD|Zi = zi, j), j = 1,2, ..,Ji and can be computed by ana-

lyzing the measurement errors of depth cameras. Let us recall that depth cameras

measurements are generally characterized by random errors distributed along the

cameras optical rays (Chapters 2 and 3). For example, in the case of a ToF cam-

era, the depth random error is characterized by a Gaussian distribution along the

optical rays (at least for the measured points far from depth discontinuities) with

standard deviation σP that can be obtained from (2.11), as hinted by Figure 5.11.

For the KinectTM case, the error distribution is less regular, but the error is always

Measurements  

distribution 

Measured  

point 

Fig. 5.11 Pictorial illustration of distance measurement error (blue Gaussian distribution) along

the depth camera optical ray (red line).

distributed along the KinectTM IR camera optical rays.

Since in both the cases of ToF cameras or KinectTM the error is distributed along the

optical rays, the D likelihood terms P(FD|Zi = zi, j) can be independently considered

for each point of lattice ΛZ = ΛD. The choice of ΛD for the estimated depth random

field allows to exploit this property (and this is why the choice of ΛD as lattice for

Z is not naive).

Let us suppose that the depth estimation error is distributed as a Gaussian. The depth

camera measurements likelihood for a set of 3D points Pi, j, j = 1,2, ...Ji relative to

pi ∈ ΛZ can be computed as:

P(FD|Pi, j) ∝ e
− zi, j−ZD(pi

D
)

σ2
D (5.20)

where zi, j is the depth coordinate of Pi, j, ZD(pi
D) is the measured depth coordinate,

pi
D is the pixel of lattice ΛD associated to Pi, j. Parameter σD is a suitable function of

the depth data variance and noise, e.g., in [8] it depends both on the variance of the

3D point positions σP and on the local variance of the depth measurements inside a

window centered at pi
D.

The last term of Equation (5.17) to model is prior P(Z) which can be modeled
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in two ways, namely by an independent random variable approach or by a MRF

approach, as seen next.

5.4.1 Independent random variable approach

The first approach (explicitly adopted in [8] and implicitly in [27]) models Z as a

juxtaposition of independent random variables Zi , Z (pi), pi ∈ Λ , where Λ is the

considered lattice (either ΛS, ΛD or another lattice). These variables are character-

ized by prior probability P(zi, j) , P(Zi = zi, j), which for instance in [8] is a dis-

crete uniform distribution in [zmin,zmax]. The uniform probability distribution model

does not impose any specific structure to the scene depth distribution (e.g., piece-

wise smoothness). In this case the MAP problem of (5.17) can be simplified and

the smoothness term can be removed from the minimization of the energy function

U(Z), i.e.:

U(Z) =Udata(Z) =US(Z)+UD(Z) = ∑
pi∈ΛZ

VS(pi)+ ∑
pi∈ΛZ

VD(pi) (5.21)

Data term Udata accounts both for the contribution of the stereo system S (through

the energy function US(Z) and the corresponding potentials VS(pi)) and the contribu-

tion of the depth camera (through UD(Z) and the corresponding potentials VD(pi)).
More precisely, VS(pi) depends on the cost function C of the stereo system. For

instance, if the model of Equation (5.18) is used for the cost function, VS(pi) can be

computed as:

VS(pi) =
1

σ2
S

ci (5.22)

The potentials VD(pi) instead depend on the measurements of the depth camera,

e.g., using the model of Equation (5.20), VD(pi) is:

VD(pi) =
[zi −ZD(pi

D)]
2

σ2
D

(5.23)

Therefore from (5.22) and (5.23) expression (5.21) can be rewritten as

U(Z) = ∑
pi∈ΛZ

[
ci

σ2
S

+
[zi −ZD(pi

D)]
2

σ2
D

]
(5.24)

Equation (5.24) can be optimized independently for each random variable of the es-

timated random field by a Winner-Takes-All (WTA) approach. The WTA approach,

for each random variable in ΛZ , picks the depth value zi which maximizes the cor-

respondent energy term in (5.24). Approaches based on independence assumptions

consider each random variable of the random field independently and this leads to

a lack of global knowledge about the estimated random field. Such approaches, of-
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ten called local methods, generally aim at improving the accuracy and the precision

of the estimated depth distribution with respect to both the original estimates of D

and S, without applying any global regularization model. Figure 5.12 reports some

results obtained from the local method of [8].
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Fig. 5.12 Results of the application of the local fusion approach of [8]: a) acquired left color image;

b) depth map acquired by the ToF camera; c) estimated depth map after the fusion; d) difference

between the depth map acquired by the ToF camera and the depth map estimated by the fusion

approach.

5.4.2 MRF modeling approaches

Similarly to the case of Section 5.3, also in this case the prior probability P(Z)
can be modeled as a Markov-Random-Field (MRF). As previously explained, this

model imposes piecewise smoothness to the estimated depth map. In this case Z is

characterized by a Gibbs distribution, and prior P(Z) can be computed as

P(Z) ∝ ∏
pi∈ΛZ

∏
pn∈N(pi)

e−Vsmooth(z
i,zn) (5.25)
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Fig. 5.13 Markov Random Field used for the fusion of data from a depth camera and a stereo

system. The data term depends on both depth camera and stereo vision measures.

where zi is a realization of Zi = Z (pi) and N(pi) is a suitable neighborhood of pi.

Also in this case the MAP problem of (5.17) can be solved by minimizing an energy

function U(Z) of the following form:

U(Z) =Udata(Z)+Usmooth(Z)

=US(Z)+UD(Z)+Usmooth(Z)

= ∑
pi∈ΛZ

VS(pi)+ ∑
pi∈ΛZ

VD(pi)+ ∑
pi∈ΛZ

∑
pn∈N(pi)

Vsmooth(pi, pn) (5.26)

in which VS(Z) and VD(Z) can be computed according to (5.22) and (5.23) respec-

tively and Vsmooth(pi, pn) forces the piecewise smoothness of depth data.

A typical expression for Vsmooth(pi, pn) is:

Vsmooth(pi, pn) = min
{
[zi − zn]2,T 2

h

}
(5.27)

in which Th is a robustness threshold that avoids Vsmooth

(
pi, pn

)
to take too large

values near discontinuities. Note how expression (5.26) differs from (5.12) since

in Equation (5.12) the prior term depends only on depth information and the color

information affects the smoothness term, while in Equation (5.26) both depth and

color enter the data term, as the comparison of Figures 5.9 and 5.13 pictorially hints.

Equation (5.26) can be rewritten as



5.4 Fusion of data from a depth camera and a stereo vision system 89

U(Z) = ∑
pi∈ΛZ


 ci

σ2
S

+
[zi −ZD(pi

D)]
2

σ2
D

+ ∑
pn∈N(pi)

min
{
[zi − zn]2,T 2

h

}

 (5.28)

With respect to (5.24), this energy function takes into account both the fidelity with

respect to the D and S measurements and the smoothness of the estimated depth

distribution. The maximization of (5.28) cannot be done independently for each

random variable of the random field, but it requires the same techniques used for the

maximization of (5.12), e.g., Loopy Belief Propagation or Graph-Cuts.

Examples of techniques based on MRF in order to fuse data from a ToF camera

and from a stereo vision system are presented in [30, 29, 31]. Some results from [31]

are shown in Figure 5.14. This kind of approaches allows to improve the accuracy

a) b)

c) d)

Fig. 5.14 Results of the application of the global fusion approach of [31] (courtesy of the au-

thors): a) acquired left color image; b) depth map acquired by the ToF camera and interpolated; c)

depth map produced by the stereo vision algorithm; d) depth map after application of the fusion

algorithm.

and the precision of the range camera and of the stereo vision measurements thanks

to the regularization due to the smoothness term and to obtain a final depth estimate

at the high spatial resolution of the stereo vision data.
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5.5 Conclusion and further reading

The fusion of data from sensors of different nature is a classical problem well for-

malized in [12]. This chapter addresses the specific case of the fusion of data from a

range camera and one or two color cameras. The fundamental instruments for treat-

ing these two problems are the bilateral filter [25] and the Markov-Random-Field

(MRF) framework [17, 3]. Other techniques, such as non-local means filter [15, 6]

and Conditional-Random-Fields (CRF) [26] have also been adopted in this context.

Examples of the main methods for depth super-resolution through the fusion of data

from a range camera and a standard color camera are in [28, 10, 9, 15, 20, 14], and

examples of the main approaches for the fusion of data from a range camera and a

stereo vision system are in [30, 29, 31, 8, 27, 16, 11, 28].

In general it can be said that data fusion by either local or global approaches im-

proves the accuracy and the precision of both depth camera and stereo measure-

ments. The spatial resolution of the fused data may be either the high resolution

of the stereo data or the low resolution of data from the depth camera. Global ap-

proaches allow to obtain better results at the expenses of a computational load in-

crease.

A deep understanding of the methods proposed for the fusion of range camera and

stereo data requires awareness of the current stereo vision methods. A fundamental

component of the MRF approaches is the optimization of the global energy typ-

ical of this kind of problems. Such minimization can be done by Loopy-Belief-

Propagation (LBP) [2], by Graph-Cuts (GC) [5, 4] or by other algorithms. A com-

prehensive survey of optimization algorithms suitable to this kind of problems can

be found in [24].

References

1. T. D. Arun Prasad, K. Hartmann, W. Weihs, S.E. Ghobadi, and A. Sluiter. First steps in

enhancing 3d vision technique using 2d/3d sensors, 2006.

2. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-

tics). Springer, 2007.

3. A. Blake, P. Kohli, and C. Rother, editors. Markov Random Fields for Vision and Image

Processing. MIT Press, 2011.

4. Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms

for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 26:359–374, 2001.

5. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:1222–1239, 2001.

6. A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Proc.

IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR 2005, vol-

ume 2, pages 60–65, 2005.

7. Recommendations on uniform color spaces, color difference equations, psychometric color

terms. Supplement No.2 to CIE publication No. 15 (E.-1.3.1) 1971/(TC-1.3.), 1978.

8. C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. A probabilistic approach to tof and stereo

data fusion. In Proceedings of 3DPVT, Paris, France, May 2010.



References 91

9. J. Diebel and S. Thrun. An application of markov random fields to range sensing. In Pro-

ceedings of Conference on Neural Information Processing Systems (NIPS), Cambridge, MA,

2005. MIT Press.
10. V. Garro, C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. A novel interpolation scheme for

range data with side information. In CVMP, pages 52 –60, nov. 2009.
11. S. A. Gudmundsson, H. Aanaes, and R. Larsen. Fusion of stereo vision and time of flight

imaging for improved 3d estimation. Int. J. Intell. Syst. Technol. Appl., 5:425–433, 2008.
12. D.L. Hall and J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE,

85(1):6 –23, jan 1997.
13. C. E. Hernandez, G. Vogiatzis, and R. Cipolla. Probabilistic visibility for multi-view stereo.

In Proc. of CVPR Conf., 2007.
14. B. Huhle, S. Fleck, and A. Schilling. Integrating 3d time-of-flight camera data and high

resolution images for 3dtv applications. In 3DTV Conference, 2007, pages 1 –4, may 2007.
15. B. Huhle, T. Schairer, P. Jenke, and W. Strasser. Fusion of range and color images for denoising

and resolution enhancement with a non-local filter. Computer Vision and Image Understand-

ing, 114(12):1336 – 1345, 2010.
16. K. D. Kuhnert and M. Stommel. Fusion of stereo-camera and pmd-camera data for real-time

suited precise, 2006.
17. S. Z. Li. Markov Random Field Modeling in Image Analysis. Springer, New York, 3rd edition

edition, 2009.
18. M. Lindner, A. Kolb, and K. Hartmann. Data-fusion of pmd-based distance-information and

high-resolution rgb-images. In Signals, Circuits and Systems, 2007. ISSCS 2007. International

Symposium on, volume 1, pages 1 –4, july 2007.
19. M. Lindner, M. Lambers, and A. Kolb. Sub-pixel data fusion and edge-enhanced distance

refinement for 2d/3d images. International Journal of Intelligent Systems Technologies and

Applications, pages 344–354, 2008.
20. J. Park, H. Kim, Y.W. Tai, M.S. Brown, and I. Kweon. High quality depth map upsampling

for 3d-tof cameras. In Proceedings of the 13th International Conference on Computer Vision

(ICCV2011), November 2011.
21. R. Reulke. Combination of distance data with high resolution images. In Proceedings of

Image Engineering and Vision Metrology (IEVM), 2006.
22. J. Sun, N. Zheng, and H. Shum. Stereo matching using belief propagation. IEEE Trans.

Pattern Anal. Mach. Intell., 25:787–800, 2003.
23. R. Szeliski. Computer Vision: Algorithms and Applications. Springer, New York, 2010.
24. R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and

C. Rother. A comparative study of energy minimization methods for markov random fields

with smoothness-based priors. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 30:1068 –1080, 2008.
25. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Computer Vision,

1998. Sixth International Conference on, pages 839 –846, jan 1998.
26. H. M. Wallach. Conditional random fields: An introduction. Technical report, University of

Pennsylvania, 2004.
27. Q. Yang, K.H. Tan, B. Culbertson, and J. Apostolopoulos. Fusion of active and passive sensors

for fast 3d capture. In Multimedia Signal Processing (MMSP), IEEE International Workshop

on, 2010.
28. Q. Yang, R. Yang, J. Davis, and D. Nistr. Spatial-depth super resolution for range images. In

Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, 2007.
29. J. Zhu, L. Wang, J. Gao, and R. Yang. Spatial-temporal fusion for high accuracy depth

maps using dynamic mrfs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32:899–909, 2010.
30. J. Zhu, L. Wang, R. Yang, and J. Davis. Fusion of time-of-flight depth and stereo for high

accuracy depth maps. In CVPR, 2008.
31. J. Zhu, L. Wang, R. Yang, J. E. Davis, and Z. Pan. Reliability fusion of time-of-flight depth

and stereo geometry for high quality depth maps. IEEE Trans. Pattern Anal. Mach. Intell.,

33:1400–1414, 2011.





Chapter 6

Scene Segmentation and Video Matting Assisted
by Depth Data

Detecting the regions of the various scene elements is a well-known computer vi-

sion and image processing problem called segmentation. Scene segmentation has

traditionally been approached by way of (single) images, since they are the most

common way of representing scenes. Despite the huge amount of research devoted

to this task and the great number of adopted approaches [23], some of which based

on powerful techniques such as graph-cuts [12] and mean-shift clustering [8, 21],

image segmentation, i.e., scene segmentation by means of color information alone,

remains a very challenging task. This is due to the fact that image segmentation is

an ill-posed problem essentially because color data do not always contain enough

information to disambiguate all the scene objects. For example, the segmentation of

an object in front of a background of very similar color remains a very difficult task

even for the best segmentation algorithms. Also objects with very complex texture

patterns are difficult to segment, specially if the statistics of their texture is similar

to that of the background.

Depth information is a very useful clue for scene segmentation. Segmentation

based on depth data usually provides better results than image segmentation be-

cause depth information allows to easily divide near and far objects on the basis of

their distance from the depth camera. Furthermore, it does not have issues related

to object and background color and it can easily handle objects with complex tex-

ture patterns. Unfortunately, some scene configurations are critical also for depth

information, for example the case of two objects touching each other. Until now,

segmentation by means of depth information has received limited attention due to

the fact that depth data acquisition was a difficult task, but the introduction of ToF

sensors and of the KinectTM are making this task much easier.

Standard image segmentation methods can be easily applied to the depth maps

produced by ToF cameras or by the KinectTM, but some instrinsic data limitations

must be taken into account. First of all, the current resolution of these devices lim-

its the precision of the segmented objects contours. Furthermore, there are scene

situations more suited to be handled by depth information and others more suited

to color information. For all these reasons the joint usage of color and depth data

seems the best scene segmentation option. This chapter assumes color and depth

93
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data relative to the same viewpoint, obtained by acquisition setups with calibration

and reprojection procedures of the kind introduced in Chapter 4 in order to register

color and depth data.

Video matting, i.e. the task of dividing foreground objects from the scene back-

ground, is a problem strictly related to scene segmentation with practical relevance

in many applications, e.g., film-making, special effects, 3D video, etc.. Consider-

able research is devoted to this particular task. This chapter in Section 6.1 addresses

first the use of ToF cameras and KinectTM in video matting and then in Section 6.2

in the more general problem of scene segmentation.

6.1 Video matting by color and depth data

Video matting has always been an important task in film-making and video produc-

tion, but in spite of a considerable research activity and of the existence of various

commercial products it remains a challenging task. Accurate foreground extraction

is feasible by using a cooperative background, but if the background is not control-

lable and, for instance, it includes colors similar to the ones of the foreground or

moving objects, video matting becomes rather difficult. The video matting problem

can be formalized [18] by representing each pixel pi in the observed color image IC
as the linear combination of a background color B(pi) and a foreground color F(pi)
weighted by the opacity value α(pi), i.e.:

IC(pi) = α(pi)F(pi)+ [1−α(pi)]B(pi) (6.1)

where α(pi) = 1 for foreground pixels and α(pi) = 0 for background pixels. If we

constrain α to assume only 0 or 1 values, the problem is reduced to a binary seg-

mentation task. Many methods also allow fractional α values in order to handle

transparent objects and pixels close to the edges that include in their area both fore-

ground and background elements.

The set made by the α(pi) values of the whole image is called alpha matte and

its estimate is called matting problem. It can be easily seen that it is an undercon-

strained problem. Assuming the use of a standard three-dimensional color space,

for each pixel there are seven unknowns (the α value, and three components of

each foreground and background color vector) and only three known values (i.e.,

the color of the observed image). Standard matting approaches adopt assumptions

on background and foreground image statistics and on the user input in order to fur-

ther constrain the problem. Quite clearly depth cameras may bring further distance

data which may be rather valuable for its solution. Foreground objects, in fact, have

the basic property of being closer to the camera than the background ones and can

be then easily detected by depth information. This explains why video matting is

one of the key applications of ToF cameras.

The analysis of the objects depth allows to easily separate background and fore-

ground (even by a simple thresholding of the depth values) within the already under-
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lined limitations of depth cameras. In particular, it is very hard to precisely locate

the edges between the two regions from depth data alone, because of the limited

resolution of ToF cameras, the edge artifacts introduced by many ToF cameras (and

by the KinectTM). If the depth cameras are assisted by standard cameras a further

constraint derives from the limited accuracy of the calibration between the depth

camera and the high quality color camera used for video acquisition (usually the

target is the matting of the video stream of the color camera). Moreover, as already

shown in Chapter 5, the depth camera and the color camera have slightly different

optical centers, therefore some background regions visible from the color camera

may be occluded from the depth camera point of view and a depth-to-color value

association may not be feasible.

A common approach in order to deal with the above issues in the matting con-

text is building a trimap from depth information, i.e., dividing the image into a

foreground, a background and an uncertainty region. The uncertainty region usually

corresponds to the areas near the edges between foreground and background (as

shown in Figure 6.1). Standard matting algorithms typically build a trimap under

some kind of human supervision, but the availability of depth information allows to

solve this task automatically, which is a major advantage for practical applications.

The simplest approach for obtaining a trimap is to first threshold the depth map and

then erode the foreground and background regions in order to remove the pixels

near the boundary. The uncertainty region is usually given by the eroded samples

and by the samples without depth value either because of occlusions or because it

was not provided by the depth camera. The trimap computation can also include

further clues, if available; for instance, the ToF camera confidence map can be used

to include also pixels with low confidence depth values in the uncertainty region.

a) b) c)

Fig. 6.1 Example of matting trimap: a) depth map acquired by the ToF camera; b) color image

acquired by the video camera; c) trimap computed from depth information with black, white and

gray pixels referring to foreground, background and uncertainty region respectively.

Another possibility for trimap computation [9] is to assign each sample a proba-

bility of being foreground which does not depend from its own depth only but also

from the depth of the pixels around it. In this approach each pixel pi is first assigned

a probability of being foreground Pf g(pi) on the basis of the corresponding depth

value. The pixels without an associated depth values usually receive a low Pf g score

in order to model the fact that occluded pixels usually belong to the background
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(although the lack of a depth measurement may also derive from other causes).

Then the likelihood of each pixel being foreground or background is computed as a

weighted average of the probabilities of the pixels around it, according to

Pf g(pi|W ) =
1

∑k w(pk) ∑
pn∈W i

w(pn)Pf g(pn) (6.2)

where W i is a rectangular window around pi and w(pn) are weights usually giving

more relevance to the pixels closer to pi. A Gaussian function is a common choice

for weights w(pn). Note how (6.2) assigns likelihood values close to 0 or 1 to the

pixels of the background or foreground regions respectively, and intermediate likeli-

hood values to the pixels near edges. Two thresholds Tl and Th can be used to assign

the samples to foreground, background or uncertainty region, i.e.:

pi ∈





foreground if Pf g(pi|W )> Th

background if Pf g(pi|W )< Tl

uncertainty region if Tl ≤ Pf g(pi|W )≤ Th

(6.3)

As expected, the critical issue for this family of approaches is how to subse-

quently assign the pixels of the uncertainty region to the background or foreground.

As already seen for depth super-resolution in Chapter 5, a possible solution is to

apply cross bilateral filtering to the alpha matte, as for the super resolution case [9]

seen in Section 5.2, i.e.,

α f (pi) =
1

n f
∑

pn∈W i

Gs(pi, pn)Gr(I(pi), I(pn))α(pn) (6.4)

where W i is a rectangular window around pi, n f is a normalization factor defined as

in (5.3), and Gs and Gr are the spatial and range Gaussian weighting functions intro-

duced in Section 5.2. Note that this approach can be used either to filter the existing

alpha matte or to assign an α value to the samples without a depth value because of

occlusions or missing data in the ToF or KinectTM acquisitions. For the purpose of

handling missing data, W i can be defined as the set of window samples with a valid

α value (i.e., if the trimap is computed by thresholding depth information, the valid

pixels are the ones with an associated depth value). Figure 6.2 shows an example of

alpha matte computed by the method of [9] that is based on this approach.

Another possibility is to associate to each image pixel a 4D vector IC,Z(pi) =
[R(pi),G(pi),B(pi),Z(pi)] with depth as fourth channel to be added to the three

standard RGB color channels, and then apply standard matting techniques origi-

nally developed for color data to IC,Z(pi). For example, Wang et al. [27] extend the

Bayesian matting scheme originally proposed in [6] for color images by introducing

the depth component in the probability maximization scheme. Another interesting

idea, also proposed in [27], is weighting the confidence of the depth channel on the

basis of the estimated α value in order to give more relevance to the depth of the

pixels with α close to 0 or 1 and less relevance to the depth of the pixels in the

uncertainty region. This provision takes into account the fact that depth data are less
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a) b)

c) d)

Fig. 6.2 Example of matting by the approach of [9] based on bilateral filtering on color and depth

data: a) color image; b) depth map; c) trimap computed on the basis of depth information; d) alpha

matte computed by joint bilateral filtering on depth and color data (courtesy of the authors).

reliable on the boundary regions between foreground and background due to low

resolution and edge artifacts typical of ToF cameras and of the KinectTM.

Poisson matting [22] can be similarly extended in order to include also depth infor-

mation. In this approach, the color image is first converted to a single channel repre-

sentation. As in the previous case, it is possible to represent depth as a fourth channel

and to include it in the computation of the single channel representation. However

depth information is characterized by sharp edges which have a very strong impact

on the gradients used by Poisson matting and in this case the obtained results are

very similar to the ones obtained from depth information alone. In [27] a confidence

map is first built from the depth map. The confidence map is then used in order to

derive a second alpha matte which is combined with the one obtained by Poisson

matting. A multichannel extension of Poisson matting is proposed in [25] in order

to jointly consider the three color channels and the depth channel.

A different class of approaches for the combined segmentation of depth and color

data extends the graph-cut segmentation framework to this particular task. These

approaches represent the image as a graph G = {V,E} where the graph nodes cor-

respond to the pixels and the edges represent the relationships between neighbor

pixels (see Figure 6.3). The matting problem can be expressed as the identification

of the labeling that minimizes an energy functional of the form:
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U(α) = ∑
pi∈I

Vdata(α(pi))+ ∑
pi∈I

∑
pn∈N(pi)

Vs(α(pi),α(pn)) (6.5)

It is important to note that these approaches do not allow fractional α values and

α(pi) ∈ {0,1} are binary labels assigning each pixel either to the foreground or

to the background. The data term Vdata of (6.5) models the likelihood that a pixel

belongs to the foreground or to the background. It is typically the sum of two terms,

one depending on color and one depending on depth, i.e.,

Vdata(α(pi)) =Vcolor(α(pi))+λVd,depth(α(pi)) (6.6)

where the color term Vcolor can be simply the distance between the pixel color and

the mean foreground or background color as in [1] and the depth term Vdepth can be

modeled in a similar way. However Vdepth must take into account that foreground

pixels usually lie at a similar distance from the camera, instead the background pix-

els can be at different distances from it, as common in complex scenes. In [1] this

issue is handled by considering the depth term for foreground pixels only. Better

results can be obtained by more complex models of the foreground and background

likelihoods. Figure 6.4 shows some results obtained by the approach of [26] that

models the two likelihoods as Gaussian Mixture Models (GMM).

Another key issue is that color and depth lie in completely different spaces and it is

necessary to adjust their mutual relevance. The proper setting of the weighting con-

stant λ is a challenging task that can be solved through adaptive weighting strate-

gies. In [26] the weights are updated on the basis of the foreground and background

color histograms along the spatial and temporal dimensions.

Fig. 6.3 Structure of the Markov Random field used in joint depth and color matting.
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The smoothness term Vsmooth of (6.5) can be built in different ways. In standard

graph-based segmentation and matting approaches based on color information only

it usually forces a smoothness constraint in the color domain within each segmented

region. In the case of color and depth information the same constraint can be adapted

to the depth domain, for instance by an exponential function of the color and depth

differences such as:

Vsmooth(α(pi),α(pn)) = |α(pi)−α(pn)|e−
δ (IC(pi),IC(pn))2

2σ2
c e

− [Z(pi)−Z(pn)]2

2σ2
z (6.7)

where σc and σz are the standard deviations of the color and depth data noise respec-

tively, IC(pi) and IC(pn) are the color values of the considered samples and Z(pi)
and Z(pn) their depth values. The δ function can be any suitable measure of the

color difference between the two samples.

The energy functional U(α) of (6.5) can be minimized by efficient graph-cuts

optimization algorithms [3] with the methods seen in Section 5.3.

a) b) c)

Fig. 6.4 Joint depth and color matting by the graph-cut based method of [26] on two different

scenes: a) color image; b) depth map; c) extracted foreground (courtesy of the authors).

6.2 Scene segmentation by color and depth data

Scene segmentation is a more general problem than matting, in which the target is

the extraction of the different regions of the framed scene. There are a number of

approaches to exploit depth data in this task.

The first one is treating the depth map as a grayscale image and applying standard

image segmentation techniques to it. This approach gives good results in particular

with state of the art segmentation techniques such as [12] and [8].
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Depth data are simpler to segment than color images because edges are sharp and

well defined and there are no issues due to complex color and texture patterns. How-

ever, there are situations that can not be easily solved from depth data alone, such as

the case of close or touching objects. Figure 6.5 shows a comparison between stan-

dard color segmentation and depth segmentation performed by representing depth

maps as images and using standard image segmentation techniques on them (both

segmentations types are computed by the state-of-the-art method of [8]). Figure 6.5

confirms that depth segmentation is not affected by complex texture patterns and in

general it gives reasonable results, but some critical artifacts remain. For example,

note how segmentation by means of depth data alone can not divide the two people

that can instead be easily recognized from the color image (compare Figure 6.5b and

6.5d). Moreover, image segmentation techniques do not consider the three dimen-

sional structure behind depth data with various consequent artifacts. For instance,

long uniform structures spreading across a wide range of depth values are typically

divided in several regions instead of being recognized as a single object (e.g., the

slanted wall in Figure 6.5d).

a) b)

c) d)

Fig. 6.5 Comparison of color segmentation and depth data segmentation: a) color image acquired

by the standard camera; b) segmentation of the color image by [8]; c) depth map acquired by a ToF

camera; d) segmentation of the depth map by [8].

Better results can be achieved by taking into account the 3D structure inherent

depth data in order to take advantage of 3D clues for segmentation. Furthermore,
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the color information coming from the ToF amplitude image1 or from an associated

color camera can be used to improve segmentation accuracy. A way of leveraging

on the 3D structure of depth data is representing depth data as a 3D point cloud and

then applying segmentation techniques developed for this kind of data. Man-made

objects usually feature sets of planar surfaces and the recognition of the different

planes of the acquired point cloud is a possible depth data segmentation approach

[13]. A simple solution to locate the scene planes is to compute the 3D vectors rep-

resenting the surface normal at each point and then cluster the 3D points on the basis

of their normals by a clustering technique, e.g., K-means or mean-shift clustering

[5]. The limit of this approach is that planes with the same orientation but different

position are assigned to the same cluster. Different planes with the same orientation

can be separated in a subsequent processing step from the distance of the planes

from the depth camera.

Segmentation based on joint color and depth information usually outperforms

segmentations based on color or depth information only in many applications, as

shown in the example of Figure 6.6. It can be implemented in two basic ways. The

first way is by performing two independent segmentations one based on color only

and the other based on depth only, and then combining together the results accord-

ing to some suitable criterion. For example in [4] the two segmentations are fused

together in an iterative cooperative region merging process.

The second way is by exploiting the two clues at the same time, by selecting image

segmentation methods and extending them to include depth data, as seen in video

matting. An example of this second way of doing is described next. Many image

segmentation methods [8] represent each image pixel as a 5D vector (with three

components corresponding to color and the remaining two corresponding to the 2D

spatial pixel coordinates) and cluster such vectors by state-of-the-art clustering tech-

niques. This approach can be extended in order to handle both depth and color data.

The basic idea, used for example in [2] and [10]2, is replacing the 2D coordinates

of the image pixels with the corresponding 3D coordinates of the depth data and

associating to each pixel a 6D vector instead of a 5D vector as in image segmenta-

tion. The three vector components representing geometry need to be expressed in a

consistent way and the three dimensional point coordinates Pi = [xi,yi,zi]T ensure

this since they belong to the same space. It is also possible to use the 2D pixel co-

ordinates [ui,vi]T together with the corresponding depth value zi, but this requires

a further normalization between vector [ui,vi]T and zi since they lie in different

spaces. It is also necessary to represent color in a uniform color space to ensure

the consistency of the three color components, and the CIELab or CIELuv color

spaces [7] are the most common choices. In any case, geometry and color informa-

tion lie in completely different spaces, and they must be normalized for a consistent

representation. Assuming the usage of the CIELuv color space and the 3D spatial

coordinates (x,y,z), each pixel pi can be associated to a 6D vector

1 In the case of KinectTM, the amplitude image is not very informative about the scene color, since

it is dominated by the projected pattern.
2 This work deals with depth data coming from a stereo vision system, but the approach can be

easily fitted to ToF and KinectTM data.
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a) b) c) d) e)

Fig. 6.6 Segmentation based on joint color and depth data information vs. segmentation based

on color or depth information only: a) color image acquired by the video camera; b) depth map

acquired by the ToF camera; c) segmentation based on color information only; d) segmentation

based on depth data only; e) segmentation based on joint color and depth data information.

V i =

[
L(pi)

nc

,
u(pi)

nc

,
v(pi)

nc

,
xi

ng

,
yi

ng

,
zi

ng

]T

(6.8)

with L(pi), u(pi) and v(pi) the L, u and v components of the CIELuv color space

at pi. The normalization factors nc and ng are critical for a proper comparison of

color and depth data and for balancing their mutual relevance. A possible solution

[10] is to normalize both color and depth with respect to their standard deviations

σc and σg. As expected, it has been experimentally found that the segmentation

performances strongly depend on the weights between the two types of clues. For

this reason, it is practical to deploy a further weighting term λ directly controlling

the relevance of depth information, which for segmentation purposes is usually more

reliable. The 6D vectors V i of (6.8) in this case can be rewritten as:

V i =

[
L(pi)

σc

,
u(pi)

σc

,
v(pi)

σc

,λ
xi

σg

,λ
yi

σg

,λ
zi

σg

]T

(6.9)

The proper settings of the weighting factor λ remains critical and its optimal value

depends on the scene characteristics. Figure 6.7 shows an example of how the seg-

mentation results depend on the value of λ . Any state-of-the-art clustering tech-

nique, such as mean-shift [8], [5] or spectral clustering [21], can be used to cluster

the set of vectors (6.9) in order to segment the scene.

A possible variant of this approach is to exploit the derivatives or gradients of depth

data [24]. This is similar to using the surface normals associated to depth samples

in [5] and it has the advantage that it can discriminate close surfaces with differ-

ent orientations. Unfortunately the gradients are rather sensible to noise and distant

surfaces with the same orientation can not be distinguished in this way.

It is finally worth noting how the just introduced clustering-based segmentation

approaches can be applied to any general multi-channel representation, i.e., it is

possible not only to consider depth or 3D information together with color, but also

any other type of further information provided by KinectTM or ToF cameras, which

simply become further components of the multi-dimensional vectors used in the

clustering process.
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λ = 0.1 λ = 0.5 λ = 1 λ = 4 λ = 8

Fig. 6.7 Segmentation of the scene of Figure 6.6 for different values of the λ parameter in (6.9).

There are two basic approaches for considering multiple clues in segmentation in

agreement with the rationale previously followed to implement segmentation based

on joint color and depth information. The first approach is to separately consider

each clue as proposed in [16], i.e., the scene is first segmented upon each specific

clue and the results of all such segmentations are then combined together. The sec-

ond approach is to consider all the clues at once, for instance in the case of a ToF

camera by extending the multi-dimensional representation (6.9) to further compo-

nents relative to amplitude AT or intensity BT and then by clustering the result-

ing multi-dimensional vectors. Note how the values of the intensity and amplitude

AT and BT depend on the distance of the acquired points, that is, their values are

greater for closer points. This is a rather interesting property for segmentation pur-

poses since it allows to disambiguate objects of the same color at different distances,

which is a critical issue for color-based segmentation techniques (e.g., consider the

the case of an object in front of a background of similar color).

A critical issue in segmentating ToF data registered with color images is their

different resolutions. KinectTM data have higher resolution than ToF cameras, but

still low with respect to that of current color cameras. All the methods presented in

this chapter assume the availability of a depth map and a color image of the same

resolution. This can be obtained either by the methods described in Chapter 5 in

order to have high resolution depth maps or by just subsampling the color image to

the (low) resolution of the depth map.

There are also segmentation techniques explicitly handling the different resolu-

tion issue. For instance the method of [11] performs first a multi-resolution over-

segmentation of the color image and then tries to fit the sparse depth samples inside

each segment to a model (e.g., planar or quadratic) of the surface shape . The seg-

ments that minimize the fitting error are then selected and used to build an initial

segmentation. A region growing and merging strategy also exploiting the sparse

depth samples is then used for the final segmentation.
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6.3 Conclusion and further reading

Image segmentation is a classical image processing and computer vision problem

treated by a vast literature. For a review of the early image segmentation methods

see for instance [17], while more recent methods can be found for example in [23].

Among the wide variety of proposed techniques let us recall the clustering based

approaches (e.g., [8]), the methods based on graph representations (e.g., [21] and

[12]), and the ones based on active contours, watersheds and region splitting and

merging. All these methods have been originally developed for color images but

can easily be applied to depth maps.

The data acquired by ToF cameras and by KinectTM can be represented as col-

ored point clouds, therefore current methods developed in the 3D scanning and pho-

togrammetry fields for colored point clouds segmentation, e.g. [19] and [20], can

also be adapted to this task.

Finally stereo vision systems are one of the most common sources of depth infor-

mation and some recent works, e.g. [10], [14] and [15] use depth data from stereo

in order to improve segmentation results or try to jointly solve the two problems

of stereo depth estimation and segmentation. It is clearly possible to replace the

depth data estimated by stereo vision with depth data obtained by ToF cameras or

KinectTM and reuse a large part of the ideas and techniques presented in these works

for joint color and depth segmentation.
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Chapter 7

Conclusions

This book offers a number of points of interest. The first is a gentle introduction to

the operation of CW ToF cameras and of the KinectTM, the two currently most pop-

ular imaging instruments for dynamic scenes capture. The presentation is general

enough to apply to the foreseeable evolution of their technologies. This is particu-

larly true for the KinectTM since Microsoft is very active both in the field of light

coding systems, to which the first generation KinectTM belongs, and in the field of

ToF cameras.

The second part of the book focuses on how to get the most from current depth

cameras data assisted by one or two color cameras. This requires effective cali-

bration procedures, treated in Chapter 4, and suitable techniques for depth super-

resolution and data fusion, treated in Chapter 5. The deterministic super-resolution

approaches of Chapter 5 are of particular practical interest, since they can deliver

high resolution depth maps with added color information by inexpensive set-up and

fast algorithms.

The fusion of depth data obtained by a ToF camera or a KinectTM with depth data

provided by a stereo vision system opens a very wide area (as wide as the literature

on stereo algorithms) with intriguing possibilities. Indeed, the synergies between

stereo vision systems and ToF cameras or KinectTM in principle may overcome the

various limitations of the single technologies, provided one finds the right recipes

for combining stereo data and ToF or KinectTM data. Chapter 5 offers the instru-

ments for exploring this arena.

This book introduces matting and scene segmentation as application examples

of the practical impact of the presented tools and notions, since a proper usage of

depth together with color information can bring interesting conceptual contributions

to this field together with segmentation tools of significant practical interest. Many

other applications could have been considered but were not included for editorial

space reasons.

It is worth pointing out a couple of topics which could not be considered in this

book, since they are likely to acquire relevance in the near future, namely the study

of ToF cameras as MIMO telecommunications systems and the metrological anal-
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ysis of the ToF cameras and KinectTM data characteristics and the usage of ToF

cameras and of the KinectTM in body tracking and gesture recognition.


