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We experimentally analyze the compaction dynamics of an ensemble of cubic particles submitted
to a novel type of excitation. Instead of the standard tapping procedure used in granular materials we
apply alternative twists to the cylindrical container. Under this agitation, the development of shear forces
among the different layers of cubes leads to particle alignment. As a result, the packing fraction grows
monotonically with the number of twists. If the intensity of the excitations is sufficiently large, an ordered
final state is reached where the volume fraction is the densest possible compatible with the boundary
condition. This ordered final state resembles the tetratic or cubatic phases observed in colloids.
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Granular compaction is considered a canonical example
of the inherent complexity related to the equilibrium states
displayed by an ensemble of macroscopic grains. Important
efforts have been performed to describe these systems
inspired on the ideas of classical statistical mechanics [1],
but adapted to account for the fact that granular materials
are basically ‘“athermal” [2]. Accordingly, ensembles of
different mechanically stable arrangements allow calculat-
ing stationary averages—like the volume fraction—that can
be used as state variables in a hypothetical phase space.
Nevertheless, due to the dissipative interactions among
grains, these states are closely linked with the excitation
mechanisms used to explore their energy landscape [3].
Recently, it has been demonstrated that the shape of the
particles is crucial on determining the macroscopic
mechanical properties of the ensemble [4]. Moreover, the
intrinsic arrangements associated with particle shapes has
permitted us to test ideas related to entropy and order [5].
Then, concepts like optimal packing or ordering have been
analyzed to unveil the role of the particles’ morphology on
the geometrical configurations that can be achieved [6—10].
Of note, most of these works are focused in thermal
systems such as colloids, and only a few explore the
granular limit. For that case, it is known that faceted
particles in 2D systems tend to align leading to highly
ordered structures [l11-14]. Furthermore, 3D tapping
experiments of tetrahedral dice were implemented and
the different jammed configurations reached were analyzed
in terms of the type and number of contacts between
particles [15,16]. In this work, we study the packing
evolution of an ensemble of cubic particles when submitted
to an external perturbation. Different from the standard
procedure used to compact grains (where tapping plays
against gravity [17]), we apply alternating rotations, or
“twists,” on the container. This type of excitation leads to
particle reorganization by shear, a method highly effective
to align both elongated and platy particles [18-21]. After a
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series of twists, the system reaches the densest limit where
concentric rings of horizontally aligned cubes are super-
imposed in the vertical direction (Fig. 1). The experiment
has been performed with cubic particles, which are com-
mercially available as plastic dice. These have regular sides
of length / =0.50 £ 0.025 cm with rounded corners of
radius r = 0.068 cm [22] and are rather monodisperse in
mass (0.116 = 0.001 g). The dice are poured in a cylinder
of radius R = 8.7 £ 0.01 cm using a standard protocol that
allows obtaining reproducible initial volume fractions.
After this, the whole cell is rotated in alternating angular
directions (Fig. 1), a kind of forcing that we will name
“twist” from now on. Of note, the system is only perturbed
when the angular velocity is inverted and the cubes
remain at rest during the rest of the rotation cycle.
Therefore, we use as the control parameter the cell
tangential acceleration « = 2v/At, where v is the tangen-
tial velocity of the container and At is the time necessary to
invert the turning sense. Just for comparison with the
tapping experiments we normalize this magnitude with
gravity, I' = a/g. Importantly, the range of T" explored in
these twist experiments (0.3 < T" < 1.5) is signally lower

FIG. 1. Experimental cell and sketch of the twist excitation.
The pictures show the initial (left) and final (right) states for a
ensemble of 25000 cubes submitted to N = 3 x 107 twists of
intensity I' = 1.01.
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than the one used in tapping. To test the influence of the cell
radius on the packing process we have also implemented a
half radius cell where, qualitatively, the same dynamics was
observed. More details about the experimental setup and
measuring protocol can be found in Ref. [23]. We start by
presenting results of the temporal evolution of the packing
fraction ¢ for different values of I' [Fig. 2(b)]. ¢ is
calculated as the total volume of dice normalized with
the volume of a cylinder whose height is the mean value of
the free surface position as indicated in Fig. 2(a). The data
are averages of five repetitions in the same conditions.
Clearly, the packing fraction evolution depends on the
excitation intensity. For I' > 0.5, ¢ grows logarithmically
until it saturates at the densest packing possible compatible
with the boundary conditions. Indeed, although the rig-
orous calculation of such packing is a stiff optimization
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FIG. 2. (a) Lateral view of the cell after different numbers of
twists N. The green dotted lines indicate the mean height used
to calculate the packing fraction ¢. In the inset, the green shadows
correspond to the area used to calculate the lateral volume
fraction ¢, and the arrows define the dice orientation with respect
to the horizontal u;. (b) Packing fraction ¢ versus N in
logarithmic scale for various I' as indicated in the legend.
(c) Evolution of the lateral volume fraction ¢ as a function of
N for the same values of I'.

problem [24], a visual inspection of the setup confirms that
the dice arrange in concentric rings as shown in Fig. 3. The
emergence of these arrangements was confirmed by regis-
tering the free surface along the complete sequence of
twists, and also by manually “peeling” the upper layers of
the column at its final state to check the order degree inside
the bulk (see Ref. [23]). For I" < 0.5, the volume fraction
growth is much slower than for higher excitation inten-
sities. It is difficult to elucidate whether the densest state
will be reached for these low excitation intensities but, in
the affirmative case, a linear extrapolation of the observed
tendency suggests that ten years of twisting will be
necessary to reach such a hypothetical configuration.
Moreover, the images of the free surface shown in
Fig. 3(a) evidence that the central region remains disor-
dered or with domains of cubes aligned with one of its
diagonals (between opposite corners) with gravity.
Incidentally, this orientation is analogous to the one
obtained when filling a silo [11]. Interestingly, for inter-
mediate I" [I' = 0.52 in Fig. 2(b)] the packing fraction
evolution shows slightly distinctive features: it is slow at
the initial stages and, then, it suddenly jumps to what it
seems is a stationary state whose density is below the
highest possible. This feature correlates with the develop-
ment of very stable dice clusters aligned at different
directions (also seen in tapping simulations of spheres
[25]) that seem to be behind a reduction in the repeatability
of the packing evolution among the different runs. In order
to further investigate this effect, we now focus in the
compaction dynamics of the external layer of dice (the one
in contact with the cylinder wall). We define the lateral
volume fraction ¢ as the number of cubes that have any
face parallel to the container wall, normalized by the
maximum number that allows the geometrical restriction
imposed by the circular boundary conditions (see
Ref. [23]). The temporal evolution of ¢ is reported in
Fig. 2(c). Clearly, the larger the twist acceleration the
quicker the increase of the lateral volume fraction.
Although the evolution of ¢ with N is similar to the one
reported in tapping experiments [26], we have checked that

FIG. 3. Free surface after N = 1 x 10° twists for (a) T" = 0.31
and (b) I' =1.01. The central region has been amplified to
remark the difference between both final states. More detailed
images can be found in Ref. [23].
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an inverse logarithmic correlation does not adequately fit
the data. A rapid growth in ¢ is observed at the beginning
that is caused by the movement of cubes in the radial
direction and their alignment with the container wall. After
that, the lateral packing fraction changes its tendency as
shown in the shadowed region of Fig. 2(c). This change is
related to the development and competition among ordered
domains of cubes. Notably, two dice orientations are
dominant: with sides parallel to the horizontal direction
or with the diagonal aligned with gravity [central snapshot
in Fig. 2(a)]. Similar configurations have been previously
reported in bidimensional deposits of square particles [18].
In order to shed light on the cluster formation process we
have looked at the evolution of the dice orientation. This is
characterized by means of a unitary vector u; [see the inset
of Fig. 2(a)] whose orientation is measured with respect to
the horizontal (note that @ = 0 or § = z/2 for a horizon-
tally aligned dice and € = /4 for an inclined one). The
evolution of the angular orientation distribution pdf(0)
with the number of taps is presented in Figs. 4(a) and 4(b)
for two twist amplitudes. For each case, the analysis was
performed in three different regions of the cell (top, middle,
and bottom), all of equal height. This is done in order to
explore the possible effect of the bottom and free surface in
the ordering process. For the lowest intensity [I" = 0.31,
Fig. 4(a)], the pdf’s are rather flat and some dependence on
the height is observed. In the bottom region the system
evolves to a situation where horizontal and diagonal
alignment coexist (see the peaks at 0 =rx/4 and
60 = x/2), in the middle region only a small peak at
0 = n/4 can be distinguished, and in the top, after a
transitory situation for N ~ 10* with horizontal and diago-
nal alignment, the system ends up with most of the dice
aligned horizontally. For the highest twist amplitude
[I" = 1.01, Fig. 4(b)] the behavior is completely different
as, independently on the explored region, a quick growth of
the number of particles aligned horizontally is observed.
Complementarily, we characterize the global orienta-
tional order in the external layer of dice by means of the
cubatic order parameter S4. This was originally introduced
to describe colloidal superballs [27,28] and is defined as
S, = (1/8N)>_,(35|u; - n|* = 30|u; - n|?> 4 3), where we
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consider n as the set of unitary vectors aligned with the
experimental setup axis. S, = 0 means no cubatic order and
S4 = 1 corresponds to a perfect ordering. This calculation
is done over the whole external layer without separating the
different height regions. In Fig. 4(c) the evolution of S, is
represented for three values of I'. In all cases, S4 remains
almost zero during a certain number of twists N, a
behavior that is associated with the increment of randomly
aligned particles touching the lateral wall. For high and
intermediate intensities, Sy rises after N, as the cubes start
to get aligned to each other. Both, N, and the growth rate
of S, depend on the tapping intensity: N, is reduced and the
growth rate is increased when augmenting I". At the final
stages of the S, evolution (i.e., when S, approaches 1) the
magnitude becomes very fluctuating. This is attributed to
the development of small clusters aligned at different
directions that finally disappear when the system becomes
completely ordered. Fluctuations are specially visible for
I' = 0.52 suggesting the competition among clusters of
dice aligned horizontally and with the diagonal in the
direction of gravity. Finally, let us remark that, for the
lowest I', there are no signs of global orientational order
even after N = 5 x 10°, strengthening the idea that this
intensity is not high enough to induce particle alignment.
Finally, in Fig. 4(d) the S, evolution is displayed against
@ revealing that a packing fraction sufficiently large
(¢ > 0.8) is necessary to observe global orientational order.
In this figure we also notice that, for the lowest I, lateral
volume fractions above ¢ = 0.9 are reached without signs
of global order.

In order to delve deeper into this curious effect, we
calculate the spatial orientational correlation function [27]
Gy(r) = (1/8N) (35| cos(A6) ;)|* — 30| cos (A6 ;) + 3]).
where A@;; = 6,(0) —0,;(r) quantifies the alignment
between two particles whose centers are separated by a
distance equal to r. The results obtained for two different
values of I" after applying different numbers of twists are
reported in Fig. 5(a). For high twist intensities the dice
orientation becomes rapidly correlated (see the curve for
N =5 x 10* when I" = 1.01), and finally reaches a glob-
ally aligned state (see the curve for N =5 x 10°).
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FIG. 4. Dice orientations distribution pdf(8) vs N for (a) ' = 0.31, and (b) I" = 1.01. The bottom, middle, and top curves correspond,
respectively, to the distributions obtained for the bottom, middle, and top regions of the cell. (c) Cubatic index S, vs N for three values of
I' as indicated in the legend. (d) Cubatic index S, versus lateral volume fraction ¢ for several values of I" as indicated in the legend.
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FIG. 5. (a) Orientational spatial correlation function G4(r) for

low and high values of I" after different numbers of twists N as
indicated in the legend. r is the distance normalized by the cube’s
side length. (b) Sketch of the cube’s ordering phase diagram. The
black squares correspond to states where, after N =3 x 10*
twists, the lateral volume fraction is maximum; the open
diamonds indicate states where different cluster orientations
coexist. The dotted line is a guide for the eyes.

Otherwise, for low twist amplitudes, even if there is also an
initial increase in the correlation (see the curve for N =
5 x 10* when I' = 0.31) the evolution ceases as is proved
by the fact that the N =5 x 10* and N = 5 x 10° curves
are identical. This feature is perfectly coherent with the idea
that, for low twist intensities, the system evolves to a
situation in which clusters of particles oriented at 0 = z/4
and 0 = 0 coexist. Therefore, there is some orientational
correlation for short distances but the global orientational
order remains very low. Up to this point we have evidenced
that high twist amplitudes lead to perfectly ordered struc-
tures whereas, for low amplitudes, the system evolves to an
arrangement that is inhomogeneous in the vertical direction
and where clusters of cubes with different orientations
coexist. These features suggest that the ordering process is
a competition between the shear imposed by the container
(which leads to particle alignment in the horizontal

direction) and the load carried out by the dice column
(which prevents the effectiveness of the shearing forces).
If that hypothesis is correct, a variable that should be
considered in the ordering process is the number of
cubes within the cell (which in our case is quantified
by the number of vertical rings that will be hypothetically
stacked in a perfectly ordered arrangement). In Fig. 5(b), a
phase space is presented separating the states that, after
N =3 x 10* twists, are perfectly ordered from those
where clusters of different orientations coexist. If the
number of cubes inside the cell is small, the shear stress
developed for low I is sufficient to induce rearrangements
and the ordered state is rapidly reached. On the contrary,
when the number of dice increases, the load competes
with the shear and prevents complete ordering. In the
latter case, the final state is characterized by domains of
cubes aligned at different directions. Note that the tran-
sition between the two states could be slightly displaced if
we consider a larger number of twists. In addition, we
would like to remark that this phase space seems to be in
contradiction with a previous work [29] where a shear
stress perpendicular to the tapping direction was proved
to promote disorder. However, these results were obtained
for packings of spherical beads agitated by means of two
mechanisms, tapping and shearing; the former leads to
order and the latter to disorder. In our system, the only
perturbation is the shearing among layers that promotes
the alignment of cubes.

In this work, we have shown that twisting a sample of
cubic particles is a highly efficient way to achieve ordered
packings. The reason lies in the presence of flat surfaces,
which tend to be aligned under shearing conditions. Indeed,
contrary to the behavior observed with the standard tapping
protocol, the system reaches the same final state regardless
of the excitation intensity (provided it is large enough).
Besides, the evolution of the packing fraction does not fit
the commonly used parking lot model. Instead, the loga-
rithmic growth suggests the necessity of introducing alter-
native arguments to describe the free volume interchange
during the compaction process of sheared cubes. Finally,
the asymptotic configuration seems to be the densest one
compatible with the boundary conditions. It is a series of
concentric rings stacked in horizontal layers. This arrange-
ment implies a notably growth in the number of accessible
configurations compatible with the value of the packing
fraction. This result suggests that the notion of an ordering
transition driven by entropy [5,30] could be adapted to this
case. Indeed, the entropic origins of the ordering transition
for athermal systems and the corresponding changes in the
local environment around particles have been also dis-
cussed in Ref. [31]. Based on the established morphologies
of concentric rings, similar arguments could be valid also
for a systems of cubes under confinement.
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