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We theoretically investigate the stability and linear oscillatory behavior of a naturally unstable
particle whose potential energy is harmonically modulated. We find this fundamental dynamical
system is analogous in time to a quantum harmonic oscillator. In a certain modulation limit, a.k.a.
the Kapitza regime, the modulated oscillator can behave like an effective classic harmonic oscillator.
But in the overlooked opposite limit, the stable modes of vibrations are quantized in the modulation
parameter space. By analogy with the statistical interpretation of quantum physics, those modes
can be characterized by the time-energy uncertainty relation of a quantum harmonic oscillator.
Reducing the almost-periodic vibrational modes of the particle to their periodic eigenfunctions,
one can transform the original equation of motion to a dimensionless Schrödinger stationary wave
equation with a harmonic potential. This reduction process introduces two features reminiscent of
the quantum realm: a wave-particle duality and a loss of causality that could legitimate a statistical
interpretation of the computed eigenfunctions. These results shed new light on periodically time-
varying linear dynamical systems and open an original path in the recently revived field of quantum
mechanical analogs.

I. INTRODUCTION

Modal analysis is a linear perturbation method that
allows to characterize the local oscillatory and stability
behavior of stationary states of dynamical systems [1, 2].
It is used in various area of physics, from molecular vibra-
tional frequencies [3] to the stability of engineered struc-
tures [4]. Reduced to a single dimension in space, this
concept is represented by the archetypal example of a
mass moving in a local quadratic potential energy whose
governing equation is a classic linear homogenous Ordi-
nary Differential Equation (ODE) with initial conditions.
In the case of a perturbed equilibrium, i.e. for a constant
potential in time, two qualitative behaviors exist: the
mass is either stable, harmonically oscillating in a poten-
tial well (this case is the classic harmonic oscillator) or
unstable, exponentially diverging on a potential hill.

A less constrained situation eventually occurs when the
potential energy of the perturbed stationary state is free
to periodically vary with time [5, 6], i.e. when the mo-
tion of the mass is mathematically governed by a linear
homogenous ODE with periodically time-varying coeffi-
cients. This generalized framework explains a broader
class of physical problems from parametric oscillators
[7, 8] to the emergence of Faraday waves [9–11] or the
motion of the lunar perigee [12, 13]. Again, two dif-
ferent scenarios should be considered whether the sys-
tem is fundamentally stable or not. In a periodically
time-varying potential well, the quasi-periodically oscil-
lating particle eventually destabilizes for certain regions
in the modulation parameters space, a.k.a. Mathieu’s
tongues [14, 15]. On a modulated potential hill, there is
an asymptotic limit for which the modulation parame-
ters allow to stabilize the fundamentally unstable mass
[16, 17]. Kapitza’s pendulum, the inverted pendulum in
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which the pivot point vibrates in the vertical direction,
is such a system [18, 19].

Although simplistic, this oscillatory vision allows for
the description of an outstanding number of physical sys-
tems, with the notorious exception of quantum phenom-
ena whose theoretical framework has departed from clas-
sical physics in the early 20th century [20]. In quantum
mechanics, a particle modeled by a harmonic oscillator
is no more governed by a deterministic linear ODE with
any possible initial conditions or mechanical energy, but
by Schrödinger’s equation, a space-varying linear ODE
with boundary conditions whose discrete eigensolutions
or wavefunctions, associated with a particular energy,
represent the probability to observe the particle at a
given location. Schrödinger’s equation undeniably mod-
els light-matter interactions at quantum scales but its
mathematics sheds no light on the underlying physics
which therefore often appears enigmatic [21]. One hope
to pave the way to a realistic interpretation and under-
standing of quantum physics lies in the use of mechanical
analogs. For example, the so called pilot-wave interpre-
tation, first introduced by De Broglie and Bohm [23, 42],
have regained considerable attention due to the discovery
of a hydraulic quantum analog that consists in a bouncing
droplet ”walking” on a vertically vibrated bath [24–27].
By varying the experimental setup, this new framework
has already allowed to describe quantum tunneling [28],
quantization of classical orbits [29] and the quantum har-
monic oscillator [30] in an analogous fashion. Although
promising, this interpretation has the disadvantage that
the quantum analogy is achieved thanks to highly nonlin-
ear interactions between a wave and a particle, a rather
complex model when Schrödinger’s equation reduces to
a 1D linear ODE in the case of the quantum harmonic
oscillator [20]. Therefore, the quest for new and somehow
simpler quantum mechanical analogs is still open.

Here, we present a numerical and theoretical study of
an overlooked 1D time-varying linear oscillator that, in
many ways, is analogous to the quantum harmonic oscil-
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lator. The described dynamical system is the aforemen-
tioned naturally collapsing mass that can be stabilized by
the harmonic modulation of its quadratic potential en-
ergy, a.k.a. the linearized Kapitza pendulum [16, 18, 19].
In the next section, we present the system under study
and the numerical tools we use to perform its modal and
stability analysis. We then recall the Kapitza asymptotic
regime where the modulation periodicity is much smaller
than the collapsing time and where the oscillating mass
can be modeled as an effective classic harmonic oscilla-
tor. In Section 3, we show that in the overlooked opposite
asymptotic limit, the stability of the mass gets quantized
in various vibrational modes in the modulation param-
eter space. For those modes, we find that the position
and velocity of the mass verify some relations that are
similar to the uncertainty principle of the quantum har-
monic oscillator [20]. In Section 4, we demonstrate that
the time-varying ODE governing the stable vibrational
modes of the particle can be reduced into the dimension-
less Schrödinger stationary wave equation of a quantum
harmonic oscillator. Finally in Section 5, we discuss vari-
ous questions that arise from this new fundamental mech-
anism from the eventualities of experimental realizations
to the limitations of the quantum analogy. Besides its
contribution to the field of mechanical quantum analogs,
this work would improve our understanding of periodi-
cally time varying systems (governed by Floquet theory)
and the duality between initial value problem in time and
boundary problem in space, that is at the heart of the
recently unveiled discrete time crystals [31–34].

(a) (b)

FIG. 1. The periodically time-varying oscillator under study.
(a) Mass on a local quadratic potential hill, harmonically
modulated over a period T = 2π/Ω. (b) Associated lin-
ear mass-spring system with a time-varying stiffness k(t) =
−k0 + k1 cos(Ωt) and k0 = mω2

0 .

II. MATERIALS AND METHODS

A. Equation of motion and Floquet theory

Figs. 1(a),(b) show the 1D periodically time-varying
linear dynamical system under study. A particle of
mass m locally moves with a position r(t) on a har-
monically modulated, quadratic potential hill, so that
its total kinetic plus potential energy reads E(t) =
1/2mṙ(t)2 + 1/2k(t)r(t)2 where ṙ(t) is the velocity of

the particle. The linear equation of motion of m asso-
ciated with E(t) is modeled by the 1 degree-of-freedom
mass-spring system shown in Fig. 1(b). In this peri-
odically conservative system, the particle experiences a
parametric excitation F (t) = −k(t)r(t) that derives from
the modulated potential energy and that can be repre-
sented by a spring with a T -periodic varying stiffness
k(t) = k(t+T ) = −k0 +k1 cos(Ωt). Here, −k0 and k1 are
the fundamental and modulated stiffness, respectively;
Ω = 2π/T is the frequency of the modulated potential

when ω0 =
√
k0/m is a natural frequency. The only

difference with a classic parametric oscillator is that the
fundamental stiffness −k0 is negative: if k1 = 0 N/m,
the system is linearly unstable and the mass exponen-
tially diverges following r(t) ∝ eω0t.

According to Newton’s second law and Lagrangian me-
chanics, the dimensionless Initial Value Problem (IVP)
governing r(t) reads

d2r(τ)

dτ2
− r(τ) + α cos(τ/δ)r(τ) = 0 (1)

where τ = ω0t is the dimensionless time. In this funda-
mental Mathieu equation [35, 36], the two relevant pa-
rameters are the frequency ratio δ = ω0/Ω and the stiff-
ness ratio α = k1/k0. For modal and stability analysis of
the linear differential Eq.(1), one can use Floquet theory
[35, 37] to express r(τ) as a linear combination of two
almost-periodic vibrational modes

r(τ) = c1Ψ(τ)eστ + c2Ψ∗(τ)e−στ (2)

where c1 and c2 are constants determined upon initial
position r(0) and velocity ṙ(0). Replacing the Floquet
form Ψ(τ)eστ in Eq.(1) leads to an eigenvalue problem
that can be numerically solved for each set of parameters
(α, δ) [38–40]. The computed eigenfunction Ψ(τ) and its
complex conjugate Ψ∗(τ) are periodic with a dimension-
less period T̄ = 2πδ. The complex eigenvalue σ is called
the Floquet exponent. Because of the form of the solu-
tion r(τ) and the absence of damping term in Eq.(1), only
two qualitative stability behavior can be observed in the
(α, δ) space. Either <(σ) = 0 and −1/2δ < =(σ) ≤ 1/2δ,
which means the particle is neutrally stable and r(τ) is
an almost-periodic oscillation about the stationary state.
Or <(σ) > 0 and =(σ) = 0 or =(σ) = 1/2δ and r(τ)
is respectively a T̄ or 2̄T -periodic motion that exponen-
tially oscillates toward infinity with a growth rate <(σ)
meaning the perturbed periodic state is linearly unstable.

B. Effective harmonic oscillator in the Kapitza
limit δ << 1

The oscillating system represented by the governing
equation Eq.(1) has been well studied in the asymptotic
limit where the modulation period is much smaller than
the collapsing time, i.e. for δ << 1 [36]. In this regime,
first understood by Kapitza thanks to averaging tech-
niques when studying the inverted pendulum whose pivot



3

0 0.5 1 1.5 2

-10

0

10

0 0.5 1 1.5 2

-20

0

20

(a)

(b)

FIG. 2. Stable vibrational mode in the Kapitza regime for
δ = 1× 10−3 and α = 2000. (a) Blue line shows the numeri-
cal computation of position, r(τ) = Ψ(τ)eστ , as a function of
dimensionless time τ/T̄eff with T̄eff = 2π/ωeff . The eigen-
function Ψ(τ) is normalized so that

∫
T̄
|Ψ(τ)|2 dτ = 1. The

moduli −|Ψ(τ)| and |Ψ(τ)| are shown in dotted lines and the
effective classic harmonic oscillator approximation, r(τ) =
Ψ(0) cos(ωeffτ), is displayed in black line. (b) Green line
shows the computed velocity ṙ(τ) when black line represents
the effective approximation ṙ(τ) = −Ψ(0)ωeff sin(ωeffτ).

The eigenfunctions −|Ψ̇(τ)| and |Ψ̇(τ)| are not shown for a
sake of clarity.

point is vertically vibrated [16, 18], it is possible to sta-
bilize the naturally collapsing mass if (αδ)2/2 > 1. In
this particular stable regime where <(σ) = 0, the har-
monically modulated oscillator of Fig. 1 behaves like an
effective classic harmonic oscillator whose effective natu-
ral frequency is given by

ωeff =

√
(αδ)2

2
− 1. (3)

Fig. 2 shows the typical Floquet form or oscillating
mode of Eq.(1), r(τ) = Ψ(τ)eστ , for a duo of modu-
lation parameters in the Kapitza’s stabilization regime
(for practical purposes, we chose α = k1/k0 = 2000
and δ = ω0/Ω = 1 × 10−3). The mode is normal-

ized so that N =
∫
T̄

Ψ∗(τ)Ψ(τ)dτ =
∫
T̄
|Ψ(τ)|2 dτ = 1

and only the physical response, i.e. the real part of
Ψ(τ)eστ , is shown. Note that in the neutrally stable
regime, (αδ)2/2 > 1, where σ is a pure imaginary num-
ber, the second vibrational mode r2(τ) = Ψ∗(τ)e−στ of
Eq.(2) is simply conjugate or out-of-phase with the dis-
played one. Fig. 2(a) displays in blue line the position
over two effective periods T̄eff = 2π/ωeff which corre-
sponds to 2/δ = 2000 fast modulation periods. We see
that because of the averaging of the modulation, one can
model the position of the almost-periodically vibrating

mass by the one of the effective classic harmonic oscilla-
tor, r(τ) = Ψ(0) cos(ωeffτ), shown in black line. Also,
the dotted lines that represent the T̄ -periodic envelopes
of the Floquet form, −|Ψ(τ)| and |Ψ(τ)|, tend to the
constant envelopes, −|Ψ(0)| and |Ψ(0)| of the position
of the effective classic harmonic oscillator. Fig. 2(b)
shows in green line the associated velocity of the particle.
The velocity of the effective classic harmonic oscillator,
ṙ(τ) = −Ψ(0)ωeff sin(ωeffτ), given in black line, only
models the averaged velocity, that is actually strongly
oscillating. In the next Section, we will focus on the
qualitative behavior of the modulated oscillator of Fig. 1
when δ > 1 that has been overlooked.

III. MODAL AND STABILITY ANALYSIS (δ > 1)

A. Quantization of the stable vibrational modes in
the modulation parameter space (α, δ)

To get a better physical understanding of the oscilla-
tor of Fig. 1, we perform a numerical stability analy-
sis of Eq.(1) by analyzing the growth rate σ of the two
computed Floquet forms Ψ(τ)eστ and Ψ∗(τ)e−στ in the
modulation parameter space (α, δ). Notably, according
to the superposition property of Eq.(2), the system is un-
stable or the position of the mass r(τ) is diverging with
a period T̄ = 2πδ or 2T̄ if <(σ) 6= 0 and =(σ) = 0
or =(σ) = 1/2δ, respectively. Fig. 3(a) shows the lin-
ear stability chart of the particle for 0 ≤ α ≤ 10 and
0.05 ≤ δ ≤ 14.3. Like for a classic Mathieu equation
[35, 36], there is an alternation of T̄ -unstable (red dots
in Fig. 3(a)) and 2T̄ -unstable regions (yellow dots). If
the system is not modulated enough, i.e. for α < 1, the
mass cannot be stabilized. As explained in the previous
section, for δ << 1, a stability region opens whose in-
stability lower limit corresponds to the classic relation of
Kapitza, α =

√
2/δ, shown in black line in Fig. 3(a). But

for δ > 1, the stabilization of the mass is still theoretically
possible albeit in a discrete fashion in the (α, δ) modu-
lation space. According to Floquet theory, the T̄ and
2T̄ instability regions cannot merge in the (α, δ) space
so each alternation of colors indicates a tiny stability do-
main that we denote l = 0, 1, 2, . . . as explained in Fig.
3(a) [41]. Thus, several regions of stability form inde-
pendent “branches” whose width drastically decrease as
δ increases (we barely reach inside the stability regions
above δ > 6 because of machine epsilon of our computa-
tional software).

Figs. 3(b) and (c) give a physical insight in the afore-
mentioned stability mechanism since they show the evo-
lution of the spectrum of the two Floquet forms r(τ) =
Ψ(τ)eστ and r(τ) = Ψ∗(τ)e−στ as a function of δ for
α = 2.25. According to Floquet theory, the eigenfunc-
tion Ψ(τ) is T̄ -periodic with a fundamental frequency
1/δ. Therefore, the spectrum of the two Floquet forms
read σ+

∑
h h/δ and −σ+

∑
h h/δ, where h is an integer.

By the superposition principle of Eq.(2), the solution r(τ)
contains the sum of both spectrum in it. Fig. 3(b) shows
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FIG. 3. Numerical stability analysis of the harmonically
modulated collapsing mass. (a) Linear stability chart for
0 ≤ α ≤ 10 and 0.05 ≤ δ ≤ 14.3. Red and yellow regions
show T̄ and 2T̄ -periodic unstable solutions, respectively. Be-
tween those regions are tiny zones, denoted by l = 0, 1, 2, . . . in
ascending order of δ, where r(τ) is a neutrally stable almost-
periodic solution. The black line represents the Kapitza limit
α =

√
2/δ. (b) Location of the frequency spectrum ω of the

solution r(τ) as a function of δ for α = 2.25. Green and blue
vertical lines show the neutrally stable T̄ and 2T̄ -periodic so-
lutions, respectively. Inset: Zoom on the first stability region
l = 0 where the spectrum of the two Floquet forms are un-
locked. (c) Evolution of the growth rate of the two vibra-
tional modes Ψ(τ)eστ and Ψ∗(τ)e−στ as a function of δ for
α = 2.25. Inset: Zoom on the first stability region l = 0
where the growth rate of both modes is <(σ) = 0.

the location of the frequency spectrum ω of the two vi-
brational modes =(σ+

∑
h h/δ) and =(−σ+

∑
h h/δ) as

a function of δ for α = 2.25 (only the positive part of
the spectrum is shown as the latter is symmetric with
respect to the x-axis). For most δ, the frequency spectra
of the two modes are locked, alternatively in 0 +

∑
h h/δ

(T̄ -periodic spectrum) or in 1/2δ +
∑
h h/δ (2T̄ -periodic

spectrum). As shown in Fig. 3(c), this lock-in is asso-
ciated with a growth rate <(σ) that departs from 0 so
that one of the periodically oscillating Floquet form is
exponentially diverging (<(σ) > 0) and one is damped
(<(σ) < 0). Between those locked unstable regions, tiny
zones exist where the two Floquet modes are unlocked
and where the associated growth rate <(σ) is zero for
both modes, a situation that corresponds to neutrally
stable almost periodic solutions r(τ). The insets in Figs.
3(b) and (c) display a zoom on the first stability region
l = 0. In stability regions, the fundamental frequency
=(σ) varies continuously from 0 to 1/2δ as δ varies. Note
that the green and blue vertical lines are the limits of the
stability zones and correspond to neutrally stable T̄ and
2T̄ -periodic solutions with <(σ) = 0.

We now focus on the neutrally stable motion
(r(τ), ṙ(τ)) of the mass to characterize the allowed
vibrational modes of the modulated oscillator under
study in the regime δ > 1. Figs. 4(a), (b) and
(c) display three typical examples of such vibra-
tional modes over three periods T̄ for modulation
parameters in the stability regions l = 0, 1 and 2,
respectively [41]. In each panel, we show the position
r(τ) = Ψ(τ)ei=(σ)τ , velocity ṙ(τ) and mechanical energy
E(r(τ)) = 1/2ṙ(τ)2 + 1/2(−1 + α cos(τ/δ))r(τ)2 of the
computed vibrational mode. The modes are normalized
so that N =

∫
T̄

Ψ∗(τ)Ψ(τ)dτ = 1. Full lines represent
the computed almost-periodic motion when dotted
lines show the periodic eigenfunctions Ψ(τ), Ψ̇(τ) and
E(Ψ(τ)). The stable almost-periodic vibrations of
the mass described in Fig. 4 can be decomposed in a
successive repetition of similar motions that are scaled
copies of their T̄ -periodic eigenfunctions (the scaling
factors can take all the values between −1 and 1 and
will be discussed in next section). The T̄ -periodic eigen-
functions can themselves be decomposed in three parts:
(1) when the periodic stiffness k̄(τ) = (−1 + cos(τ/δ))
is negative, the mass exponentially diverges, (2) when
k̄(τ) > 0 the mass oscillates, (3) when k̄(τ) < 0 the mass
exponentially converges to a state very almost identical
to the previous period [41]. The qualitative difference
between vibrational motions with ascending order of l
from Fig. 4(a) to (c) is that in the lth stability region,
the mass is able to do (l+ 1) oscillations during the time
k̄(τ) is positive. Like in a classical oscillator, the velocity
is zero when the position is at a local maximum. Finally,
the mechanical energy E(r(τ)) characterizes the binary
qualitative behavior of the studied oscillator: over one
period T̄ , it seems null when k̄(τ) < 0 and positive when
k̄(τ) > 0.
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FIG. 4. Time evolution position r(τ), velocity ṙ(τ) and energy

E(r(τ)) of neutrally stable vibrational modes Ψ(τ)ei=(σ)τ

with N =
∫
T̄
|Ψ(τ)|2dτ = 1. Periodic eigenfunctions Ψ(τ),

˙Psi(τ) and E(Ψ(τ)) are shown in dotted lines. Periodic
cells are delimited by thin vertical lines. (a) Mode in the
l = 0 stability regions for δ = 5 and α = 1.14905152323442.
(b) Mode in the l = 1 stability regions for δ = 5 and
α = 1.5081802859941. (c) Mode in the l = 2 stability re-
gions for δ = 5 and α = 1.9549540063305.

B. Analogy with the uncertainty relations of the
quantum harmonic oscillator

So far, we have been qualitative on the description of
the 1D harmonically modulated linear oscillator of Fig.
1 for δ > 1 and have shown that the allowed motions get
quantized in particular vibrational modes in the modu-
lation parameter space. Now, we quantitatively charac-
terize the modes of Fig. 4 thanks to an analogy with the
statistical interpretation of the quantum harmonic oscil-
lator [20] that is illustrated in appendix A. Assume we

have a measuring device that detects the presence of the
particle but only above a triggering amplitude of motion,
r(τ) = r0. We define P (τ)dτ as the probability to find
the particle in the infinitesimal time interval [τ, τ + dτ ].
By analogy with quantum mechanics, we determine the
probability density P (τ) by the relation

P (τ) = Ψ∗(τ)Ψ(τ) = |Ψ(τ)|2 . (4)

Since r(τ) can be decomposed in successive “seemingly
random” scaled copies, between −1 and 1, of the T̄ -
periodic eigenfunction Ψ(τ) as illustrated in Fig. 4 and
5, the definition Eq.(4) conveys the idea that the proba-
bility of measuring the presence of the particle at time τ
is stronger when the relative intensity of Ψ(τ) is stronger
(we will gradually clarify this notion of “apparent ran-
domness” in next section). Moreover, in account of the
T̄ -periodicity of Ψ(τ), P (τ) = P (τ + T̄ ) and one can
reduce the statistics to a single representative period.
Assume also a measurement has been made, the total
probability to detect the particle over the representative
period T̄ would then be N =

∫
T̄
P (τ)dτ = 1 which is

the normalization condition that we have chosen in Fig.
4. Knowing the distribution P (τ) over the period T̄ , it is
possible to define the average value a continuous function
of interest, F (τ), would take after independently measur-
ing it a very large number of time

〈F (τ)〉 =

∫
T̄

P (τ)F (τ)dτ =

∫
T̄

Ψ∗(τ)F (τ)Ψ(τ)dτ. (5)

The standard deviation, illustrating the statistical fluctu-
ation of the measures of F (τ) around the average 〈F (τ)〉,
would be expressed by

∆F =
√
〈F (τ)2〉 − 〈F (τ)〉2. (6)

By taking F (τ) = τ and F (τ) = τ2, it is possible to
compute ∆τ , a statistical fluctuation of the measure of τ
around 〈τ〉, for the three stable vibrational modes of the
stability regions l = 0, 1 and 2 shown in Fig. 4(a), (b)
and (c). The probability to find τ so that r(τ) > r0 would
not solely depend on the shape of the periodic eigenfunc-
tions Ψ(τ), it would also depend on the values of the ini-
tial conditions (r(0), ṙ(0)), i.e. on the mechanical energy
E(r(0)) stored in the linear oscillator (see appendix A).

By choosing F (τ) = Ê = i ∂∂τ which is the energy opera-
tor of quantum mechanics for a reduced Planck constant

~ = 1, and therefore F (τ) = Ê2 = − ∂2

∂τ2 , one can com-
pute ∆Ê from Eqs.(5)-(6). Numerically estimating the
product of standard deviations ∆τ∆Ê for each mode, we
find, with a precision of 10−4,

∆τ∆Ê = l +
1

2
, (7)

which is the time-energy uncertainty relations of the
quantum harmonic oscillator where l denotes the mode
number [20]. Note that the computed result in Eq.(7)
is independent on the chosen interval [τ, τ + T̄ ] in Fig.
4. Repeating the calculation ∆τ∆Ê for many more com-

puted modes in the first four lth stability regions for δ > 1
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FIG. 5. Sensitivity analysis of the stable vibrational modes
r(τ) = Ψ(τ)ei=(σ)τ for δ = 5. (a) For a mode in the l = 0 sta-
bility region, the 20 first consecutive periods of r(τ), chrono-
logically ordered from cold blue to hot red, are superposed on
the primitive time cell −T̄ /2 ≤ τ < T̄/2. Dotted lines repre-
sent the periodic eigenfunction Ψ0(τ). Top and bottom panel
have slightly different δ corresponding to =(σ) ≈ 0.98× 1/2δ
and =(σ) ≈ 0.62× 1/2δ, respectively. (b) Same as (a) but for
a mode in the stable zone l = 1. Top and bottom panel have
slightly different δ corresponding to =(σ) ≈ 0.25 × 1/2δ and
=(σ) ≈ 0.04× 1/2δ, respectively.

and α < 8, we find the same result given in Eq.(7) with
a maximum error of 10−3. The relation gets more accu-
rate as δ increases and the width of the stability regions
decreases. The analog of the time-energy uncertainty re-
lation Eq.(7) is therefore a quantitative property verified
by the stable vibrational modes of our oscillator in a cer-
tain (α, δ) limit. In the next section, we strive to get a
deeper physical and mathematical insight in the descrip-
tion of the periodic eigenfunctions on the lth stability
region, Ψl(τ), and their relation with the actual position
r(τ).

IV. REDUCTION OF THE DYNAMICS TO Ψ(τ)

A. Reduction to the neutrally stable periodic
solutions rl(τ) = Ψl(τ)

As already mentioned and illustrated in Fig. 4, the
almost-periodic neutrally stable modes of the lth stabil-
ity region, rl(τ) = Ψl(τ)ei=(σ)τ , can be decomposed in
a succession of cycles that are scaled copies of the pe-
riodic eigenfunctions Ψl(τ) = Ψl(τ + T̄ ). To highlight
this time-translational property, we superpose, on the
primitive time cell −T̄ /2 ≤ τ < T̄/2, the 20 first con-

secutive periods of the position r(τ) of some computed
vibrational modes. The result is shown with δ = 5 and
α = 1.14905152323442 for modes in the l = 0 stability
region in Fig. 5(a) where the color of the 20 lines from
cold blue to hot red indicates an increase of period. The
dotted line represents the periodic eigenfunction Ψ0(τ).
Around δ = 5, the width ε of the stability region has
already decreased to ε ≈ 10−13 in the (α, δ) parameter
space. As a consequence, the eigenvalue or fundamental
frequency =(σ) varies extremely rapidly in the primitive
spectral cell 0 ≤ =(σ) ≤ 1/2δ as a function of (α, δ) (see
insets of Fig. 3(b) and (c) to see the evolution of σ in a
stability region); unlike the periodic eigenfunction Ψ(τ)
that varies in the order of a stability region to another.
As a consequence, the position of the stable vibrational
mode, r(τ) = Ψ(τ)ei=(σ)τ is sensitive to the modulation
parameter (α, δ) but not its periodic eigenfunction (the

same is true for ṙ(τ) and Ψ̇(τ) or E(r(τ)) and E(Ψ(τ))).
This sensitivity property is highlighted in the top and
bottom panels of Fig. 5(a) that show vibrational modes
in the l = 0 stability region for δ = 5 ± ε/10, corre-
sponding to =(σ) ≈ 0.98× 1/2δ and =(σ) ≈ 0.62× 1/2δ,
respectively. From one panel to the other, Ψ0(τ) as well
as the various curves of r(τ) have similar shapes, the
only change lies in the chronological order of the scaling
factor with respect to Ψ(τ). The same numerical obser-
vations on sensitivity can be made for vibrational modes
in higher regions of stability as illustrated for l = 1 in
Fig. 5(b) (δ = 5 and α = 1.9549540063305), where the
top and bottom panel correspond to a fundamental fre-
quency =(σ) ≈ 0.25×1/2δ and =(σ) ≈ 0.04×1/2δ. Note
that a similar reasoning can be made in the frequency do-
main as shown in Appendix B.

To go further, one needs to specify the scaling factors
that relates the position r(τ) = Ψ(τ)ei=(σ)τ to the eigen-
function Ψ(τ) on each successive periods. When dealing
with classic Floquet forms [40], the almost-periodic solu-
tion, r(τ), theoretically verifies the periodic mapping

r(nT̄ ) = r(0)×<(ρn) = Ψ(0)×<(ρn), (8)

where n is a positive integer, ρn = ei=(σ)nT̄ is the so-
called Floquet multiplier so that <(ρn) = cos(=(σ)nT̄ )
and we recall T̄ = 2πδ is the modulation period. What
we observe in the numerical results illustrated in Fig.
5 is stronger than Eq.(8) since it is the full function
r(nT̄ − T̄ , nT̄ ), i.e. the function r(τ) in the range
[nT̄ − T̄ , nT̄ ], that is related to the T̄ -periodic function
Ψ(τ). The mathematical reason for this is beyond the
scope of this article but from numerical observations of
Ψ(τ), we are able to generalize the quasi-periodicity prop-
erty of Eq.(8) from a single time value τ to a full period
[τ, τ + T̄ ] so that

r(nT̄ − T̄ , nT̄ ) = Ψ(τ)× cos(=(σ)(nT̄ − T̄ )). (9)

In Fig. 6(a), we show the evolution of cos(=(σ)(τ − T̄ ))
as well as the scaling factors <(ρn) = cos(=(σ)(nT̄ − T̄ ))
represented by color dots. From top to bottom, we
varied, for δ = 5, =(σ) in the primitive spectral cell
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FIG. 6. Periodic mapping and reduction of the neutrally sta-
ble vibrational modes to their periodic eigenfunctions. (a)
Discrete evolution of the n = 20 first scaling factors <(ρn)
as a function of number of periods. Black lines show the
functions cos(=(σ)(τ − T̄ )) and color dots represent the Flo-
quet multipliers <(ρn) = cos(=(σ)(nT̄ − T̄ )). From top to
bottom we have =(σ) ≈ 0.98 × 1/2δ, =(σ) ≈ 0.62 × 1/2δ,
=(σ) ≈ 0.25 × 1/2δ and =(σ) ≈ 0.04 × 1/2δ with δ = 5. (b)
Reduction of the positions r(nT̄ − T̄ , nT̄ ) of Fig. 5(a) on the
eigenfunction Ψ0(τ) by scaling by <(ρn). (c) Same as (b) but
for the eigenfunction Ψ1(τ) of Fig. 5(b).

0 ≤ =(σ) ≤ 1/2δ by taking =(σ) ≈ 0.98 × 1/2δ, =(σ) ≈
0.62× 1/2δ, =(σ) ≈ 0.25× 1/2δ and =(σ) ≈ 0.04× 1/2δ,
respectively. Those values of =(σ) are the ones we ob-
tained in Fig. 5 from top to bottom. In Fig. 6(b) and
(c), we divide each position function r(nT̄ − T̄ , nT̄ ) of
Fig. 5(a) and (b) by the corresponding Floquet multipli-
ers <(ρn) of Fig. 6(a): the 20 first periods of the various
computed rl(τ) all collapse on their respective eigenfunc-
tions Ψl(τ). If we increase the number of periods to a
very large number, the scaling factors <(ρn) take a very
large number of different values between −1 and 1 and
all the r(nT̄ − T̄ , nT̄ ) would collapse on Ψ(τ). Therefore,
the knowledge of Ψ(τ) and =(σ) completely determines
r(τ) by Eq.(9).

The property of Eq.(9), altogether with the aforemen-

tioned sensitivity property of thin regions of stability
when δ > 1, offers a reduction opportunity. The lth

region of stability in the (α, δ) space as shown in Fig.
3, can be reduced to a single branch since we know
Ψl(τ) as well as the limits of the primitive spectral cell
0 ≤ =(σ) ≤ 1/2δ are insensitive to the width ε of the
regions. The actual vibrational mode rl(τ) could then
be retrieved by Eq.(9). However, here emerges an anal-
ogy with the wave-particle duality of quantum mechan-
ics. One could choose to treat the oscillator of Fig. 1 as
a classical dynamical system, i.e. for given initial condi-
tions and given modulation parameters (α, δ), we com-
pute the neutrally stable time evolution of the particle.
But it becomes complicated to follow the various stable
modes due to machine precision since as δ increases, the
width ε of the stability regions rapidly decreases. Or, we
could choose to characterize the stable modes of vibra-
tion by their “wavy” eigenfunctions Ψl(τ), i.e. to reduce
the lth stability region into a branch with no width and
infer the position rl(τ) from Eq.(9). But, doing so, we
would loss information about the causality of the orig-
inal dynamical system. We would know all the possi-
ble motions rl(τ) because we know from Floquet theory
that =(σ) is in 0 ≤ =(σ) ≤ 1/2δ, but we would discard
which =(σ) it is, i.e. which successive scaling factors
<(ρn) = cos(=(σ)(nT̄ − T̄ )) the vibrational motion rl(τ)
has picked. A possible approach would be to represent
our ignorance by randomly varying <(ρn) between −1
and 1, a plausible reality for δ >> 1 where the stability
regions becomes so thin in (α, δ) that the precision of a
computing device on =(σ) could fluctuate in the spec-
tral cell 0 ≤ =(σ) ≤ 1/2δ (the statistical approach of the
previous section could then be acceptable). In next sub-
section, we show that when reducing the stability regions
on the branches of purely periodic solutions, i.e. σ = 0
and rl(τ) = Ψl(τ)eστ = Ψl(τ), one can get an analytical
expression for Ψl(τ).

B. Reduction to a dimensionless Schrödinger
stationary wave equation with a harmonic potential

When reducing the regions of stable vibrational modes
to the limit branches of periodic solutions rl(τ) = Ψl(τ)
(that correspond to the stability frontiers σ = 0 of the
red regions in Fig. 3(a)), Ψl(τ) is solution of the initial
value problem (IVP), Eq.(1), so that we can write

d2Ψ(τ)

dτ2
−Ψ(τ) + α cos(τ/δ)Ψ(τ) = 0. (10)

Unlike the general Eq.(1), Eq.(10) is periodic and can
therefore be reduced to a single representative period T̄ .
The direct analytical analysis of Eq.(10) is beyond the
scope of this paper but one could simplify it thanks to
numerical and physical observations. By construction
and for sufficiently thin stability regions, the normalized
periodic solutions Ψl(τ) can be decomposed in two ex-
ponential functions, mirrored with respect to a central
vertical axis, connected by a function with l+ 1 extrema
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(see throughout Figs. 3-6). As a consequence, the in-
tensity of the normalized Ψl(τ) is localized in the center
of the period and almost zero elsewhere (this is espe-
cially pronounced as δ increases and the width of the
stability region ε decreases). So, multiplying Ψl(τ) by a
T̄ -periodic function F (τ) would localized the intensity of
F (τ) at the center of the period. Choosing the primitive
periodic range −T̄ /2 ≤ τ < T̄/2 as the representative cell
for the whole solution Ψ(τ), Ψ(τ) cos(τ/δ) would cancel
the intensity of cos(τ/δ) away from the origin τ = 0 so
that, assuming Ψ(τ) is localized enough, the Taylor series
approximation

Ψ(τ) cos(τ/δ) ≈ Ψ(τ)(1− τ2/2δ2) (11)

would be legitimate. Replacing Eq.(11) in Eq.(10)
and upon the change of variable χ = v̄θτ with v̄θ =

100 101
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FIG. 7. Analytical predictions from a dimensionless
Schrödinger equation with a harmonic potential. (a) Abso-
lute square of the first four eigenfunctions Ψl(τ) on the dual
primitive cell −χ̂/2 ≤ χ < χ̂/2 with χ = v̄θτ and χ̂ = v̄θT̄ .
Black and blue lines are analytically and numerically obtained
from Eq.(12) and Eq.(1) for δ = 5, respectively. The eigen-
functions are normalized so that N =

∫
T̄
|Ψ(τ)|2dτ = 1. (b)

Limits of T̄ -periodic instability regions of Fig. 3(a) in the
(α, δ) space for 1 ≤ α ≤ 2 and 1 ≤ δ ≤ 20. Numerical out-
comes from the IVP Eq.(1) (green lines) are compared to the
analytic results from the BVP Eq.(12) (black lines). Each
solution El = l + 1/2 of Eq.(13) corresponds to a branch of
stability in the (α, δ) space.

(α/2δ2)1/4, Eq.(10) governing Ψl(τ) can be rewritten in
the form of a Boundary Value Problem (BVP) on the
dual primitive cell −v̄θT̄ /2 ≤ χ < v̄θT̄ /2

EΨ(χ) =
1

2
χ2Ψ(χ)− 1

2

d2Ψ(χ)

dχ2
(12)

where E =
(
(α− 1) /

√
2α
)
× δ. The linear eigenvalue

problem with variable coefficient in Eq.(12) is well-known
as it is the dimensionless form of a stationary Schrödinger
equation with a harmonic potential, predicting the total
energy E and wavefunction Ψ(χ) of a quantum harmonic
oscillator [20]. For Ψ(−∞) = Ψ(+∞) = 0, the discrete
set of eigenvalues E and eigenfunctions Ψ(χ) take the
form

El =
(

(α− 1) /
√

2α
)
× δ = l + 1/2 (13)

and

Ψl(χ) = Hl(χ)e(−χ2/2)/(π1/4
√

2ll!) (14)

where Hl(χ) are Hermite polynomials and l = 0, 1, 2, . . .
The analytical results of Eqs.(13)-(14) allow us to predict
where will be the lth stability branch corresponding to a
periodic vibrational mode with σ = 0 in the modulation
parameter space (α, δ) as well as the shape of the periodic
eigenfunctions Ψl(τ). Fig. 7(a) illustrates, for δ = 5, that
the analytical eigenfunctions Ψl(χ) of Eq.(14) are in ex-
cellent agreement with the periodic eigenfunctions Ψl(τ)
that were numerically computed from Eq.(1) and shown
in Figs. 4(a), (b) and (c) for a α in the l = 0, l = 1 and
l = 2 stability regions, respectively (note the results are
shown as a function of χ but it could have been plotted
as a function of τ as well). We have displayed the square
of the absolute value of the eigenfunctions by analogy
with the quantum harmonic oscillator. Fig. 7(b) shows
that each analytical El of Eq.(13) accurately predict the
T̄ -periodic limits of the lth numerical stability regions of
Eq.(1) in the (α, δ) space. As expected from numerical
observations, since the width of the lth stability region
and the errors in the approximation Eq.(11) decreases
as δ increases, the analytical prediction Eq.(13) for each
mode l becomes better with δ as shown in Fig. 7(b).

Thus, in a certain asymptotic limit that will need to
be rigorously defined in future work, the stationary wave
equation Eq.(12) allows to compute, in the (α, δ) modula-
tion parameter space, all the eigenfunctions Ψl(τ) of the
stable vibrational motion of the oscillator shown in Fig.
1. As for the actual position of the mass of the oscillator,
rl(τ), it is not predicted in a classic deterministic way
but it can be infer from this study that it will be a suc-
cessive repetition of scaled periodic eigenfunctions. The
successful so-called Copenhagen interpretation of quan-
tum mechanics states that the quantity |Ψl(χ)|2 of the
lth mode of the quantum oscillator represents the prob-
ability to find the particle at a position χ [20]. If to
eventually pursue the analogy with the presented me-
chanical oscillator, one would have no choice but to in-
troduce two supplementary concepts: (i) a measurement
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concept already discussed in the previous section and ex-
tended in Appendix A that could justify a probabilistic
interpretation, (ii) a relativity and periodicity concept,
maybe of the same nature that the original work of De
Broglie [42], that would fix the oscillator of Fig. 1(b) on
a periodically moving Galilean frame R′ with constant
velocity vθ in order to relate time τ to a finite space
−v̄θT̄ /2 ≤ χ < v̄θT̄ /2.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we presented a theoretical study of
an overlooked fundamental mechanism: a harmonically
modulated 1D linear oscillator whose mass is naturally
collapsing. We have shown that the physics of the sta-
ble vibrational modes of this system is analogous in time
to the 1D quantum harmonic oscillator (QHO). In an
asymptotic limit in the modulation parameter space, the
presented system behave like an effective classic harmonic
oscillator, a situation similar to the so-called correspon-
dence principle [20]. In the opposite limit, the stable
modes of vibration are quantized in thin stability regions
in the modulation space. Those neutrally stable modes
can be quantitatively described by the time-energy uncer-
tainty relation of the QHO when using an analogy with
the statistical interpretation of quantum mechanics. Fi-
nally, in the limit where the stability regions are thin, we
observed a behavior reminiscent of a wave-particle du-
ality: the original initial value problem (IVP) governing
the motion of the particle can be reduced to a boundary
value problem (BVP) in a primitive periodic cell that
is a dimensionless Schrödinger stationary wave equation
with a harmonic potential. The solutions of Schrödinger’s
equation represent the motion of the particle albeit with
an ignorance of the causality of this motion which could
be reconstruct by statistical means.

This paper is a first attempt, mainly numerical, to
study an overlooked fundamental mechanism analogous
to the QHO. In future work, a more rigorous mathemati-
cal approach would be needed notably to characterize the
asymptotic limit where the original equation of motion
can be approximated by a dimensionless Schrödinger’s
equation. Meanwhile, this theoretical work raises an im-
portant question: could this modulated oscillator be a
reality? An answer would be to set up an experimen-
tal system whose linearized equation of motion is in the
form of Eq.(1). The simplest realization could be an in-
verted pendulum whose pivot point is vertically vibrated
which is the archetypal example of a mass that naturally
collapses under periodically modulated gravity. The ma-
jor problem with such a basic experiment would lie in
the theoretical width of the stability regions that we un-
covered. The latter are intrinsically so small that any
additional experimental noise would probably made the
pendulum unstable. A possibility could be to add some
damping to the oscillator that would decrease the growth
rate <(σ) and widen the instability regions for any given
modulation parameters. The drawback of his approach

is that the eigenfunctions Ψ(τ) as well as the actual po-
sition r(τ) would loose their symmetry in the primitive
periodic cell. Another solution would be to start the
experiment from modulation parameters for which the
stability regions are reasonably large and strive to pro-
gressively explore the regions as it shrink. In any case,
a study of the dependence of an additional noise on the
stability of the motion in a nonlinear framework would
be needed to get some physical insights in the transitions
between stable regions.

Despite the aforementioned practical difficulties, the
presented dynamical system already refines the classical
picture of linear oscillators and sheds new light on period-
ically time-varying systems governed by Floquet theory
that are at the heart of many problems in physics. Its ap-
pealing mechanical analogy with a fundamental quantum
system as well as its relative simplicity call for further
theoretical and experimental explorations for an impact
that would be twofold. It could be seen as a pedagogical
dynamical system that can help explaining the complex-
ity of the concepts of quantum physics. But for the most
audacious, it could be regarded as a very first brick to
eventually pave the way to a new realistic interpretation
of quantum mechanics. The current scientific content is
by any means too restricted to foresee any future implica-
tions in that sense but considering our mechanical analog
is based on particular representative vibrational modes
that are non-local nor causal entities, at least one can
hope since it may not fault Bell’s famous no-go theorem
that forbid any hidden variables theory to ever explain
quantum phenomena.
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APPENDIX

Statistical interpretation and measurement problem

Assume a modulated linear oscillator of Fig. 1(b) for
δ >> 1 so that no direct numerical simulations or mea-
surement of the motion of the particle r(τ) is possible
because the width of the stability regions is so small.
Eventually, the only way to get informations on that sys-
tem is from the neutrally stable eigenfunctions Ψl(τ) pre-
dicted by the Schrödinger equation Eq.(12). Inspired by
the presented study, we could model our ignorance on
the actual position r(τ) by assuming the latter is a suc-
cession of randomly scaled eigenfunctions Ψl(τ), between
−1 and 1. Assume we have a measuring device that, be-
cause of its precision limitations and sensitivity, could
detect the presence of the particle but only above a trig-
gering amplitude of motion, r(τ) = r0. One could pos-
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FIG. 8. Schematic illustration of the time-energy uncertainty
relation found in Eq.(7). (a) Eigenfunction Ψ0(τ) in dotted
lines and two random positions r(nT̄ − T̄ , nT̄ ) in full lines for
E(r(0)) = 1/2ṙ(0)2 + 1/2(−1 + α)r(0)2 = E1. (b) Same plot
as (a) but for an initial energy E2 = E1 + ε. (c) Same plot as
(b) but for an initial energy E3 = E2 +ε. (d) Statistical vision
showing the number of times p the particle has been detected
at time τ over a number P of independent measurements. The
dotted line shows the square of the modulus of the periodic
eigenfunction, |Ψ0(τ)|2.

sibly reconstruct the Ψl(τ) from indirect measurements
and statistical techniques.

Figs. 8(a)-(c) show the evolution of the eigenfunction
Ψ0(τ), normalized to N =

∫
T̄
|Ψ(τ)|2dτ = 1, in the repre-

sentative periodic cell −T̄ /2 ≤ τ < T̄/2, for δ = 5. If we
assume we have been able to make a measurement, Fig.
8(a) represents the worst case scenario where the initial
energy E(r(0)) = 1/2ṙ(0)2 + 1/2(−1 + α)r(0)2 = E1 is
such that the maximum of the eigenfunction Ψ0(τ) is at
r0. For this given initial energy E1, the only possibility
is to measure that the particle will be at the center τ = 0
of the representative period, i.e. the center of any pos-
sible period (this situation corresponds to the full blue
line). Any other possible situation, illustrated for exam-
ple by the red line, could not be measured. For some
very small relative fluctuations of the initial conditions,
i.e. of the initial energies E2 and E3 (where E3 > E2),
the amplitude r(τ) can be greatly affected in the center
of the period because of the divergent nature of Ψl(τ)
as shown in Figs. 8(b) and (c). In those cases, for one
independent measurement, the device could detect a par-
ticle before τ = 0 which is the case for r(nT̄ − T̄ , nT̄ ) in

green or orange lines. But for another measurement, the
r(nT̄−T̄ , nT̄ ) represented by a blue line could arrive first
in which case the particle will be detected again in τ = 0.

In the end, if we perform for a fluctuation of initial en-
ergies, a large set of P independent measurements to ob-
tain the number of time p the particle has been detected
in τ , we could obtain the probability plot in a represen-
tative period −T̄ /2 ≤ τ < T̄/2 given in Fig. 8(d). The
probability to find the particle at τ should eventually
take the same shape than the square of the eigenfunc-
tion modulus |Ψ0(τ)|2 because the more intense Ψ0(τ),
the higher the chance will be that r(τ) is large. Further-
more, the uncertainty ∆Ê on the initial energy E(r(0))
would be related to the uncertainty ∆τ on τ . If we knew
precisely the initial energy, we would still have a finite
uncertainty on τ because of the random scaling process
and vice-versa, it is not because the location in time τ is
detected with certainty that the initial energy is unique.
Note that the same reasoning could be made for modes
in the l > 0 stability branches with the same expected
result that the density of probability to detect the par-
ticle in τ could follow P (τ) = Ψ∗(τ)Ψ(τ) = |Ψ(τ)|2. It
would be interesting in future work to perform an actual
statistical study of the problem described in Fig. 8.

Frequency spectrum and sensitivity
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FIG. 9. Discrete Fourier transforms of the stable vibrational
modes of Figs. 5(a) and (b) for δ = 5. (a) Mode in the sta-
bility region l = 0 with α = 1.14905152323442. (b) Mode in
the stability region l = 1 with α = 1.9549540063305. Dotted
and solid lines represent the Floquet form Ψ∗(τ)e−i=(σ)τ and

Ψ(τ)ei=(σ)τ , respectively. Various colors correspond to a per-
turbation of the parameter δ with an ε of the order of 10−13

so that =(σ) ≈ 0.25/2δ, 0.62/2δ or 0.98/2δ.

Another sensitivity property of the stable vibrational
modes with respect to (α, δ), of the same nature of the
one shown in Section IV A in the time domain, can be
retrieved in the frequency domain. Figs. 9(a) and (b)
show the frequency spectrum of the computed solutions
r(τ) displayed in Figs. 5(a) and (b), for δ = 5 and a α in
the stable region l = 0 and l = 1, respectively. Various
colors correspond to a slight perturbation ε of δ so that
the fundamental frequency =(σ) reads, =(σ) ≈ 0.25/2δ,
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=(σ) ≈ 0.62/2δ and =(σ) ≈ 0.98/2δ. For each color, full
and dotted lines represent a Floquet form Ψ∗(τ)e−i=(σ)τ

and Ψ(τ)ei=(σ)τ , respectively. Whatever the fundamen-
tal frequency =(σ), a stable vibrational mode in the lth

stability region is characterized by a poly-harmonic sym-
metric spectrum r(ω) with (l + 1) local maxima. The
spectrum is sensitive to =(σ) and therefore to the mod-
ulation parameters in the sense that it can be shifted
inside the cell 0 ≤ =(σ) ≤ 1/2δ by slightly varying (α, δ)

as shown by the various colors in Fig. 5. However, the
global shape and notably the energy spectral density of
the mode, Ē = 1

2π

∑
|r(ω)|2, is insensitive to (α, δ) since

it varies from one stability region to another, very much
alike the eigenfunction Ψl(τ) or the limits of the spec-
tral cell 0 ≤ =(σ) ≤ 1/2δ. Finally, it is interesting to
note that, upon scaling in the x and y-axis, the square of
the modulus of the eigenfunctions |Ψ0(τ)|2 and |Ψ1(τ)|2
would perfectly envelope the discrete Fourier spectrum
shown in Figs. 9(a) and (b), respectively.

[1] J. Guckenheimer and P. Holmes, Nonlinear oscilla-
tions, dynamical systems, and bifurcations of vector fields
(NewYork Springer Verlag 1983).

[2] S.H. Strogatz, Nonlinear dynamics and chaos: with ap-
plications to physics, biology and chemistry (Perseus pub-
lishing 2001).

[3] K. Nakamoto, Infrared and Raman spectra of inorganic
and coordination compounds Part A (John Wiley & Sons
2009).

[4] A. H. Nayfeh and P.F. Pai, Linear and nonlinear struc-
tural mechanics (John Wiley & Sons 2008).

[5] P. Bergé, Y. Pomeau, and C. Vidal, Order within chaos
(John Wiley & Sons 1984).

[6] V.V. Bolotin, The dynamic stability of elastic systems
(Holden- Day, lnc 1964).

[7] K.L. Turner, S.A. Miller, P.G. Hartwell, N.C. MacDon-
ald, S.H. Strogatz, and S.G. Adams, Nature 396, 149
(1998).

[8] M. A. Amin, R. Easther, H. Finkel, R. Flauger, and M.P.
Hertzberg, Phys. Rev. Lett. 108, 241302 (2012).

[9] K. Kumar and L.S. Tuckerman, J. Fluid Mech. 279, 49
(1994).

[10] F. Melo, P. Umbanhowar, and H.L. Swinney, Phys. Rev.
Lett. 72, 172 (1993).

[11] P. Engels, C. Atherton, and M.A. Hoefer, Phys. Rev.
Lett. 98, 095301 (2007).

[12] G. W. Hill, Acta mathematica, 8, 3-36 (1886).
[13] H. Poincaré, Bulletin de la société mathématique de
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