

a. Image of colorful fringes on the optical chopper. This cliche is obtained by rotating the chopper at $\omega = 100$ Hz while it is enlightened by a light-tube plugged into the mains (50Hz). **b.** When the fan is rotating different colors passe through with a delay and it creates the fringes. At t1 the main color is orange then the fan rotates and the color changes ; at t2 the main color is green, two distinct fringes appear : one green and one resulting of the addition of green and orange ; at t3 the process continues with a new color. The fringes can be associated with the oscillation of the light-tube's emission spectrum (f =100Hz). We may note that the visible-light emission is due to fluorophores. Here fluorophores have long lifetimes (around 1ms) thus the fringes are visible. At f =100Hz the fringes freeze : the optical chopper works as a stroboscope.

Figure 2 : Acquisition of the intensity fluctuation for the spectral line λ =611nm, using an optical fiber.

a. Experimental setup : the LFB delivers a square wave (0-5V at f = 1004Hz). The chopper controller divides the frequency by 10, thus the chopper rotates at f = 100,4Hz. The acquisition is made by the spectrometer using an optical fiber. **b.** Image of the chopper with the optical fiber. **c.** Fluctuations of the spectral lines λ =611nm (Eu complex) and λ =435nm (Mercury gaz). **d.** Plot of the Eu spectral line intensity versus Hg spectral line intensity. We can see the correspondance of various instants t1,t2 and t3 on the previous chart (Fig 2.c).

a. Influence of the temperature on Tb lifetime. **b.** Influence of the temperature on Eu lifetime. **c.** Lissajou plot : Eu intensity versus Hg intensity for $T = 0^{\circ}$ C. **d.** Lissajou plot : Eu intensity versus Hg intensity for $T = 60^{\circ}$ C.