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Abstract 
Resonant scattering from periodic gratings has been the subject of extensive investigations [1]. The 
scattering coefficients of any periodic  grating are characterized by resonant features, the most 
remarkable being the manifestations of so-called Wood’s anomalies [2,3]. In recent papers [4,5], studies 
of the polarization properties in spectral transmittance of a nanohole array grating have been reported. 
The observations have been interpreted in terms of Fano-type resonnances resulting from the 
coexistence of the two Wood’s anomalies (in [4], the Fano shape is interpretd in terms of the coherent 
interference between a discrete and a continuum of states). We present a study based on modal 
analysis to quantitatively predict the transmission spectrum of an array, accounting for the polarisation 
(p- or s- polarisations) and on the grating material. It is shown that the equivalent admittance of the 
grating can be determined in the weak scattering approximation, by integration of a Riccatti  type 
equation governing this admittance. Then, following Oliner and Hessel [3], we propose analytical 
expressions of the reflexion coefficients for each interference order (of each mode in terms of modal 
analysis), that account for the shape and for the composition of the grating. Comparison with direct 
numerical calculations reveals the accuracy of our prediction (Fig. 1). It is shown that the occurence of 
Fano shape in the reflectance only occurs under certain circumstances, (for s-polarized wave, see Fig. 
1, and corresponding electric  field on Fig. 2, 3). This is due to the fact that the first Wood anomaly (often 
referred as the Rayleigh Wood anomaly) always occurs at the cut off frequencies producing the 
extinction of all the propagative modes while the second -resonant- Wood anomaly does not happen for 
all gratings (essentially, this is dependent on the wave polarization and on the grating material).
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equation for the magnetic field H), which is contradictory with the present result. Although

several discrepencies can be pointed out (we notably consider finite size scatterers and not

reflection gratings), we do not have an explanation for this difference.
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FIG. 7: Reflection coefficient R00 and R20 for an plane wave impinging at normal incidence on a

grating made of square penetrable scatterers of side a = h/10, mass density ρ0 = ρ, and a bulk

modulus B0 such that B/B0 = 0.5 (left), B/B0 = 2 (right). Plain red lines: numerical results,

dashed black lines: analytical.

B. Transmission through penetrable/hard grating structures

In this section we show an illustration of the multimodal method in the context of the

transmission enhancement through grating structures. Perfect transmissions of acoustic

waves through perforated hard plate were reported recently, see, e.g., [26, 37, 38]. As in

[38, 39], we describe the propagation in the layered structure that forms the perforated

grating in terms of the classical homogenization in layered media. The wave equation in the

resulting homogeneous anisotropic medium is
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Fig. 1: Example of reflectance of the mode 0 and mode 2 of a grating with subwavelenght hole arrays 
as a function of the frequency of the incident (plane) wave, case of s-polarized (non magnetic grating 
material with permittivity e0 smaller than the host medium, e0/e=0.5). h denotes the grating period.
Plain red lines: full wave calculations, dotted black lines: analytical prediction.

equation for the magnetic field H), which is contradictory with the present result. Although

several discrepencies can be pointed out (we notably consider finite size scatterers and not

reflection gratings), we do not have an explanation for this difference.

B/B0 = 0.5 B/B0 = 2

kh
2π0 1 2

kh
2π0 1 2

kh
2π0 1 2

kh
2π0 1 2

|R00|

|R20|

|R00|

|R20|

0

0.01

0.02

0

0.25

0.5

0

0.25

0.5

0

0.5

1

FIG. 7: Reflection coefficient R00 and R20 for an plane wave impinging at normal incidence on a

grating made of square penetrable scatterers of side a = h/10, mass density ρ0 = ρ, and a bulk

modulus B0 such that B/B0 = 0.5 (left), B/B0 = 2 (right). Plain red lines: numerical results,

dashed black lines: analytical.

B. Transmission through penetrable/hard grating structures

In this section we show an illustration of the multimodal method in the context of the

transmission enhancement through grating structures. Perfect transmissions of acoustic

waves through perforated hard plate were reported recently, see, e.g., [26, 37, 38]. As in

[38, 39], we describe the propagation in the layered structure that forms the perforated

grating in terms of the classical homogenization in layered media. The wave equation in the

resulting homogeneous anisotropic medium is

∇ ·







 1/ρ� 0

0 1/ρ⊥



∇p



+
ω2

Be
p = 0, (48)

19

equation for the magnetic field H), which is contradictory with the present result. Although

several discrepencies can be pointed out (we notably consider finite size scatterers and not

reflection gratings), we do not have an explanation for this difference.

B/B0 = 0.5 B/B0 = 2

kh
2π0 1 2

kh
2π0 1 2

kh
2π0 1 2

kh
2π0 1 2

|R00|

|R20|

|R00|

|R20|

0

0.01

0.02

0

0.25

0.5

0

0.25

0.5

0

0.5

1

FIG. 7: Reflection coefficient R00 and R20 for an plane wave impinging at normal incidence on a

grating made of square penetrable scatterers of side a = h/10, mass density ρ0 = ρ, and a bulk

modulus B0 such that B/B0 = 0.5 (left), B/B0 = 2 (right). Plain red lines: numerical results,

dashed black lines: analytical.

B. Transmission through penetrable/hard grating structures

In this section we show an illustration of the multimodal method in the context of the

transmission enhancement through grating structures. Perfect transmissions of acoustic

waves through perforated hard plate were reported recently, see, e.g., [26, 37, 38]. As in

[38, 39], we describe the propagation in the layered structure that forms the perforated

grating in terms of the classical homogenization in layered media. The wave equation in the

resulting homogeneous anisotropic medium is

∇ ·







 1/ρ� 0

0 1/ρ⊥



∇p



+
ω2

Be
p = 0, (48)

19

Fig. 2: Same representation for a grating material  having a permittivity e0 higher than the host medium 
(e0/e=2).  

Fig. 3: Spatial distribution of the E-field at frequency k=0.998 2p (in norm), just bellow the first cut off 
(represented on a unit vertical cell). Dotted line indicate the position of the grating.
Top: in the case of Fig. 1. The scattered field is composed of evanescent modes. The transmission is 
perfect.
Bottom: in the case of Fig. 2. The scattered near field is composed of the grazing mode. The reflexion 
is perfect.

Fig. 4: Spatial distribution of the E-field at frequency k=1.0001 2p (in norm), just above the first cut off 
(represented on a unit vertical cell). The scattered field is composed of the grazing mode only, 
propagative at that frequency. The pattern is the same in the cases of Figs. 1 and 2. 
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Fig. 2: Same representation for a grating material  having a permittivity e0 higher than the host medium 
(e0/e=2).  

Fig. 3: Spatial distribution of the E-field at frequency k=0.998 2p (in norm), just bellow the first cut off 
(represented on a unit vertical cell). Dotted line indicate the position of the grating.
Top: in the case of Fig. 1. The scattered field is composed of evanescent modes. The transmission is 
perfect.
Bottom: in the case of Fig. 2. The scattered near field is composed of the grazing mode. The reflexion 
is perfect.

Fig. 4: Spatial distribution of the E-field at frequency k=1.0001 2p (in norm), just above the first cut off 
(represented on a unit vertical cell). The scattered field is composed of the grazing mode only, 
propagative at that frequency. The pattern is the same in the cases of Figs. 1 and 2. 
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dy ρ−1(r)e2iπ(n−m)/h
(of-

ten called the Toeplitz matrix). This form

is in agreement with the form derived in
19

.

However, in
19

, the form ρq = ∂xp is first pro-

jected to get p�n = [ρ]n−mqm. In the staircase

approximation (locally ρ depends on y only),

the rule of Fourier factorization derived by

Li, called inverse rule, states that the correct

truncation of p�m = [ρ]n−mqm precisely leads

to qn = [ρ−1]n−mpm. Ironically, our varia-

tional representation leads to the same con-

clusion for this equation, although no con-

sideration on the truncation has been done.

This will be discussed further in the following

Section III.

B. Numerical integration

Because the contamination by exponen-

tially growing evanescent modes has to be

avoided, and because the original problem

is posed as a boundary value problem, the

coupled equations (8) cannot be solved di-

rectly as an initial value problem
12

. There-

fore, the multimodal admittance method is

used to solve the problem. This method has

been presented in earlier works for waveg-

uides with varying cross section for acoustic

waves
12,27

and elastic waves
28

, or for waveg-

uides with curvature effect
16,17

. The main

steps are recalled in the following.
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p

q





�

=




0 E−1

K2 + F 0








p

q



 (8)

where K is a diagonal matrix with Kn = ikn,

k2
n ≡ k2 − γ2
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The first step is to define the admit-

tance matrix, that links the vector q to p:

q = Yp. The admittance matrix satisfies a

Riccati equation,

Y� = −YE−1Y + K2 + F, (11)

that can be solved numerically from the out-

put (x = L) to the input (x = 0) of the

region of interest, given an initial condition

Y (L). If one assumes that the region x > L

is such that only right-going waves can propa-

gate (the medium is uniform and contains no

source), then E(x > L) = I, F(x > L) = 0

and, from Eq.(9), p� = q and q� = K2p.

It follows that Y(L) = K. Once the admit-

tance matrix is calculated along the axis x,

the modal wavefield p can then be calculated

as the solution of the first-order, numerically

stable, equation

p� = E−1Yp, (12)

given an initial condition p(0).

Note that, from the calculation of Y, and

without the need to compute the wavefield

in a particular configuration, the scattering

properties of the region of interest ((x, y) ∈

[0, L]× [0, h]) can be deduced. The reflection

matrix R, defined by p(r) = Rp(inc), with p(inc)

the incident wave and p(r) the reflected wave,

can be written as

R = [K+ Y(0)]−1[K− Y(0)]. (13)

The transmission matrix T, defined by p(t) =

Tp(inc), p(t) the transmitted wave, can also

be calculated as following. Together with the

computation of Y, one computes the prop-

agator G, defined such that, for x ≤ L,

p(L) = G(L, x)p(x) and G(L,L) = I, and so-

lution of the equation G� = −GE−1Y. Then,

T = G(L, 0)(I+ R). (14)

Note that the calculation of both R and T

does not require any storage of Y or G along

the axis.

Following the above cited papers (see.,

notably,27,28), one uses a Magnus scheme to

solve Y, G, and p. From Eq. (8), one writes




p(x− δx)

q(x− δx)



 = e−Mδx




p(x)

q(x)



 (15)

where

M ≡




0 E−1

K2 + F 0



 , (16)

evaluated at (x − δx/2). Then, writing the

exponential propagator as

e−Mδx =




E1 E2

E3 E4



 (17)
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with q=Yp, leads to a Ricatti equation

Weak scattering approximation 

Y = Y0[1 + z], ||z|| � 1

in the absence of gratingY0

(D) Analytical results (grating A)

(E) Numerical results (grating B)

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

|R|

kh
π0

0
0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0.1h

3h

h 0.3h

3h

FIG. 6. Plain wave reflection coefficient of a

waveguide segment with a discontinuous nar-

rowing, and a smooth, sine shaped, narrow-

ing, and ρ/ρ0 = B/B0 = 3. Plain lines: nu-

merical solution, dashed lines: analytical so-

lutions.

equivalent to our Eq. (13) (with p(r) = p −

p(inc)), and pointed out two families of fre-

quencies, or wavenumbers k, able to pro-

duce a rapid variation of the reflection co-

efficients: (i) the Rayleigh wavenumbers, as-

sociated to the branch points kn = 0 for some

n value, and (ii) resonance wavenumbers as-

sociated to complex poles of pn in the vicinity

of [K+ Y]nn = 0. Following this approach, it

is possible to reproduce explicitly the main

features of the Wood anomalies in our sys-

tem of penetrable scatterers. To do that,

weak scattering is assumed, which translates

in Y = K + y and ||y|| � ||K||. This allows

us to derive an approximate expression of R

and to determine Y, easily obtained for rect-

angular scatterers.

For simplicity, the calculations are per-

formed for a plane wave at normal incidence

to the grating, so that the Neumann waveg-

uide configuration can be used. By symme-

try, only the even modes n are excited. The

system in Eq. (42) can be written




1 + z00 z02 · · · z0N

z20 1 + z22
...

... . . .

zN0 · · · 1 + zNN









p0

p2
...

pN





=





1

0

...

0





,

(43)

where

znm = ynm(0)/2ikn. (44)

It follows that Rp(inc) = −(I + z)−1zp(inc),

which reduces to, at dominant order,

Rn0(k) � − zn0

1 +
�

j

zjj
, (45)

Let us comment the above result. The

reflection Rn0 � −zn0 is in general small,

with ynm(0) = O (�) and � measures the

small scattering. It departs from this sim-

ple behavior in two cases. First, near a

Rayleigh wavenumber km = 0: the quan-

tity zn0 is still O (�) for n �= m since kn

16

does not vanish. However, both quantities

zm0 and 1 +
�

zjj � zmm become possibly

very large. From Eq. (44), they become of

order O (�) /km. Second, at the wavenumber

that produces 1 + zmm = 0, all the reflection

coefficients become of order unity.

To go further, the condition 1 + zmm = 0

is inspected. This relation is equivalent to

ymm(0) = −2ikm, Eq. (44). Thus, the cor-

responding wavenumber km = O (�) is small.

This implies that the second Wood anomaly

occurs at a wavenumber close to the Rayleigh

wavenumber. Although the predictions in

Eq. (45) are not expected to be accurate

at these resonances, since we have assumed

zmn � 1, they are able to capture the rapid

variations of Rn0 :






(i) km = 0, Rn �=m,0 �
−zn0
zmm

→ 0,

Rm0 �
−zm0

zmm
→ O (1) ,

(ii) 1 + zmm = 0, Rn0 � − −zn0�

j �=m

zjj
→ O (1) .

(46)

Next, the specific form of zn0 and znn are

derived in the case of penetrable scatterers.

To do that, the Ricatti equation (47) is lin-

earized (assuming that F and e ≡ E − I are

small). Given A ≡ −KeK − F, the linearized

equation reduces to

y� = −yK− Ky − A. (47)

Here, a rectangular scatterer of small size

is considered. Note that larger sizes with

smaller contrasts could be considered to get

weak scattering. The scatterer shape is given

by a(x) = (h − hs)/2, b(x) = (h + hs)/2

(hs � h), for xmin = 0 < x < xmax = L

(Fig. 2). This leads to a piecewise constant

matrix A, and the linearized Ricatti equation

can be solved starting from the radiation con-

dition y(xmax) = 0 to get ynm(0) = AnmLSnm,

with Snm ≡ sinc([kn + km]L/2)ei(kn+km)L/2
a

shape factor. The matrix Anm is calculated

using Eqs. (7)-(9) and the quantities znn and

zn0 are deduced






znn =
(2− δn0)

2ikn

hsL

h

�
k2
n

�
ρ

ρ0
− 1

�
+ k2

�
B

B0
− 1

��
Snm,

zn0 =

�
(2− δn0)

2ikn

hsL

h
k

�
kn

�
ρ

ρ0
− 1

�
+ k

�
B

B0
− 1

��
Sn0.

(48)
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solved using a Magnus scheme to find Y and then, the wavefield p, being either E or H.
Also, Y gives the reflection and transmission coefficients.

p, being either E or H.

The modal components satisfy

Inspecting the form of z for penetrable 
inclusions show
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Abstract. Propagation in perturbed one-dimensional phononic crystals, with both compositional and posi-

tional disorder, is considered. The Coherent Potential Approximation is used to obtain the band structure

and the Floquet normal form of the periodic-on-average perturbed crystal, which is modified differently

with respect to the two kinds of disorder. For finite size crystals, the transmission coefficient is calculated

and compared to direct numerical simulations and to an estimate based on localization length. The trans-

mission spectrum is found to be better described using the full expression of the Floquet modes of the

disordered, but periodic on average, medium.
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1 Introduction

Inspecting the form of zn0 and znn shows that no anoma-
lies occur in s-polarized configuration. For p-polarized waves,
the Rayleigh Wood anomaly (R00 → 0 at k = 2nπ/d) is
always observed and a second anomaly occurs for � > �0.

Disordered photonic and phononic crystals have expe-
rienced an increasing interest in recent years because of
their potential applications to acoustic filters, the control
of vibration isolation, noise suppression, and the possibil-
ity of building new transducers. It is thus of interest to
understand which properties of such structures are sensi-
tive to inherent imperfections in their design and which
are not.

Disorder is known to produce localization. In quan-
tum mechanics, localization is discussed in terms of the
Lyapunov exponent and spatially localized solutions of
the Schrödinger equation. These localized modes always
appear in an infinite disordered medium, and they can
appear in a disordered medium of finite size. In classical
waves, it is usual to characterize the medium in terms of
an effective medium. One finds that the dispersion rela-
tion K(ω) departs from the dispersion relation k(ω) in the
absence of disorder and the imaginary part of the effec-
tive wavenumber K equals the inverse of the localization
length in most cases. In the case where the unperturbed
medium is free space, the imaginary part of the effective
wavenumber K is only due to the introduced disorder. In
the case of photonic or phononic crystals, the band struc-
ture of the unperturbed medium is more complicated, with
a wavenumber Q of the Bloch Floquet mode being either

Send offprint requests to:

purely real (pass band) or purely imaginary (stop band).
Thus, the modification of the band structure when dis-
order is introduced is more involved. Recently, some un-
expected behaviors have been observed, such as the sup-
pression of localization in layered left- and right- handed
structures perturbed in the optical indices [1,2] and the
conversion of stop bands into pass bands in opal-type sys-
tems [3].

In this paper, we consider the propagation of a wave
described by the wavefield u(x) in a one-dimensional phononic
crystal made of point scatterers (Kronig–Penney system)
[4,5]. The wavefield u satisfies

v��(x) + k2v(x) = 2k
�

n

Vnδ(x− xn)v(x), (1)

with Vn being dimensionless and purely real to ensure en-
ergy conservation. This model has a range of applications
including low frequency propagation of guided waves [6–
9] and propagation in crystal lattices [10,11]. The perfect
periodic situation occurs when xn = nd and Vn = V . Here
we consider the case of both compositional disorder and
positional disorder, namely

Vn = (1 + ξn)V, with |ξn| ≤ ξ/2,
xn = (n+ �n)d, with |�n| ≤ �/2.

(2)

We apply the Coherent Potential Approximation (CPA)
to derive the form of the Floquet normal form of the
perturbed phononic crystal, assuming that the effective
medium behaves as a periodic-on-average medium. This
means that the full characterization of the wave is ob-
tained, beyond the determination of the effective wavenum-

� < �0

� > �0

Reflection coeffiicent of the plane wave for s-polarized waves

total transmission total reflection

Here, the resonance of the mode 2 occurs below  the cut off frequency.
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