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FIG. 2: Transmission spectrum, T = |t|2, as a function of the mass density contrast, ρ/ρ0, and of the incidence angle, θ. The
grating thickness is l = 20d. The layer width is b = 0.7 and the frequency is kd = 0.5. (a) Full wave calculation, and (b)
analytical result Eq. (4). The dashed line indicates the optimal angle, from Eq. (7).

FIG. 3: Spatial distribution of the wave field (real part) at frequency kd = 1 in a SLG grating with b = 0.7 and for ρ/ρ0 = 0.05,
at optimal angle, θopt � 52.5o.

The robustness of the homogenization for small l values encourages to use further homogenization process for more

complex grating structures, as sketched on Fig. 4. Our two step homogenization is inspired from [16] for composite

metamaterials. Our "composite" grating is made of a succession of layered structures with two different widths (bd
and cd) alternatively stacked next to each other. Each layered structure is first homogenized as previously, resulting in

a one dimensional periodic succession of homogeneous anisotropic stacks of respective lengths aL and (1− a)L. This

latter can be in turn homogenized to form a homogenized anisotropic effective medium, whose effective parameters

are
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(9)

and the inverse of the effective bulk modulus is simply the average of 1/B and 1/B0 with the filling fraction ϕ ≡
[ab+ (1− a)c] (see Supplementary Material). In the following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths b and c, and rectangular inclusion grating (RIG) refers to

the particular case c = 0.
The expression of the transmission in Eq. (4), with Eqs. (5) and (6), is still valid with these new expressions of

ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and the optimal angle depend, now, in addition to the value of

the contrasts and the filling fraction, on the geometry of the grating. For metallic grating, this geometry has been

considered in [9] to enhance the transmission at normal incidence and, in this reference, this was done by decreasing

the filling fraction. In fact, inspecting the Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the optimal angle for

the SLG is always smaller than for any other structure with the same filling fraction.

In the following, we exemplify the effect of the geometry by comparing the transmission spectra of different gratings

with the same filling fraction. First, we consider the limiting case of a rigid material. Fig. 5 shows the transmission

Enhanced transmission through gratings: Structural and geometrical effects

Agnès Maurel
Institut Langevin, CNRS, ESPCI ParisTech, 1 rue Jussieu, 75005 Paris, France

Simon Félix
LAUM, CNRS, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans, France

Jean-François Mercier
Poems, CNRS, ENSTA ParisTech, INRIA, 828 boulevard des Maréchaux, 91762 Palaiseau, France

Homogenization theory is used to derive the effective properties of gratings with complex subwave-

length structures. Going beyond the effect of the filling fraction, geometrical effects are analyzed

using a two step homogenization process. An explicit expression for the transmission spectrum is

derived, able to predict the Fabry-Perot resonances and the Brewster angle realizing broadband

extraordinary transmission. With the same filling fraction, one expects from this analytical ex-

pression that gratings with different geometries may display very different transmission properties.

This sensitivity to the microstructure geometry is exemplified in the case of gratings made of hard

material and made of dielectric material. The analytical results are shown to be within few percents

as compared to full-wave numerical simulations, paving the way for transmission properties tuned

by structural and geometrical manipulations.

Since the pioneering works of Ebbesen [1], many studies have been conducted on the enhanced transmission through
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(EOT in the context of optics and EAT in the context of acoustics) was primary based on resonances of surface waves
(plasmon) and Fabry-Perot resonances, phenomena inherently limited in terms of frequency. More recently, broadband
enhanced transmission has been reported [5, 6]. This new EOT occurs at an optimal "Brewster" angle corresponding
to the impedance matching between the host medium and the metallic grating. Lately, similar enhanced transmission
has been reported in the context of acoustic waves for gratings made of impenetrable (sound hard) material [7, 8].
Although some studies have revealed the influence of the grating geometry [9, 10], structural and geometrical effects
are in general disregarded. More generally, the gratings are composed by metallic layers for which the controlling
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In this Letter, we show that the transmission spectra are accurately described by an analytical expression derived
after homogenization has been applied, Eq. (4). This expression reveals that the transmission spectra can be strongly
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The wave propagation in a grating made of penetrable material can be understood by solving the wave equation in
an inhomogeneous medium written in the generic context of acoustic waves
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Here, the mass density ρ and the bulk modulus B can vary with position r, allowing contrasts between the host medium
(ρ, B) and the grating material (ρ0, B0). Equation (1) can be used with little modification for electromagnetic waves
as for shallow water waves.

To begin with, the scattering of a plane wave p(0) at oblique incidence to a grating with single layer structure (SLG)
is considered (a time dependence e−iωt is understood throughout this letter). The grating has thickness l, with layers
of width bd periodically located with d-spacing (Fig. 1). In the low frequency regime, the grating structure can be
homogenized using the homogenization theory of layered media [11], as used to build metamaterials [12]. It results
that the grating can be replaced by an homogenized slab. The slab, of length l, is made of an homogeneous anisotropic
medium described by the wave equation
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FIG. 1: The geometry of the single layer grating (SLG).

The transmission coefficient t is

t =
4ueikl cos θ

(1 + u)2e−ik�l − (1− u)2eik�l
, (4)

with

u ≡ k cos θ

k�

ρ||
ρ

(5)

being the ratio of the effective impedances and where k� is the effective horizontal wavenumber, given by the dispersion

relation (from Eq. (2))

k2�/ρ|| + k2 sin2 θ/ρ⊥ = ω2/Be. (6)

The expression of t in Eq. (4) gives the standard Fabry-Perot resonances for eik�l = ±1 and the condition of perfect

transmission (EOT) when the matched impedance condition is realized: u = 1. This homogenization has been already

used in the Neumann limit [13] (note also that a non standard homogenization has been proposed in [6], where a more

involved dispersion relation is used for k�). The Neumann limit corresponds to ρ/ρ0 → 0, B/B0 → 0 for which k� � k
and u � cos θ/(1 − b). Thus, the Fabry-Perot resonances are independent of the incidence angle and the matched

impedance condition is obtained at the Brewster angle θ = cos−1(1− b), as reported in experiments performed using

grating made of steel [13] or aluminum [8].

Another limiting case corresponds to the case of water waves, or equivalently the case of p-polarized EM wave in

a non magnetic dielectric grating. In this case, B = B0 and only the contrast in ρ exists. The figure 2(b) shows the

transmission spectrum, T = |t|2, as a function of ρ/ρ0 and as a function of the incidence angle θ, given by Eq. (4). A

validation of this analytical result is done by computing a reference spectrum using full-wave numerical calculations

[14]. Results are reported in Figure 2(a): the difference between the two spectra is less than 3% in the whole range of

incidence angles and contrasts. The Fabry-Perot resonances appear for certain combinations of (ρ/ρ0, θ) that realize

k�l = nπ and, contrary to the Neumann case, these resonances depend on the incidence angle since k� does depend

on θ. We have reported in Fig. 2 the optimal angle θopt realizing the condition of impedance matching, u = 1 in Eq.

(5) using Eqs. (3) and (6)

θopt = cos−1

�
(1− b)ρ0 + bρ

ρ0 + ρ
, (7)

from which the two limits for ρ/ρ0 can be deduced:

�
θopt(ρ/ρ0 → 0) = cos−1

√
1− b,

θopt(ρ/ρ0 → ∞) = cos−1
√
b,

(8)

and these two angles differ from the usual Brewster angle. The perfect transmission is independent of the length l of

the grating, as illustrated in Fig. 3, for a small ρ/ρ0 = 0.05 (gratings of lengths l = 5d and l = d are considered). In

Fig. 3(a), for a small ρ/ρ0, the wave propagating in the grating resembles the effective wave propagating with k� �
k/(1−b), corresponding to a wavenumber inside the structure associated to an angle θeff = cos−1[1+b(1−b)]−1/2 < θopt.
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FIG. 2: Transmission spectrum, T = |t|2, as a function of the mass density contrast, ρ/ρ0, and of the incidence angle, θ. The
grating thickness is l = 20d. The layer width is b = 0.7 and the frequency is kd = 0.5. (a) Full wave calculation, and (b)
analytical result Eq. (4). The dashed line indicates the optimal angle, from Eq. (7).

FIG. 3: Spatial distribution of the wave field (real part) at frequency kd = 1 in a SLG grating with b = 0.7 and for ρ/ρ0 = 0.05,
at optimal angle, θopt � 52.5o.

The robustness of the homogenization for small l values encourages to use further homogenization process for more

complex grating structures, as sketched on Fig. 4. Our two step homogenization is inspired from [16] for composite

metamaterials. Our "composite" grating is made of a succession of layered structures with two different widths (bd
and cd) alternatively stacked next to each other. Each layered structure is first homogenized as previously, resulting in

a one dimensional periodic succession of homogeneous anisotropic stacks of respective lengths aL and (1− a)L. This

latter can be in turn homogenized to form a homogenized anisotropic effective medium, whose effective parameters

are
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(9)

and the inverse of the effective bulk modulus is simply the average of 1/B and 1/B0 with the filling fraction ϕ ≡
[ab+ (1− a)c] (see Supplementary Material). In the following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths b and c, and rectangular inclusion grating (RIG) refers to

the particular case c = 0.
The expression of the transmission in Eq. (4), with Eqs. (5) and (6), is still valid with these new expressions of

ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and the optimal angle depend, now, in addition to the value of

the contrasts and the filling fraction, on the geometry of the grating. For metallic grating, this geometry has been

considered in [9] to enhance the transmission at normal incidence and, in this reference, this was done by decreasing

the filling fraction. In fact, inspecting the Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the optimal angle for

the SLG is always smaller than for any other structure with the same filling fraction.

In the following, we exemplify the effect of the geometry by comparing the transmission spectra of different gratings

with the same filling fraction. First, we consider the limiting case of a rigid material. Fig. 5 shows the transmission
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FIG. 6: Influence of the parameter c on the optimal angle θopt realizing the matching impedance condition u = 1. The (DLG)
varying c keep the same filling fraction ϕ = 0.4, with b = 0.9 and a = (ϕ − c)/(b − c). The symbols refer to the gratings
considered in Fig. 5, (�): the (RI) on Fig.5(a), (◦) the (DLG) on Fig.5(b) and (�) the (SLG) on Fig.5(c).
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FIG. 7: Same representation as in Fig. 5 for non magnetic material (B = B0) with ρ/ρ0 = 50; the same grating geometries are
presented.
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FIG. 8: Same representation as in Fig. 6 for the three gratings of Fig. 7.

decreases when c increases (with constant ϕ and b). Thus, the Fabry-Perot resonances are sent to higher frequencies,
resulting in angle filters working for larger frequency ranges.

In summary, homogenization has been shown to be a very efficient tool to analytically predict the transmission
spectra of subwavelength gratings with complex geometry. The validity of our prediction has been checked by com-
parison with full-wave numerical computations. Also, we extended the study to the case of penetrable gratings. This
is of interest when considering electromagnetic waves propagating in dielectric material and when considering surface
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FIG. 4: Two step homogenization. (a) Geometry of the double layer grating (DLG) including the case of rectangular inclusions

(RIG) for c = 0. (b) The stack composed of two anisotropic layers of respective lengths aL and (1 − a)L. (c) The resulting

homogenized grating of length l.
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FIG. 5: Transmission spectra of three gratings (rigid material), from Eqs. Eq. (4), with Eqs. (5), (6) and (9). The gratings

have the same filling fraction ϕ = 0.4 and different geometries. (a) (RIG) with a = 0.44 and b = 0.9 (c = 0), (b) (DLG) with

a = 0.4, b = 0.9 and c = 0.07 and (d) (SLG) with c = ϕ = 0.4 (a = 0). Otherwise L = 5d and l = 20d.

spectra of three gratings with different geometries and the same filling fraction ϕ = 0.4. The spectra have been
calculated using Eq. (4), with Eqs. (5), (6) and (9) and the agreement with full wave numerical computations (not
reported) is very satisfactory (within few percents). The influence of the geometry on the spectra is visible, both
on the Fabry-Perot resonances and on the impedance matching condition. This is inspected more quantitatively in
Fig. 6 where the optimal angle θopt is plotted as a function of the parameter c. Varying c from 0 to ϕ, the grating
geometry changes from the (RIG) geometry to the simple layer geometry (SLG), experiencing all the geometries of
the (DLG) structures with the same filling fraction ϕ. From Fig. 6, one sees that the optimal angle θopt can be tuned
continuously from about 70◦ to 52◦ by increasing c. The case c = 0 for which θopt � 85◦ is a singular limit. Indeed,
from Eq. (9), the effective mass density changes from ρ/ρ⊥ = (1−a) for c = 0 to ρ/ρ⊥ = 0 for c �= 0 (with ρ/ρ0 → 0).

Next, we consider the case of a non magnetic dielectric material B = B0 (a situation that applies without modi-
fication in the context of surface water waves propagating over an uneven bottom). Fig. 7 shows the transmission
spectra for a grating with ρ/ρ0 = 50. A remarkable fact is the following: Although the (RIG) and the (DLG) gratings
(respectively in Figs. 7(a) and (b)) have very similar geometries, the former grating acts as a low angle pass-filter
while the latter behaves as a narrow-band angle filter (around the optimal angle) and, in both cases, for a wide range
of frequencies. The influence of the grating geometry in terms of the parameter c is shown in Fig. 8: varying c
produces a change in θopt from 20◦ to 50◦ for the same filling fraction ϕ = 0.4. A more subtle effect concerns the
occurence of Fabry Perot resonances. From Eqs. (9) and (6), the effective wavenumber k� is smaller than k and it
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FIG. 2: Transmission spectrum, T = |t|2, as a function of the mass density contrast, ρ/ρ0, and of the incidence angle, θ. The
grating thickness is l = 20d. The layer width is b = 0.7 and the frequency is kd = 0.5. (a) Full wave calculation, and (b)
analytical result Eq. (4). The dashed line indicates the optimal angle, from Eq. (7).
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FIG. 3: Spatial distribution of the wave field (real part) at frequency kd = 1 in a SLG grating with b = 0.7 and for ρ/ρ0 = 0.05,
at optimal angle, θopt � 52.5o.
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and cd) alternatively stacked next to each other. Each layered structure is first homogenized as previously, resulting in

a one dimensional periodic succession of homogeneous anisotropic stacks of respective lengths aL and (1− a)L. This
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and the inverse of the effective bulk modulus is simply the average of 1/B and 1/B0 with the filling fraction ϕ ≡
[ab+ (1− a)c] (see Supplementary Material). In the following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths b and c, and rectangular inclusion grating (RIG) refers to

the particular case c = 0.
The expression of the transmission in Eq. (4), with Eqs. (5) and (6), is still valid with these new expressions of

ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and the optimal angle depend, now, in addition to the value of

the contrasts and the filling fraction, on the geometry of the grating. For metallic grating, this geometry has been

considered in [9] to enhance the transmission at normal incidence and, in this reference, this was done by decreasing

the filling fraction. In fact, inspecting the Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the optimal angle for

the SLG is always smaller than for any other structure with the same filling fraction.

In the following, we exemplify the effect of the geometry by comparing the transmission spectra of different gratings

with the same filling fraction. First, we consider the limiting case of a rigid material. Fig. 5 shows the transmission
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water wave over an uneven bottom. The obtained expression for the transmission spectra allows us to exhibit the geo-

metrical effects, beyond the effect of the filling fraction usually considered. Obviously, the advantage of such analytical

results is to be predictive: the description of gratings with variable contrasts and complex geometries involves more

and more parameters and using direct numerical computations would be too fastiduous to inspect their influences on

the transmission.

Our works open a promising way for the design of gratings with transmission properties controlled by structural

and geometrical manipulations. Potential applications include directive antenna and directive loudspeakers, antinoise

walls, lenses design and water wave focusing.
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