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Enhanced transmission through gratings: Structural and geometrical effects
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(Received 23 May 2013; revised manuscript received 20 August 2013; published 10 September 2013)

Homogenization theory is used to derive the effective properties of gratings with complex subwavelength
structures. Going beyond the effect of the filling fraction, geometrical effects are analyzed using a two-step
homogenization process. An explicit expression for the transmission spectrum is derived, able to predict the
Fabry-Perot resonances and the Brewster angle realizing broadband extraordinary transmission. With the same
filling fraction, one expects from this analytical expression that gratings with different geometries may display
very different transmission properties. This sensitivity to the microstructure geometry is exemplified in the case of
gratings made of hard material and made of dielectric material. The analytical results are shown to be within a few
percentage points as compared to full-wave numerical simulations, paving the way for transmission properties
tuned by structural and geometrical manipulations.

DOI: 10.1103/PhysRevB.88.115416 PACS number(s): 78.67.−n, 43.20.Bi

I. INTRODUCTION

Since the pioneering works of Ebbesen,1 many studies
have been conducted on the enhanced transmission through
subwavelength metallic gratings2 or sound-hard gratings3 (for
a review, see Ref. 4). This extraordinary transmission (EOT
in the context of optics and EAT in the context of acoustics)
was primary based on resonances of surface waves (plasmon)
and Fabry-Perot resonances, phenomena inherently limited
in terms of frequency. More recently, broadband enhanced
transmission has been reported.5–8 This new EOT occurs at
an optimal “Brewster” angle corresponding to the impedance
matching between the host medium and the metallic grating.
Lately, similar enhanced transmission has been reported in the
context of acoustic waves for gratings made of impenetrable
(sound-hard) material.9,10 Although some studies have re-
vealed the influence of the grating geometry,11,12 structural and
geometrical effects are in general disregarded. More generally,
the gratings are composed by metallic layers for which the
controlling parameter is the filling fraction and the attempts to
propose simple analytical results were limited to this case.6–10

In this paper, we consider gratings made of penetrable
material, rigid material being a limiting case. We show that the
transmission spectra are accurately described by an analytical
expression derived after homogenization has been applied,
Eq. (4). This expression reveals that the transmission spectra
can be strongly affected by geometrical effects, beyond the
effect of the filling fraction only. In Sec. II, the case of
single layers is considered. A generalization of the Brewster
angle realizing the optimal transmission is obtained and this
result is confirmed by comparison with direct numerical
calculations. For more complex grating structures, a two-
step homogenization is applied, leading to expressions of
the effective parameters that account for the structural and
geometrical characteristics of the grating, Eq. (9). This is done
in Sec. III. Examples of the geometrical effects on the EOT are

presented in Sec. IV in the nonmagnetic case [no contrast in B
in Eq. (1)] and in the sound-hard case. The obtained results are
validated by comparison with direct numerical calculations.
Technical calculations on the two-step homogenization are
collected in the appendix.

II. EXTRAORDINARY TRANSMISSION BY
A SINGLE-LAYER STRUCTURE

The wave propagation in a grating made of penetrable
material can be understood by solving the wave equation in
an inhomogeneous medium written in the generic context of
acoustic waves

∇ ·
[

1
ρ(r)

∇p(r)
]

+ ω2

B(r)
p(r) = 0. (1)

Here, the mass density ρ and the bulk modulus B can vary
with position r, allowing contrasts between the host medium
(ρ,B) and the grating material (ρ0,B0). Equation (1) can be
used with little modification for electromagnetic waves as for
shallow water waves.

To begin with, the scattering of a plane wave p(0) at oblique
incidence to a grating with single layer structure (SLG) is
considered (a time-dependence e−iωt is understood throughout
this paper). The grating has thickness l, with layers of width
bd periodically located with d spacing (Fig. 1). In the low-
frequency regime, the grating structure can be homogenized
using the homogenization theory of layered media,13 as used to
build metamaterials.14 It results that the grating can be replaced
by an homogenized slab. The slab, of length l, is made of
an homogeneous anisotropic medium described by the wave
equation

∇ ·
[(

1/ρ|| 0
0 1/ρ⊥

)
∇p

]
+ ω2

Be

p = 0, (2)
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FIG. 1. The geometry of the single-layer grating (SLG).

with
1
ρ||

= b

ρ0
+ (1 − b)

ρ
, ρ⊥ = bρ0 + (1 − b)ρ,

(3)
1
Be

= b

B0
+ (1 − b)

B
.

The transmission coefficient t is

t = 4ueikl cos θ

(1 + u)2e−ik‖l − (1 − u)2eik‖l
, (4)

with

u ≡ k cos θ

k‖

ρ||

ρ
(5)

being the ratio of the effective impedances and where k‖ is
the effective horizontal wavenumber, given by the dispersion
relation [from Eq. (2)]:

k2
‖/ρ|| + k2 sin2 θ/ρ⊥ = ω2/Be. (6)

The expression of t in Eq. (4) gives the standard Fabry-
Perot resonances for eik‖l = ±1 and the condition of perfect
transmission (EOT) when the matched impedance condition
is realized: u = 1. This homogenization has been already
used in the Neumann limit15 (note also that a non standard
homogenization has been proposed in Ref. 8, where a more
involved dispersion relation is used for k‖). The Neumann
limit corresponds to ρ/ρ0 → 0, B/B0 → 0, for which k‖ ' k
and u ' cos θ/(1 − b). Thus, the Fabry-Perot resonances are

(a) full wave (b) analytical
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FIG. 2. (Color online) Transmission spectrum, T = |t |2, as a
function of the mass density contrast, ρ/ρ0, and of the incidence
angle, θ . The grating thickness is l = 20d . The layer width is
b = 0.7 and the frequency is kd = 0.5. (a) Full-wave calculation, and
(b) analytical result Eq. (4). The dashed line indicates the optimal
angle, from Eq. (7).

(a) (b)

FIG. 3. (Color online) Spatial distribution of the wave field (real
part) at frequency kd = 1 in a SLG grating with b = 0.7 and for
ρ/ρ0 = 0.05, at optimal angle, θopt ' 52.5◦.

independent of the incidence angle and the matched impedance
condition is obtained at the Brewster angle θ = cos−1(1 − b),
as reported in experiments performed using grating made of
steel15 or aluminum.10

Another limiting case corresponds to the case of water
waves, or equivalently the case of p-polarized EM wave in a
nonmagnetic dielectric grating. In this case, B = B0 and only
the contrast in ρ exists. Figure 2(b) shows the transmission
spectrum, T = |t |2, as a function of ρ/ρ0 and as a function of
the incidence angle θ , given by Eq. (4). A validation of this
analytical result is done by computing a reference spectrum
using full-wave numerical calculations.16 Results are reported
in Fig. 2(a): the difference between the two spectra is less
than 3% in the whole range of incidence angles and contrasts.
The Fabry-Perot resonances appear for certain combinations of
(ρ/ρ0, θ ) that realize k‖l = nπ and, contrary to the Neumann
case, these resonances depend on the incidence angle since k‖
does depend on θ . We have reported in Fig. 2 the optimal angle
θopt realizing the condition of impedance matching, u = 1 in
Eq. (5) using Eqs. (3) and (6),

θopt = cos−1

√
(1 − b)ρ0 + bρ

ρ0 + ρ
, (7)

(a)
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FIG. 4. Two-step homogenization. (a) Geometry of the double
layer grating (DLG) including the case of rectangular inclusions
(RIG) for c = 0. (b) The stack composed of two anisotropic layers of
respective lengths aL and (1 − a)L. (c) The resulting homogenized
grating of length l.
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from which the two limits for ρ/ρ0 can be deduced:

θopt(ρ/ρ0 → 0) = cos−1
√

1 − b,
(8)

θopt(ρ/ρ0 → ∞) = cos−1
√

b,

and these two angles differ from the usual Brewster angle.
The perfect transmission is independent of the length l of
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FIG. 5. (Color online) Transmission spectra of three gratings
(rigid material), from Eq. (4), with Eqs. (5), (6), and (9). The gratings
have the same filling fraction ϕ = 0.4 and different geometries.
(a) (RIG) with a = 0.44 and b = 0.9 (c = 0); (b) (DLG) with a = 0.4,
b = 0.9, and c = 0.07; and (d) (SLG) with c = ϕ = 0.4 (a = 0).
Otherwise L = 5d and l = 20d .

the grating, as illustrated in Fig. 3, for a small ρ/ρ0 = 0.05
(gratings of lengths l = 5d and l = d are considered). In
Fig. 3(a), for a small ρ/ρ0, the wave propagating in the grating
resembles the effective wave propagating with k‖ ' k/(1 − b),
corresponding to a wavenumber inside the structure associated
to an angle θ eff = cos−1[1 + b(1 − b)]−1/2 < θopt.

III. THE TWO-STEP HOMOGENIZATION

The robustness of the homogenization for small l values
encourages the use of a further homogenization process for
more complex grating structures, as sketched on Fig. 4.
Our two-step homogenization is inspired from Ref. 17 for
composite metamaterials. Our “composite” grating is made of
a succession of layered structures with two different widths
(bd and cd) alternatively stacked next to each other. Each
layered structure is first homogenized as previously, resulting
in a one-dimensional periodic succession of homogeneous
anisotropic stacks of respective lengths aL and (1 − a)L. This
latter can be in turn homogenized to form a homogenized
anisotropic effective medium, whose effective parameters are

ρ‖

ρ
= a

bρ/ρ0 + 1 − b
+ 1 − a

cρ/ρ0 + 1 − c
,

ρ

ρ⊥
= a

bρ0/ρ + 1 − b
+ 1 − a

cρ0/ρ + 1 − c
, (9)

B

Be

= [ab + (1 − a)c]
B

B0
+ [1 − ab − (1 − a)c],

and the inverse of the effective bulk modulus is simply the
average of 1/B and 1/B0 with the filling fraction ϕ ≡ [ab +
(1 − a)c] (see Appendix). In the following, we call double
layer grating (DLG) the gratings formed by the succession
of two layers of different widths b and c, and rectangular
inclusion grating (RIG) refers to the particular case c = 0.

The expression of the transmission in Eq. (4), with Eqs. (5)
and (6), is still valid with these new expressions of ρ‖, ρ⊥,
and Be, so that the Fabry-Perot resonances and the optimal
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FIG. 6. (Color online) Influence of the parameter c on the optimal
angle θopt realizing the matching impedance condition u = 1. The
(DLG) varying c keep the same filling fraction ϕ = 0.4, with b = 0.9
and a = (ϕ − c)/(b − c). The symbols refer to the gratings described
in the legend of Fig. 5, (!): the (RI) on Fig. 5(a), (◦) the (DLG) on
Fig. 5(b), and (") the (SLG) on Fig. 5(c).
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angle depend, now, in addition to the value of the contrasts
and the filling fraction, on the geometry of the grating. For
metallic grating, this geometry has been considered in Ref. 11
to enhance the transmission at normal incidence and, in this
reference, this was done by decreasing the filling fraction. In
fact, inspecting the Neumann limit (ρ/ρ0,B/B0 → 0), one can
see that the optimal angle for the SLG is always smaller than
for any other structure with the same filling fraction.
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FIG. 7. (Color online) Same representation as described in the
legend of Fig. 5 for nonmagnetic material (B = B0) with ρ/ρ0 = 50;
the same grating geometries are presented.

IV. GEOMETRICAL EFFECTS ON THE
EXTRAORDINARY TRANSMISSION

In the following, we exemplify the effect of the geometry
by comparing the transmission spectra of different gratings
with the same filling fraction.

First, we consider the limiting case of a rigid material.
Figure 5 shows the transmission spectra of three gratings
with different geometries and the same filling fraction ϕ =
0.4. The spectra have been calculated using Eq. (4), with
Eqs. (5), (6), and (9) and the agreement with full-wave
numerical computations (not reported) is very satisfactory
(within few percents). The influence of the geometry on the
spectra is visible, both on the Fabry-Perot resonances and on
the impedance matching condition. This is inspected more
quantitatively in Fig. 6, where the optimal angle θopt is plotted
as a function of the parameter c. Varying c from 0 to ϕ, the
grating geometry changes from the RIG geometry to the SLG,
experiencing all the geometries of the DLG structures with the
same filling fraction ϕ. From Fig. 6, one sees that the optimal
angle θopt can be tuned continuously from about 70◦ to 52◦ by
increasing c. The case c = 0 for which θopt ' 85◦ is a singular
limit. Indeed, from Eq. (9), the effective mass density changes
from ρ/ρ⊥ = (1 − a) for c = 0 to ρ/ρ⊥ = 0 for c += 0 (with
ρ/ρ0 → 0).

Next, we consider the case of a nonmagnetic dielectric
material B = B0 (a situation that applies without modification
in the context of surface water waves propagating over an
uneven bottom). Figure 7 shows the transmission spectra for
a grating with ρ/ρ0 = 50. A remarkable fact is the following:
Although the RIG and the DLG gratings [in Figs. 7(a) and 7(b),
respectively] have very similar geometries, the former grating
acts as a low-angle pass filter while the latter behaves as a
narrow-band angle filter (around the optimal angle) and, in
both cases, for a wide range of frequencies. The influence of
the grating geometry in terms of the parameter c is shown in
Fig. 8: varying c produces a change in θopt from 20◦ to 50◦ for
the same filling fraction ϕ = 0.4. A more subtle effect concerns
the occurence of Fabry-Perot resonances. From Eqs. (9)
and (6), the effective wavenumber k‖ is smaller than k and it
decreases when c increases (with constant ϕ and b). Thus, the
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FIG. 8. (Color online) Same representation as described in the
legend of Fig. 6 for the three gratings of Fig. 7.
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Fabry-Perot resonances are sent to higher frequencies, result-
ing in angle filters working for larger frequency ranges.

V. CONCLUSIONS

In summary, homogenization has been shown to be a
very efficient tool to analytically predict the transmission
spectra of subwavelength gratings with complex geometry.
The validity of our prediction has been checked by comparison
with full-wave numerical computations. Also, we extended the
study to the case of penetrable gratings. This is of interest when
considering electromagnetic waves propagating in dielectric
material and when considering surface water wave over an
uneven bottom. The obtained expression for the transmission
spectra allows us to exhibit the geometrical effects, beyond
the effect of the filling fraction usually considered. Obviously,
the advantage of such analytical results is to be predictive: the
description of gratings with variable contrasts and complex
geometries involves more and more parameters and using
direct numerical computations would be too fastidious to
inspect their influences on the transmission.

Our works open a promising way for the design of
gratings with transmission properties controlled by structural
and geometrical manipulations. Potential applications include
directive antenna and directive loudspeakers, antinoise walls,
lenses design, and water-wave focusing.
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APPENDIX: THE TWO-STEP HOMOGENIZATION

We report the main steps leading to Eq. (9). To do that,
we first use classical homogenization of layered medium (1)

with horizontal layers (Fig. 1). We get, for layers of filling
fraction b

∇ ·
[(

1/ρ
(b)
|| 0

0 1/ρ
(b)
⊥

)

∇p

]

+ ω2

B
(b)
e

p = 0, (A1)

and we use, for ρ and B depending on the vertical direction
(say y) 1/ρ

(b)
|| = 〈1/ρ(y)〉, ρ

(b)
⊥ = 〈ρ(y)〉 and 1/B(b)

e =
〈1/Be(y)〉, where 〈f (y)〉 ≡ (1/d)

∫ d

0 dy f (y) denotes the spa-
tial average.

1

ρ
(b)
||

= b

ρ0
+ (1 − b)

ρ
, ρ

(b)
⊥ = bρ0 + (1 − b)ρ,

(A2)
1

B
(b)
e

= b

B0
+ (1 − b)

B
.

The same result applies for a medium (2) made of horizontal
layers of filling fractions c and the resulting effective param-
eters are ρ

(c)
|| , ρ

(c)
⊥ and B(c)

e . The DLG structure consists in a
succession of vertical layers of medium (1) and medium (2), as
shown on Fig. 4(b). This DLG structure can be homogenized,
considering the filling fraction a for the medium (1) [and
(1 − a) for the medium (b)]. The structure has now effective
parameters varying along the horizontal direction (say x), so
that the homogenization of the layered structure is such that
ρ|| = 〈ρ||(x)〉, 1/ρ⊥ = 〈1/ρ⊥(x)〉, and 1/Be = 〈1/Be(x)〉.

We get a resulting homogenized anisotropic structure [as in
Eq. (3)], with

ρ|| = aρ
(b)
|| + (1 − a)ρ(c)

|| ,
1
ρ⊥

= a

ρ
(b)
⊥

+ (1 − a)

ρ
(c)
⊥

,

(A3)
1
Be

= a

B
(b)
e

+ (1 − a)

B
(c)
e

,

leading to the expressions in Eq. (9).
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