ONS'13, Capri, Italy, 12-14 September 2013

Coupled Wave Analysis using a Multimodal Admittance

Simon FÉLIX^a • Jean-François MERCIER^b • Agnès MAUREL^c

- ^a LAUM, CNRS, Université du Maine, Le Mans, France
- ^b Poems, CNRS, ENSTA ParisTech, INRIA, Palaiseau, France
- ^c Institut Langevin, CNRS, ESPCI ParisTech, Paris, France

$$\nabla \cdot \left(\frac{1}{a(\mathbf{r})} \nabla u\right) + b(\mathbf{r}) \omega^2 u = 0$$

$$\nabla \cdot \left(\frac{1}{\mu(\mathbf{r})} \nabla E\right) + \epsilon(\mathbf{r}) \omega^2 E = 0$$
s-polarized

$$\nabla \cdot \left(\frac{1}{\epsilon(\mathbf{r})} \nabla H\right) + \mu(\mathbf{r}) \omega^2 H = 0$$
p-polarized

$$abla \cdot \left(rac{1}{a(\mathbf{r})}
abla u
ight) + b(\mathbf{r}) \omega^2 u = 0$$

Multimodal formulation $u = \sum_{n \in \mathbb{Z}} u_n(x)\varphi_n(y)$

PENETRABLE GRATING

$$\nabla \cdot \left(\frac{1}{a(\mathbf{r})} \nabla u\right) + b(\mathbf{r}) \omega^2 u = 0$$

$$\nabla \cdot \left(\frac{1}{a(\mathbf{r})} \nabla u\right) + b(\mathbf{r}) \omega^2 u = 0$$
Multimodal formulation

$$u = \sum_{n \in \mathbb{Z}} u_n(x) \varphi_n(y)$$

$$u(x, h) = u(x, 0) e^{j\beta h}$$

$$(\epsilon, \mu)$$

$$h$$

$$(\epsilon, \mu)$$

$$h$$

$$(\varepsilon, \mu)$$

$$(\varepsilon,$$

R is not small if

i)
$$k_n = 0$$

 $R_{m \neq n,0} \simeq -\frac{z_{m0}}{z_{nn}} \rightarrow 0$
 $R_{n0} \simeq -\frac{z_{n0}}{z_{nn}} \rightarrow \mathcal{O}(1)$

Wood anomaly associated with the Rayleigh wavenumber k_n

R is not small if

(i)
$$k_n = 0$$

 $\mathbb{R}_{m \neq n,0} \simeq -\frac{\mathbb{Z}_{m0}}{\mathbb{Z}_{nn}} \to 0$

$$\mathsf{R}_{n0}\simeq -rac{\mathsf{z}_{n0}}{\mathsf{z}_{nn}}
ightarrow \mathcal{O}(1)$$

Wood anomaly associated with the Rayleigh wavenumber k_n

(ii)
$$1 + z_{nn} = 0$$

 $\mathbb{R}_{m \neq n,0} \simeq - \frac{\mathbb{Z}_{m0}}{\sum\limits_{i \neq n} \mathbb{Z}_{ii}} \rightarrow \mathcal{O}(1)$

Wood anomaly associated with a resonance wavenumber

Inspecting the form of z_{m0} and z_{mm} shows that

• for a contrast in *a* only, no anomalies are expected ;

• for a contrast in **b** only,

- if $b < b_0$: Rayleigh anomaly only ;

- if $b > b_0$: resonant anomaly, preceding the Rayleigh anomaly \rightarrow max-min Fano type resonance

ONS'13, Capri, Italy, 12-14 September 2013

Enhanced transmission through gratings: Compositional and geometrical effects

Agnès MAUREL^a • Jean-François MERCIER^b • Simon FÉLIX^c

- ^a Institut Langevin, CNRS, ESPCI ParisTech, Paris, France
- ^b Poems, CNRS, ENSTA ParisTech, INRIA, Palaiseau, France
- ^c LAUM, CNRS, Université du Maine, Le Mans, France

Coupled Wave Analysis using a Multimodal Admittance

Simon FÉLIX

LAUM, CNRS, Université du Maine, Le Mans, France simon.felix@univ-lemans.fr

Jean-François MERCIER

Poems, CNRS, ENSTA ParisTech, INRIA, Palaiseau, France jean-francois.mercier@ensta-paristech.fr

Agnès MAUREL

Institut Langevin, CNRS, ESPCI ParisTech, Paris, France agnes.maurel@espci.fr

