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Figure 2 Resonant transmission of sound through a single subwavelength
aperture. Normalized-to-area transmittance (red curve) versus wavelength for a
normal incident acoustic plane wave propagating in air and impinging at a single slit

(a= 5mm) drilled in a solid slab. The aperture is flanked by 10 grooves

(d= 60mm,h= 9mm) on a solid of thickness w= 22mm. The transmission

spectrum for a single slit is also shown (blue curve).

provide the necessary parallel momentum to allow the coupling of

an incident acoustic plane wave with the ASW and vice versa.

Resonant transmission of sound in periodic acoustic structures

aided by the excitation of localized modes has been analysed

before
8,9

. Here, we use the properties of the geometry-induced

ASWs to enhance the transmission through a single subwavelength

aperture and to collimate sound waves. As shown below, these two

phenomena can be achieved by placing finite arrays of indentations

around the aperture (see Fig. 1b). To calculate the transmission

properties of this structure, we have applied a numerical method

on the basis of a modal expansion of the pressure field. By applying

the matching conditions (continuity of the pressure only at the

openings and continuity of the velocity everywhere), it is possible to

extract the pressure and velocity fields in all space. Figure 2 shows

the calculated normalized-to-area transmittance versus wavelength

for an incident acoustic plane wave through a 1D slit flanked

by periodic arrays of 10 grooves to both its left and right. A

resonant peak appearing at a wavelength close to the period of the

array clearly dominates the spectrum. For sound of that particular

wavelength, the transmitted intensity is 70 times larger than the

one impinging directly at the slit opening. This means that a

significant portion (30%) of the intensity incident on the finite

array of grooves is collected by the ASW and funnelled through the

central slit.

Accompanying the resonant transmission, the sound wave

at resonance emerges from the structure exciting an ASW (the

fingerprints of this running surface wave are clearly seen in Fig. 3b).

This ASW is then scattered by the grooves and the interference

between these scattered waves and the sound wave that was just

diffracted by the slit results in the emergence of the strongly

collimated beam in the far-field region (see Fig. 3a). Note that

in contrast to previous studies achieving lateral compression or

collimation of ASWs, we use surface waves to collimate an acoustic

plane wave that impinges perpendicular to the structure.

The fact that both enhanced transmission and collimation

phenomena occur also in acoustics opens up many exciting

possibilities in the design of new acoustic devices. We foresee

that our finding will lead to applications for mechanical
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Figure 3 Collimation of sound assisted by ASWs. a, Pressure-field-amplitude
spatial pattern in the xz plane evaluated at resonance. The collimated beam has an

elongated focus in the far-field region. b, Magnified view of panel a showing the
region near the output side of the slit, highlighting the excitation of an ASW.

filtering, in non-destructive testing of materials
10

and in medical

ultrasound instrumentation
11

.
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Frequency broadband EOT reported first by Huang, Peng and Fan,PRL 105 243901 (2010)

incident wave satisfies d(1þ sinh)¼ nk (n¼ 1, 2, 3,…). For
normal incidence (h¼ 0#), the transmission curve is shown in
Fig. 1(c), where at the wavelength k¼ 7.33mm (i.e.,

x¼ 46.8 kHz), the main transmission peak corresponds to the
well-known Fabry-Perot (FP) resonance peak.32 There are
two factors affecting the FP resonance. The first is the wave-
guide resonance in the slits, which is independent of the inci-
dent angle h; the other is the coupling of waveguide modes
and the diffractive waves along the grating surfaces. When h
is increased to 45# in Fig. 1(d), the FP peak still exists but has
a red shift. The underlying mechanism is that with the inci-
dent angle changed, the diffractive waves are affected, which
further influence the Wood’s anomalies and the FP resonance
peaks.

When the incident angle h increases to 72#, as shown in
Fig. 1(e), some interesting phenomena occur. (i) All the FP res-
onant peaks disappear. (ii) The transmission curve becomes
nearly flat at multiple frequency bands separated by theWood’s
anomalies as marked by different gray scales in Fig. 1(e). Espe-
cially in the long wavelength region (k¼ 8.8$19mm, or
x¼ 18$39kHz), which is above the firstWood’s anomaly, the
transmission is nearly 100%, and the grating is almost transpar-
ent for all the long wavelengths. In the shorter wavelength
region between the first and the secondWood’s anomalies (i.e.,
k¼ 4.34$8.8mm, or x¼ 39$79 kHz), the transmission
presents a lower-level flat curve with the efficiency being about
50%. The decay of the transmission originates from that
fact that the first-order diffraction wave becomes non-
evanescent in this range. For even shorter wavelength region
(below the second Wood’s anomaly, i.e., k¼ 3.81$4.34mm,
or x¼ 79$90 kHz), the transmission curve still keeps flat, but
the efficiency further decreases to about 25% due to multiple-
order diffractions. However, with h further increased to 82#,
the transmission dramatically drops (Fig. 1(f)). Therefore, we
have experimentally demonstrated that metallic gratings can
become highly transparent and antireflective for acoustic waves
within multiple broadbands at optimal oblique incidence.

In order to study the influence of the grating thickness
on the transmission for both normal- and oblique-incidence
geometries, we examined another grating (sample II) with
the same lattice parameter but with a different thickness
h¼ 2.0mm. The transmission spectra of this grating are
shown in Figs. 2(c) and 2(d). For comparison, the spectra of
the first grating (sample I) in Figs. 1(c) and 1(e) were replot-
ted in Figs. 2(a) and 2(b) in terms of the frequency. As

FIG. 1. (a) A schematic picture of the grating. (b) The optical image of an ex-
perimental steel grating, where the period and the width of the slits are
d¼ 4.5mm and w¼ 1.4mm, respectively, and the thickness of the grating is
h¼ 2.76mm. (c)–(f) show the transmission spectra at different incident
angles from the experiments (black curve), the finite-element simulation (red
curve), and the analytical RCWA method (blue curve). Herein, the Wood’s
anomalies are marked by blue arrows. Three different gray-scale regions in
Fig. 1(e) correspond to three broadband regions for flat transmission.

FIG. 2. Transmission spectra of two sam-
ples at both normal incidence and optimal
incidence. The left panel shows the trans-
mission spectra of sample I (the period of
the slits d¼ 4.5mm, the width of the slit
w¼ 1.4mm, and the thickness h¼ 2.76
mm) at different incident angles: (a)
h¼ 0# and (b) h¼ 72#. The right panel
shows the transmission spectra of sample
II (d¼ 4.5mm, w¼ 1.4mm, and h¼ 2.0
mm) at different incident angles: (c)
h¼ 0# and (d) h¼ 72#.
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that acoustic energy collectors and sensors can be placed inside the
apertures without harming the impedance matching and funneling
at the surface.What is going on inside the apertures doesn’t affect the
collection efficiency as it would for a resonant mechanism! In addi-
tion, the waveguides can reroute the acoustic energy into a single
waveguide for energy collection onto one device instead of many. By
tapering the cross section area of the waveguides with depth into the

metamaterial it is possible to change the open area of the screen for
the incident and exit surfaces independently, thereby achieving
impedance matching to two acoustic media with different values of
impedance.
In order to verify the basic prediction of acoustic impedance

matching to air, we have fabricated 1-D and 2-D subwavelength
aperture arrays in a thick aluminum plate and measured the trans-
mission as a function of incidence angle (q) and acoustic frequency.
Acoustic measurements were performed in an acoustic anechoic

chamber in the frequency range 4-20 kHz: a sketch of the experi-
mental set-up and pictures of the samples are shown in Figure 2. The
sample was placed on a rotational stage and the sound pressure
transmission measurements were performed from normal incidence
to nearly grazing angle. In Fig. 3 we show the experimental results for
the case of a 1-D structure and compare them with our theoretical
homogenized model (2–4).
The upper panel of Fig. 3 corresponds to the 1-D aluminum sam-

ple with dimensions l525.4 mm, d54.275 mm andw51.1 mm.Our
analytical model captures with remarkable accuracy the fundamental
physical mechanisms behind the transmission resonances of the
grating: at normal incidence (q50), typical EAT peaks based on
FP resonances are visible. These resonances are the horizontal bands
in the plots, since this EAT mechanism is inherently narrow-band,
but weakly dependent on the incidence angle. In contrast, the intro-
mission angle transmission arises as a vertical band, confirming weak
dependence on frequency, but selectivity to the transmission angle.
One may wonder how narrow can the slits be made and still realize
high, ultra-broadband transmission at the intromission angle, con-

Figure 2 | Experimental set-up. Schematic drawing of the experimental
set-up and images of the 1-D and 2-D metamaterials.

Figure 3 | Transmittance for the 1-D samples. Angular power transmission spectra for two different 1-D gratings: (upper panel) l525.4 mm,
d54.275 mm and w51.1 mm; (lower panel) l525.4 mm d53.575 mm and w5400 mm. Transmission bands independent of angle are due to resonant
Fabry-Perot modes and transmission bands independent of frequency are due to the non-resonant intromission process. Open area of the screen for the
two cases are 26% (upper) and 11% (lower).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 340 | DOI: 10.1038/srep00340 3
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Grating made of simple layers
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FIG. 1: The geometry of the single layer grating (SLG).
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The transmission coefficient t is

t =
4ueikl cos θ

(1 + u)2e−ik�l − (1− u)2eik�l
, (4)

with

u ≡ k cos θ

k�

ρ||
ρ

(5)

being the ratio of the effective impedances and where

k� is the effective horizontal wavenumber, given by the

dispersion relation (from Eq. (A1))

k2�/ρ|| + k2 sin2 θ/ρ⊥ = ω2/Be. (6)

The expression of t in Eq. (4) gives the standard Fabry-

Perot resonances for eik�l = ±1 and the condition of per-

fect transmission (EOT) when the matched impedance

condition is realized: u = 1. This homogenization has

been already used in the Neumann limit [13] (note also

that a non standard homogenization has been proposed

in [6], where a more involved dispersion relation is used

for k�). The Neumann limit corresponds to ρ/ρ0 → 0,
B/B0 → 0 for which k� � k and u � cos θ/(1− b). Thus,

the Fabry-Perot resonances are independent of the in-

cidence angle and the matched impedance condition is

obtained at the Brewster angle θ = cos−1(1 − b), as re-

ported in experiments performed using grating made of

steel [13] or aluminum [8].

Another limiting case corresponds to the case of water

waves, or equivalently the case of p-polarized EM wave in

a non magnetic dielectric grating. In this case, B = B0

and only the contrast in ρ exists. The figure 2(b) shows

the transmission spectrum, T = |t|2, as a function of

ρ/ρ0 and as a function of the incidence angle θ, given by

Eq. (4). A validation of this analytical result is done by

computing a reference spectrum using full-wave numeri-

cal calculations [14]. Results are reported in Figure 2(a):

the difference between the two spectra is less than 3% in

the whole range of incidence angles and contrasts. The

FIG. 2: Transmission spectrum, T = |t|2, as a function of the
mass density contrast, ρ/ρ0, and of the incidence angle, θ.
The grating thickness is l = 20d. The layer width is b = 0.7
and the frequency is kd = 0.5. (a) Full wave calculation, and
(b) analytical result Eq. (4). The dashed line indicates the
optimal angle, from Eq. (7).

Fabry-Perot resonances appear for certain combinations

of (ρ/ρ0, θ) that realize k�l = nπ and, contrary to the

Neumann case, these resonances depend on the incidence

angle since k� does depend on θ. We have reported in

Fig. 2 the optimal angle θopt realizing the condition of

impedance matching, u = 1 in Eq. (5) using Eqs. (3)

and (6)

θopt = cos−1

�
(1− b)ρ0 + bρ

ρ0 + ρ
, (7)

from which the two limits for ρ/ρ0 can be deduced:

�
θopt(ρ/ρ0 → 0) = cos−1

√
1− b,

θopt(ρ/ρ0 → ∞) = cos−1
√
b,

(8)

and these two angles differ from the usual Brewster angle.

The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the

structure associated to an angle θeff = cos−1[1 + b(1 −
b)]−1/2 < θopt.
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(b) analytical result Eq. (4). The dashed line indicates the
optimal angle, from Eq. (7).
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cal calculations [14]. Results are reported in Figure 2(a):
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the whole range of incidence angles and contrasts. The
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Fabry-Perot resonances appear for certain combinations

of (ρ/ρ0, θ) that realize k�l = nπ and, contrary to the

Neumann case, these resonances depend on the incidence

angle since k� does depend on θ. We have reported in

Fig. 2 the optimal angle θopt realizing the condition of

impedance matching, u = 1 in Eq. (5) using Eqs. (3)

and (6)
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The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the

structure associated to an angle θeff = cos−1[1 + b(1 −
b)]−1/2 < θopt.
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The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the
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k�l = nπ → Fabry-Perot resonances,
u = 1 → frequency broadband EOT
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B/B0 → 0 for which k� � k and u � cos θ/(1− b). Thus,
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obtained at the Brewster angle θ = cos−1(1 − b), as re-
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Eq. (4). A validation of this analytical result is done by
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The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the
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0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the

structure associated to an angle θeff = cos−1[1 + b(1 −
b)]−1/2 < θopt.

cos−1
√
1− b

Neumann limit ρ/ρ0 → ∞, B/B0 → ∞

k� → k, and u → cos θ/(1− b)

FP resonances independent of θ
EOT occurs at the Brewster angle θ = cos

−1
(1− b)

2

...

...

(ρ0, B0)

(ρ, B)

bd d

l

p(0)
k

θ

tp(0)

FIG. 1: The geometry of the single layer grating (SLG).

an homogenized slab. The slab, of length l, is made of an

homogeneous anisotropic medium described by the wave

equation

∇ ·
��

1/ρ|| 0
0 1/ρ⊥

�
∇p

�
+

ω2

Be
p = 0, (2)

with






1

ρ||
=

b

ρ0
+

(1− b)

ρ
,

ρ⊥ = bρ0 + (1− b)ρ,
1

Be
=

b

B0
+

(1− b)

B
.

(3)

The transmission coefficient t is

t =
4ueikl cos θ

(1 + u)2e−ik�l − (1− u)2eik�l
, (4)

with

u ≡ k cos θ

k�

ρ||
ρ

(5)

being the ratio of the effective impedances and where

k� is the effective horizontal wavenumber, given by the

dispersion relation (from Eq. (A1))

k2�/ρ|| + k2 sin2 θ/ρ⊥ = ω2/Be. (6)

The expression of t in Eq. (4) gives the standard Fabry-

Perot resonances for eik�l = ±1 and the condition of per-

fect transmission (EOT) when the matched impedance

condition is realized: u = 1. This homogenization has

been already used in the Neumann limit [13] (note also

that a non standard homogenization has been proposed

in [6], where a more involved dispersion relation is used

for k�). The Neumann limit corresponds to ρ/ρ0 → 0,
B/B0 → 0 for which k� � k and u � cos θ/(1− b). Thus,

the Fabry-Perot resonances are independent of the in-

cidence angle and the matched impedance condition is

obtained at the Brewster angle θ = cos−1(1 − b), as re-

ported in experiments performed using grating made of

steel [13] or aluminum [8].

Another limiting case corresponds to the case of water

waves, or equivalently the case of p-polarized EM wave in

a non magnetic dielectric grating. In this case, B = B0

and only the contrast in ρ exists. The figure 2(b) shows

the transmission spectrum, T = |t|2, as a function of

ρ/ρ0 and as a function of the incidence angle θ, given by

Eq. (4). A validation of this analytical result is done by

computing a reference spectrum using full-wave numeri-

cal calculations [14]. Results are reported in Figure 2(a):

the difference between the two spectra is less than 3% in

the whole range of incidence angles and contrasts. The

FIG. 2: Transmission spectrum, T = |t|2, as a function of the
mass density contrast, ρ/ρ0, and of the incidence angle, θ.
The grating thickness is l = 20d. The layer width is b = 0.7
and the frequency is kd = 0.5. (a) Full wave calculation, and
(b) analytical result Eq. (4). The dashed line indicates the
optimal angle, from Eq. (7).

Fabry-Perot resonances appear for certain combinations

of (ρ/ρ0, θ) that realize k�l = nπ and, contrary to the
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of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
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Fabry-Perot resonances appear for certain combinations

of (ρ/ρ0, θ) that realize k�l = nπ and, contrary to the

Neumann case, these resonances depend on the incidence

angle since k� does depend on θ. We have reported in

Fig. 2 the optimal angle θopt realizing the condition of

impedance matching, u = 1 in Eq. (5) using Eqs. (3)

and (6)
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√
b,

(8)

and these two angles differ from the usual Brewster angle.

The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the

structure associated to an angle θeff = cos−1[1 + b(1 −
b)]−1/2 < θopt.

and

t =
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(1 + u)2e−ik�l − (1− u)2eik�l
,
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Appendix A: The two step homogenization

We report the main steps leading to Eq. (9). To
do that, we first use classical homogenization of layered
medium (1) with horizontal layers (Fig. 1). We get, for
layers of filling fraction b

∇ ·
��

1/ρ(b)|| 0

0 1/ρ(b)⊥

�
∇p

�
+

ω2

B(b)
e

p = 0, (A1)

and we use, for ρ and B depending on the vertical di-
rection (say y) 1/ρ(b)|| = �1/ρ(y)�, ρ(b)⊥ = �ρ(y)� and

1/B(b)
e = �1/Be(y)�, where �f(y)� ≡ (1/d)

� d
0 dy f(y)

denotes the spatial average.
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(A2)

The same result applies for a medium (2) made of hor-
izontal layers of filling fractions c and the resulting ef-
fective parameters are ρ(c)|| , ρ(c)⊥ and B(c)

e . The DLG
structure consists in a succession of vertical layers of
medium (1) and medium (2), as shown on Fig. 4(b).
This DLG structure can be homogenized, considering the
filling fraction a for the medium (1) (and (1− a) for the
medium (b)). The structure has now effective parame-
ters varying along the horizontal direction (say x), so that
the homogenization of the layered structure is such that
ρ|| = �ρ||(x)�, 1/ρ⊥ = �1/ρ⊥(x)� and 1/Be = �1/Be(x)�.

We get a resulting homogenized anisotropic structure
(as in Eq. (3)), with


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,
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(A3)

leading to the expressions in Eq. (9).
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FIG. 3: Spatial distribution of the wave field (real part) at
frequency kd = 1 in a SLG grating with b = 0.7 and for
ρ/ρ0 = 0.05, at optimal angle, θopt � 52.5o.

III. THE TWO-STEP HOMOGENIZATION

The robustness of the homogenization for small l val-

ues encourages to use further homogenization process for

more complex grating structures, as sketched on Fig. 4.

Our two step homogenization is inspired from [16] for

composite metamaterials. Our "composite" grating is

made of a succession of layered structures with two dif-

ferent widths (bd and cd) alternatively stacked next to

each other. Each layered structure is first homogenized

as previously, resulting in a one dimensional periodic suc-

cession of homogeneous anisotropic stacks of respective

lengths aL and (1 − a)L. This latter can be in turn ho-

mogenized to form a homogenized anisotropic effective

medium, whose effective parameters are






ρ�
ρ

=
a

bρ/ρ0 + 1− b
+

1− a

cρ/ρ0 + 1− c
,

ρ

ρ⊥
=

a

bρ0/ρ+ 1− b
+

1− a

cρ0/ρ+ 1− c
,

B

Be
= [ab+ (1− a)c]

B

B0
+ [1− ab− (1− a)c] ,

(9)

and the inverse of the effective bulk modulus is simply

the average of 1/B and 1/B0 with the filling fraction

ϕ ≡ [ab+ (1− a)c] (see Supplementary Material). In the

following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths

b and c, and rectangular inclusion grating (RIG) refers

to the particular case c = 0.
The expression of the transmission in Eq. (4), with

Eqs. (5) and (6), is still valid with these new expressions

of ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and

the optimal angle depend, now, in addition to the value

of the contrasts and the filling fraction, on the geometry

of the grating. For metallic grating, this geometry has

been considered in [9] to enhance the transmission at

normal incidence and, in this reference, this was done

by decreasing the filling fraction. In fact, inspecting the

Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the

optimal angle for the SLG is always smaller than for any

other structure with the same filling fraction.

(a)
...

...

· · ·

aL

L

bd
d cd

�

(b)

· · · �
(c) l

FIG. 4: Two step homogenization. (a) Geometry of the dou-
ble layer grating (DLG) including the case of rectangular in-
clusions (RIG) for c = 0. (b) The stack composed of two
anisotropic layers of respective lengths aL and (1 − a)L. (c)
The resulting homogenized grating of length l.

IV. GEOMETRICAL EFFECTS ON THE
EXTRAORDINARY TRANSMISSION

In the following, we exemplify the effect of the geom-

etry by comparing the transmission spectra of different

gratings with the same filling fraction.

First, we consider the limiting case of a rigid mate-

rial. Fig. 5 shows the transmission spectra of three

gratings with different geometries and the same filling

fraction ϕ = 0.4. The spectra have been calculated using

Eq. (4), with Eqs. (5), (6) and (9) and the agreement

with full wave numerical computations (not reported) is

very satisfactory (within few percents). The influence

of the geometry on the spectra is visible, both on the

Fabry-Perot resonances and on the impedance matching

condition. This is inspected more quantitatively in Fig.

6 where the optimal angle θopt is plotted as a function

of the parameter c. Varying c from 0 to ϕ, the grating

geometry changes from the (RIG) geometry to the simple

layer geometry (SLG), experiencing all the geometries of

the (DLG) structures with the same filling fraction ϕ.

From Fig. 6, one sees that the optimal angle θopt can be

tuned continuously from about 70◦ to 52◦ by increasing

c. The case c = 0 for which θopt � 85◦ is a singular limit.

Indeed, from Eq. (9), the effective mass density changes

from ρ/ρ⊥ = (1 − a) for c = 0 to ρ/ρ⊥ = 0 for c �= 0
(with ρ/ρ0 → 0).

Next, we consider the case of a non magnetic dielectric

material B = B0 (a situation that applies without modifi-

cation in the context of surface water waves propagating

over an uneven bottom). Fig. 7 shows the transmis-

sion spectra for a grating with ρ/ρ0 = 50. A remarkable

fact is the following: Although the (RIG) and the (DLG)

gratings (respectively in Figs. 7(a) and (b)) have very

similar geometries, the former grating acts as a low angle
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frequency kd = 1 in a SLG grating with b = 0.7 and for
ρ/ρ0 = 0.05, at optimal angle, θopt � 52.5o.
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made of a succession of layered structures with two dif-

ferent widths (bd and cd) alternatively stacked next to

each other. Each layered structure is first homogenized

as previously, resulting in a one dimensional periodic suc-

cession of homogeneous anisotropic stacks of respective

lengths aL and (1 − a)L. This latter can be in turn ho-

mogenized to form a homogenized anisotropic effective

medium, whose effective parameters are
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and the inverse of the effective bulk modulus is simply

the average of 1/B and 1/B0 with the filling fraction

ϕ ≡ [ab+ (1− a)c] (see Supplementary Material). In the

following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths

b and c, and rectangular inclusion grating (RIG) refers

to the particular case c = 0.
The expression of the transmission in Eq. (4), with

Eqs. (5) and (6), is still valid with these new expressions

of ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and

the optimal angle depend, now, in addition to the value

of the contrasts and the filling fraction, on the geometry

of the grating. For metallic grating, this geometry has

been considered in [9] to enhance the transmission at

normal incidence and, in this reference, this was done

by decreasing the filling fraction. In fact, inspecting the

Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the

optimal angle for the SLG is always smaller than for any

other structure with the same filling fraction.
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IV. GEOMETRICAL EFFECTS ON THE
EXTRAORDINARY TRANSMISSION

In the following, we exemplify the effect of the geom-

etry by comparing the transmission spectra of different

gratings with the same filling fraction.

First, we consider the limiting case of a rigid mate-

rial. Fig. 5 shows the transmission spectra of three

gratings with different geometries and the same filling

fraction ϕ = 0.4. The spectra have been calculated using

Eq. (4), with Eqs. (5), (6) and (9) and the agreement

with full wave numerical computations (not reported) is

very satisfactory (within few percents). The influence

of the geometry on the spectra is visible, both on the

Fabry-Perot resonances and on the impedance matching

condition. This is inspected more quantitatively in Fig.

6 where the optimal angle θopt is plotted as a function

of the parameter c. Varying c from 0 to ϕ, the grating

geometry changes from the (RIG) geometry to the simple

layer geometry (SLG), experiencing all the geometries of

the (DLG) structures with the same filling fraction ϕ.

From Fig. 6, one sees that the optimal angle θopt can be

tuned continuously from about 70◦ to 52◦ by increasing

c. The case c = 0 for which θopt � 85◦ is a singular limit.

Indeed, from Eq. (9), the effective mass density changes

from ρ/ρ⊥ = (1 − a) for c = 0 to ρ/ρ⊥ = 0 for c �= 0
(with ρ/ρ0 → 0).

Next, we consider the case of a non magnetic dielectric

material B = B0 (a situation that applies without modifi-

cation in the context of surface water waves propagating

over an uneven bottom). Fig. 7 shows the transmis-

sion spectra for a grating with ρ/ρ0 = 50. A remarkable

fact is the following: Although the (RIG) and the (DLG)

gratings (respectively in Figs. 7(a) and (b)) have very

similar geometries, the former grating acts as a low angle
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the optimal angle depend, now, in addition to the value
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of the grating. For metallic grating, this geometry has

been considered in [9] to enhance the transmission at

normal incidence and, in this reference, this was done

by decreasing the filling fraction. In fact, inspecting the

Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the
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gratings with the same filling fraction.
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gratings with different geometries and the same filling

fraction ϕ = 0.4. The spectra have been calculated using

Eq. (4), with Eqs. (5), (6) and (9) and the agreement

with full wave numerical computations (not reported) is
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gratings with different geometries and the same filling

fraction ϕ = 0.4. The spectra have been calculated using

Eq. (4), with Eqs. (5), (6) and (9) and the agreement

with full wave numerical computations (not reported) is

very satisfactory (within few percents). The influence

of the geometry on the spectra is visible, both on the

Fabry-Perot resonances and on the impedance matching

condition. This is inspected more quantitatively in Fig.

6 where the optimal angle θopt is plotted as a function

of the parameter c. Varying c from 0 to ϕ, the grating

geometry changes from the (RIG) geometry to the simple

layer geometry (SLG), experiencing all the geometries of

the (DLG) structures with the same filling fraction ϕ.

From Fig. 6, one sees that the optimal angle θopt can be

tuned continuously from about 70◦ to 52◦ by increasing

c. The case c = 0 for which θopt � 85◦ is a singular limit.

Indeed, from Eq. (9), the effective mass density changes

from ρ/ρ⊥ = (1 − a) for c = 0 to ρ/ρ⊥ = 0 for c �= 0
(with ρ/ρ0 → 0).

Next, we consider the case of a non magnetic dielectric

material B = B0 (a situation that applies without modifi-

cation in the context of surface water waves propagating

over an uneven bottom). Fig. 7 shows the transmis-
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FIG. 1: The geometry of the single layer grating (SLG).

an homogenized slab. The slab, of length l, is made of an

homogeneous anisotropic medium described by the wave

equation

∇ ·
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1/ρ|| 0
0 1/ρ⊥
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Be
p = 0, (2)

with
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ρ
,

ρ⊥ = bρ0 + (1− b)ρ,
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Be
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B0
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B
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(3)

The transmission coefficient t is

t =
4ueikl cos θ

(1 + u)2e−ik�l − (1− u)2eik�l
, (4)

with

u ≡ k cos θ

k�

ρ||
ρ

(5)

being the ratio of the effective impedances and where

k� is the effective horizontal wavenumber, given by the

dispersion relation (from Eq. (A1))

k2�/ρ|| + k2 sin2 θ/ρ⊥ = ω2/Be. (6)

The expression of t in Eq. (4) gives the standard Fabry-

Perot resonances for eik�l = ±1 and the condition of per-

fect transmission (EOT) when the matched impedance

condition is realized: u = 1. This homogenization has

been already used in the Neumann limit [13] (note also

that a non standard homogenization has been proposed

in [6], where a more involved dispersion relation is used

for k�). The Neumann limit corresponds to ρ/ρ0 → 0,
B/B0 → 0 for which k� � k and u � cos θ/(1− b). Thus,

the Fabry-Perot resonances are independent of the in-

cidence angle and the matched impedance condition is

obtained at the Brewster angle θ = cos−1(1 − b), as re-

ported in experiments performed using grating made of

steel [13] or aluminum [8].

Another limiting case corresponds to the case of water

waves, or equivalently the case of p-polarized EM wave in

a non magnetic dielectric grating. In this case, B = B0

and only the contrast in ρ exists. The figure 2(b) shows

the transmission spectrum, T = |t|2, as a function of

ρ/ρ0 and as a function of the incidence angle θ, given by

Eq. (4). A validation of this analytical result is done by

computing a reference spectrum using full-wave numeri-

cal calculations [14]. Results are reported in Figure 2(a):

the difference between the two spectra is less than 3% in

the whole range of incidence angles and contrasts. The

FIG. 2: Transmission spectrum, T = |t|2, as a function of the
mass density contrast, ρ/ρ0, and of the incidence angle, θ.
The grating thickness is l = 20d. The layer width is b = 0.7
and the frequency is kd = 0.5. (a) Full wave calculation, and
(b) analytical result Eq. (4). The dashed line indicates the
optimal angle, from Eq. (7).

Fabry-Perot resonances appear for certain combinations

of (ρ/ρ0, θ) that realize k�l = nπ and, contrary to the

Neumann case, these resonances depend on the incidence

angle since k� does depend on θ. We have reported in

Fig. 2 the optimal angle θopt realizing the condition of

impedance matching, u = 1 in Eq. (5) using Eqs. (3)

and (6)

θopt = cos−1

�
(1− b)ρ0 + bρ

ρ0 + ρ
, (7)

from which the two limits for ρ/ρ0 can be deduced:

�
θopt(ρ/ρ0 → 0) = cos−1

√
1− b,

θopt(ρ/ρ0 → ∞) = cos−1
√
b,

(8)

and these two angles differ from the usual Brewster angle.

The perfect transmission is independent of the length l
of the grating, as illustrated in Fig. 3, for a small ρ/ρ0 =
0.05 (gratings of lengths l = 5d and l = d are considered).

In Fig. 3(a), for a small ρ/ρ0, the wave propagating in

the grating resembles the effective wave propagating with

k� � k/(1−b), corresponding to a wavenumber inside the

structure associated to an angle θeff = cos−1[1 + b(1 −
b)]−1/2 < θopt.
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FIG. 3: Spatial distribution of the wave field (real part) at
frequency kd = 1 in a SLG grating with b = 0.7 and for
ρ/ρ0 = 0.05, at optimal angle, θopt � 52.5o.

III. THE TWO-STEP HOMOGENIZATION

The robustness of the homogenization for small l val-

ues encourages to use further homogenization process for

more complex grating structures, as sketched on Fig. 4.

Our two step homogenization is inspired from [16] for

composite metamaterials. Our "composite" grating is

made of a succession of layered structures with two dif-

ferent widths (bd and cd) alternatively stacked next to

each other. Each layered structure is first homogenized

as previously, resulting in a one dimensional periodic suc-

cession of homogeneous anisotropic stacks of respective

lengths aL and (1 − a)L. This latter can be in turn ho-

mogenized to form a homogenized anisotropic effective

medium, whose effective parameters are






ρ�
ρ

=
a

bρ/ρ0 + 1− b
+

1− a

cρ/ρ0 + 1− c
,

ρ

ρ⊥
=

a

bρ0/ρ+ 1− b
+

1− a

cρ0/ρ+ 1− c
,

B

Be
= [ab+ (1− a)c]

B

B0
+ [1− ab− (1− a)c] ,

(9)

and the inverse of the effective bulk modulus is simply

the average of 1/B and 1/B0 with the filling fraction

ϕ ≡ [ab+ (1− a)c] (see Supplementary Material). In the

following, we call double layer grating (DLG) the gratings

formed by the succession of two layers of different widths

b and c, and rectangular inclusion grating (RIG) refers

to the particular case c = 0.
The expression of the transmission in Eq. (4), with

Eqs. (5) and (6), is still valid with these new expressions

of ρ�, ρ⊥ and Be, so that the Fabry-Perot resonances and

the optimal angle depend, now, in addition to the value

of the contrasts and the filling fraction, on the geometry

of the grating. For metallic grating, this geometry has

been considered in [9] to enhance the transmission at

normal incidence and, in this reference, this was done

by decreasing the filling fraction. In fact, inspecting the

Neumann limit (ρ/ρ0, B/B0 → 0), one can see that the

optimal angle for the SLG is always smaller than for any

other structure with the same filling fraction.

(a)
...

...

· · ·

aL

L

bd
d cd

�
(b)

· · · �
(c) l
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The resulting homogenized grating of length l.

IV. GEOMETRICAL EFFECTS ON THE
EXTRAORDINARY TRANSMISSION

In the following, we exemplify the effect of the geom-

etry by comparing the transmission spectra of different

gratings with the same filling fraction.

First, we consider the limiting case of a rigid mate-

rial. Fig. 5 shows the transmission spectra of three

gratings with different geometries and the same filling

fraction ϕ = 0.4. The spectra have been calculated using

Eq. (4), with Eqs. (5), (6) and (9) and the agreement

with full wave numerical computations (not reported) is

very satisfactory (within few percents). The influence

of the geometry on the spectra is visible, both on the

Fabry-Perot resonances and on the impedance matching

condition. This is inspected more quantitatively in Fig.

6 where the optimal angle θopt is plotted as a function

of the parameter c. Varying c from 0 to ϕ, the grating

geometry changes from the (RIG) geometry to the simple

layer geometry (SLG), experiencing all the geometries of

the (DLG) structures with the same filling fraction ϕ.

From Fig. 6, one sees that the optimal angle θopt can be

tuned continuously from about 70◦ to 52◦ by increasing

c. The case c = 0 for which θopt � 85◦ is a singular limit.

Indeed, from Eq. (9), the effective mass density changes

from ρ/ρ⊥ = (1 − a) for c = 0 to ρ/ρ⊥ = 0 for c �= 0
(with ρ/ρ0 → 0).

Next, we consider the case of a non magnetic dielectric

material B = B0 (a situation that applies without modifi-

cation in the context of surface water waves propagating

over an uneven bottom). Fig. 7 shows the transmis-

sion spectra for a grating with ρ/ρ0 = 50. A remarkable

fact is the following: Although the (RIG) and the (DLG)

gratings (respectively in Figs. 7(a) and (b)) have very

similar geometries, the former grating acts as a low angle
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Comparison of the spectra for 3 gratings with the same filling fraction

Sound hard material
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FIG. 7: Same representation as in Fig. 5 for non magnetic
material (B = B0) with ρ/ρ0 = 50; the same grating geome-
tries are presented.

Acknowledgments

The authors acknowledge the financial support of the
Agence Nationale de la Recherche through the grant
ANR ProCoMedia, project ANR-10-INTB-0914.

0 0.1 0.2 0.3 0.4
15

20

25

30

35

40

45

50

55

c

θ
op

t

FIG. 8: Same representation as in Fig. 6 for the three gratings
of Fig. 7.

Appendix A: The two step homogenization

We report the main steps leading to Eq. (9). To
do that, we first use classical homogenization of layered
medium (1) with horizontal layers (Fig. 1). We get, for
layers of filling fraction b

∇ ·
��

1/ρ(b)|| 0

0 1/ρ(b)⊥

�
∇p

�
+

ω2

B(b)
e

p = 0, (A1)

and we use, for ρ and B depending on the vertical di-
rection (say y) 1/ρ(b)|| = �1/ρ(y)�, ρ(b)⊥ = �ρ(y)� and

1/B(b)
e = �1/Be(y)�, where �f(y)� ≡ (1/d)

� d
0 dy f(y)

denotes the spatial average.






1

ρ(b)||

=
b

ρ0
+

(1− b)

ρ
,

ρ(b)⊥ = bρ0 + (1− b)ρ,
1

B(b)
e

=
b

B0
+

(1− b)

B
.

(A2)

The same result applies for a medium (2) made of hor-
izontal layers of filling fractions c and the resulting ef-
fective parameters are ρ(c)|| , ρ(c)⊥ and B(c)

e . The DLG
structure consists in a succession of vertical layers of
medium (1) and medium (2), as shown on Fig. 4(b).
This DLG structure can be homogenized, considering the
filling fraction a for the medium (1) (and (1− a) for the
medium (b)). The structure has now effective parame-
ters varying along the horizontal direction (say x), so that
the homogenization of the layered structure is such that
ρ|| = �ρ||(x)�, 1/ρ⊥ = �1/ρ⊥(x)� and 1/Be = �1/Be(x)�.

We get a resulting homogenized anisotropic structure
(as in Eq. (3)), with






ρ|| = aρ(b)|| + (1− a)ρ(c)|| ,
1

ρ⊥
=

a

ρ(b)⊥

+
(1− a)

ρ(c)⊥

,

1

Be
=

a

B(b)
e

+
(1− a)

B(c)
e

,

(A3)

leading to the expressions in Eq. (9).
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FIG. 7: Same representation as in Fig. 5 for non magnetic
material (B = B0) with ρ/ρ0 = 50; the same grating geome-
tries are presented.
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FIG. 8: Same representation as in Fig. 6 for the three gratings
of Fig. 7.

Appendix A: The two step homogenization

We report the main steps leading to Eq. (9). To
do that, we first use classical homogenization of layered
medium (1) with horizontal layers (Fig. 1). We get, for
layers of filling fraction b

∇ ·
��

1/ρ(b)|| 0

0 1/ρ(b)⊥

�
∇p

�
+

ω2

B(b)
e

p = 0, (A1)

and we use, for ρ and B depending on the vertical di-
rection (say y) 1/ρ(b)|| = �1/ρ(y)�, ρ(b)⊥ = �ρ(y)� and

1/B(b)
e = �1/Be(y)�, where �f(y)� ≡ (1/d)

� d
0 dy f(y)

denotes the spatial average.






1

ρ(b)||

=
b

ρ0
+

(1− b)

ρ
,

ρ(b)⊥ = bρ0 + (1− b)ρ,
1

B(b)
e

=
b

B0
+

(1− b)

B
.

(A2)

The same result applies for a medium (2) made of hor-
izontal layers of filling fractions c and the resulting ef-
fective parameters are ρ(c)|| , ρ(c)⊥ and B(c)

e . The DLG
structure consists in a succession of vertical layers of
medium (1) and medium (2), as shown on Fig. 4(b).
This DLG structure can be homogenized, considering the
filling fraction a for the medium (1) (and (1− a) for the
medium (b)). The structure has now effective parame-
ters varying along the horizontal direction (say x), so that
the homogenization of the layered structure is such that
ρ|| = �ρ||(x)�, 1/ρ⊥ = �1/ρ⊥(x)� and 1/Be = �1/Be(x)�.

We get a resulting homogenized anisotropic structure
(as in Eq. (3)), with






ρ|| = aρ(b)|| + (1− a)ρ(c)|| ,
1

ρ⊥
=

a

ρ(b)⊥

+
(1− a)

ρ(c)⊥

,

1

Be
=

a

B(b)
e

+
(1− a)

B(c)
e

,

(A3)

leading to the expressions in Eq. (9).
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FIG. 7: Same representation as in Fig. 5 for non magnetic
material (B = B0) with ρ/ρ0 = 50; the same grating geome-
tries are presented.
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FIG. 8: Same representation as in Fig. 6 for the three gratings
of Fig. 7.

Appendix A: The two step homogenization

We report the main steps leading to Eq. (9). To
do that, we first use classical homogenization of layered
medium (1) with horizontal layers (Fig. 1). We get, for
layers of filling fraction b

∇ ·
��

1/ρ(b)|| 0

0 1/ρ(b)⊥

�
∇p

�
+

ω2

B(b)
e

p = 0, (A1)

and we use, for ρ and B depending on the vertical di-
rection (say y) 1/ρ(b)|| = �1/ρ(y)�, ρ(b)⊥ = �ρ(y)� and

1/B(b)
e = �1/Be(y)�, where �f(y)� ≡ (1/d)

� d
0 dy f(y)

denotes the spatial average.


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

1

ρ(b)||

=
b

ρ0
+

(1− b)

ρ
,

ρ(b)⊥ = bρ0 + (1− b)ρ,
1

B(b)
e

=
b

B0
+

(1− b)

B
.

(A2)

The same result applies for a medium (2) made of hor-
izontal layers of filling fractions c and the resulting ef-
fective parameters are ρ(c)|| , ρ(c)⊥ and B(c)

e . The DLG
structure consists in a succession of vertical layers of
medium (1) and medium (2), as shown on Fig. 4(b).
This DLG structure can be homogenized, considering the
filling fraction a for the medium (1) (and (1− a) for the
medium (b)). The structure has now effective parame-
ters varying along the horizontal direction (say x), so that
the homogenization of the layered structure is such that
ρ|| = �ρ||(x)�, 1/ρ⊥ = �1/ρ⊥(x)� and 1/Be = �1/Be(x)�.

We get a resulting homogenized anisotropic structure
(as in Eq. (3)), with






ρ|| = aρ(b)|| + (1− a)ρ(c)|| ,
1

ρ⊥
=

a

ρ(b)⊥

+
(1− a)

ρ(c)⊥

,

1

Be
=

a

B(b)
e

+
(1− a)

B(c)
e

,

(A3)

leading to the expressions in Eq. (9).
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FIG. 5: Transmission spectra of three gratings (rigid mate-

rial), from Eqs. Eq. (4), with Eqs. (5), (6) and (9). The

gratings have the same filling fraction ϕ = 0.4 and different

geometries. (a) (RIG) with a = 0.44 and b = 0.9 (c = 0), (b)

(DLG) with a = 0.4, b = 0.9 and c = 0.07 and (d) (SLG) with

c = ϕ = 0.4 (a = 0). Otherwise L = 5d and l = 20d.

pass-filter while the latter behaves as a narrow-band an-

gle filter (around the optimal angle) and, in both cases,

for a wide range of frequencies. The influence of the grat-

ing geometry in terms of the parameter c is shown in Fig.

8: varying c produces a change in θopt from 20◦ to 50◦

for the same filling fraction ϕ = 0.4. A more subtle effect
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FIG. 6: Influence of the parameter c on the optimal angle

θopt
realizing the matching impedance condition u = 1. The

(DLG) varying c keep the same filling fraction ϕ = 0.4, with

b = 0.9 and a = (ϕ − c)/(b − c). The symbols refer to the

gratings considered in Fig. 5, (�): the (RI) on Fig.5(a), (◦)
the (DLG) on Fig.5(b) and (�) the (SLG) on Fig.5(c).

concerns the occurence of Fabry Perot resonances. From

Eqs. (9) and (6), the effective wavenumber k� is smaller

than k and it decreases when c increases (with constant

ϕ and b). Thus, the Fabry-Perot resonances are sent to

higher frequencies, resulting in angle filters working for

larger frequency ranges.

V. CONCLUSIONS

In summary, homogenization has been shown to be a

very efficient tool to analytically predict the transmis-

sion spectra of subwavelength gratings with complex ge-

ometry. The validity of our prediction has been checked

by comparison with full-wave numerical computations.

Also, we extended the study to the case of penetrable

gratings. This is of interest when considering electromag-

netic waves propagating in dielectric material and when

considering surface water wave over an uneven bottom.

The obtained expression for the transmission spectra al-

lows us to exhibit the geometrical effects, beyond the ef-

fect of the filling fraction usually considered. Obviously,

the advantage of such analytical results is to be predic-

tive: the description of gratings with variable contrasts

and complex geometries involves more and more param-

eters and using direct numerical computations would be

too fastidious to inspect their influences on the transmis-

sion.

Our works open a promising way for the design of

gratings with transmission properties controlled by struc-

tural and geometrical manipulations. Potential applica-

tions include directive antenna and directive loudspeak-

ers, antinoise walls, lenses design and water wave focus-

ing.
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(DLG)(b)

kd

θ

FIG. 5: Transmission spectra of three gratings (rigid mate-

rial), from Eqs. Eq. (4), with Eqs. (5), (6) and (9). The

gratings have the same filling fraction ϕ = 0.4 and different

geometries. (a) (RIG) with a = 0.44 and b = 0.9 (c = 0), (b)

(DLG) with a = 0.4, b = 0.9 and c = 0.07 and (d) (SLG) with

c = ϕ = 0.4 (a = 0). Otherwise L = 5d and l = 20d.

pass-filter while the latter behaves as a narrow-band an-

gle filter (around the optimal angle) and, in both cases,

for a wide range of frequencies. The influence of the grat-

ing geometry in terms of the parameter c is shown in Fig.

8: varying c produces a change in θopt from 20◦ to 50◦

for the same filling fraction ϕ = 0.4. A more subtle effect
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FIG. 6: Influence of the parameter c on the optimal angle

θopt
realizing the matching impedance condition u = 1. The

(DLG) varying c keep the same filling fraction ϕ = 0.4, with

b = 0.9 and a = (ϕ − c)/(b − c). The symbols refer to the

gratings considered in Fig. 5, (�): the (RI) on Fig.5(a), (◦)
the (DLG) on Fig.5(b) and (�) the (SLG) on Fig.5(c).

concerns the occurence of Fabry Perot resonances. From

Eqs. (9) and (6), the effective wavenumber k� is smaller

than k and it decreases when c increases (with constant

ϕ and b). Thus, the Fabry-Perot resonances are sent to

higher frequencies, resulting in angle filters working for

larger frequency ranges.

V. CONCLUSIONS

In summary, homogenization has been shown to be a

very efficient tool to analytically predict the transmis-

sion spectra of subwavelength gratings with complex ge-

ometry. The validity of our prediction has been checked

by comparison with full-wave numerical computations.

Also, we extended the study to the case of penetrable

gratings. This is of interest when considering electromag-

netic waves propagating in dielectric material and when

considering surface water wave over an uneven bottom.

The obtained expression for the transmission spectra al-

lows us to exhibit the geometrical effects, beyond the ef-

fect of the filling fraction usually considered. Obviously,

the advantage of such analytical results is to be predic-

tive: the description of gratings with variable contrasts

and complex geometries involves more and more param-

eters and using direct numerical computations would be

too fastidious to inspect their influences on the transmis-

sion.

Our works open a promising way for the design of

gratings with transmission properties controlled by struc-

tural and geometrical manipulations. Potential applica-

tions include directive antenna and directive loudspeak-

ers, antinoise walls, lenses design and water wave focus-

ing.
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FIG. 5: Transmission spectra of three gratings (rigid mate-

rial), from Eqs. Eq. (4), with Eqs. (5), (6) and (9). The

gratings have the same filling fraction ϕ = 0.4 and different

geometries. (a) (RIG) with a = 0.44 and b = 0.9 (c = 0), (b)

(DLG) with a = 0.4, b = 0.9 and c = 0.07 and (d) (SLG) with

c = ϕ = 0.4 (a = 0). Otherwise L = 5d and l = 20d.

pass-filter while the latter behaves as a narrow-band an-

gle filter (around the optimal angle) and, in both cases,

for a wide range of frequencies. The influence of the grat-

ing geometry in terms of the parameter c is shown in Fig.

8: varying c produces a change in θopt from 20◦ to 50◦

for the same filling fraction ϕ = 0.4. A more subtle effect
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FIG. 6: Influence of the parameter c on the optimal angle

θopt
realizing the matching impedance condition u = 1. The

(DLG) varying c keep the same filling fraction ϕ = 0.4, with

b = 0.9 and a = (ϕ − c)/(b − c). The symbols refer to the

gratings considered in Fig. 5, (�): the (RI) on Fig.5(a), (◦)
the (DLG) on Fig.5(b) and (�) the (SLG) on Fig.5(c).

concerns the occurence of Fabry Perot resonances. From

Eqs. (9) and (6), the effective wavenumber k� is smaller

than k and it decreases when c increases (with constant

ϕ and b). Thus, the Fabry-Perot resonances are sent to

higher frequencies, resulting in angle filters working for

larger frequency ranges.

V. CONCLUSIONS

In summary, homogenization has been shown to be a

very efficient tool to analytically predict the transmis-

sion spectra of subwavelength gratings with complex ge-

ometry. The validity of our prediction has been checked

by comparison with full-wave numerical computations.

Also, we extended the study to the case of penetrable

gratings. This is of interest when considering electromag-

netic waves propagating in dielectric material and when

considering surface water wave over an uneven bottom.

The obtained expression for the transmission spectra al-

lows us to exhibit the geometrical effects, beyond the ef-

fect of the filling fraction usually considered. Obviously,

the advantage of such analytical results is to be predic-

tive: the description of gratings with variable contrasts

and complex geometries involves more and more param-

eters and using direct numerical computations would be

too fastidious to inspect their influences on the transmis-

sion.

Our works open a promising way for the design of

gratings with transmission properties controlled by struc-

tural and geometrical manipulations. Potential applica-

tions include directive antenna and directive loudspeak-

ers, antinoise walls, lenses design and water wave focus-

ing.

non magnetic material

Sound hard material non magnetic material

3

wavenumber inside the structure associated an angle

θeff = cos−1[1 + b(1 − b)]−1/2 < θopt. For small ρ0
(Fig. 4), k� → 0. No variation of phase is observed along

the structure, that behaves as a matched impedance

zero index material [14].

The robustness of the homogenization for small l value

encourages to use successive homogenizations for more

complex grating structures, as sketched on Fig. 5. It is

morally similar to the two step homogenization proposed

in [15] for composite metamaterials. Our "composite"

grating is formed of a periodic succession of stacks made

of single layers: one stack has layers of width bd while the

other stack has layers of width cd. Each stack is first ho-

mogenized as previously, and the resulting structure is a

1D stack formed of a periodic succession of homogeneous

anisotropic of respective length aL and (1 − a)L. This

latter can be in turn homogenized to form a homogenized

anisotropic effective medium, whose characteristics are

ρ�
ρ

=
a

bρ/ρ0 + 1− b
+

1− a

cρ/ρ0 + 1− c
,

ρ

ρ⊥
=

a

bρ0/ρ+ 1− b
+

1− a

cρ0/ρ+ 1− c
,

B

Be
= [ab+ (1− a)c]

B

B0
+ [1− ab− (1− a)c]

(8)

and the inverse of the effective bulk modulus is simply

the average of 1/B and 1/B0 with the filling fraction

ϕ ≡ [ab+ (1− a)c]. In the following, we call double layer

grating (DLG) the gratings formed by two layers of dif-

ferent width b and c, and rectangular inclusion grating

(RIG) refers to the particular case c = 0.

(a)
...

...

· · ·

aL

L

bd
d cd

�

(b)

· · · �
(c) l

FIG. 5: Two step homogenization. (a) Geometry of the dou-
ble slit grating (DGS) including the case of rectangular in-
clusions (RIG) for c = 0. (b) The stack composed of two
anisotropic layers of respective lengths aL and (1 − a)L. (c)
The resulting homogenized grating of length l.

The expression of the transmission in Eq. (4) is still

valid with these new expressions of ρ�, ρ⊥ and Be, so

that the optimal angle depends now, in addition to the

value of the contrasts, on the geometry of the grating. For

metallic grating, this geometry has been considered in [9]

to enhance the transmission at normal incidence and, in

this reference, this was done by increasing the filling frac-

tion. Inspecting the Neumann limit (ρ/ρ0, B/B0 → 0),
one can see that the optimal angle for the SLG is al-

ways smaller than for any other structure with the same

filling fraction. Nevertheless, it is possible to enlarge

significantly the range of the incident angles realizing

high, although not perfect, transmission (blue symbols

on Fig. 6). This is done using alternate stack of small

length (small a value) and large layer width (b close to

unity) with a larger stack of small layer width (here, c
is imposed by the filling fraction). This is illustrated on

Fig. 6 where the transmission is reported as a function

of the incidence angle. We have considered ρ/ρ0 = 10−4

and B/B0 = 6× 10−7, close to the contrasts between air

and steel. In the presented case, the transmission of the

DLG remains higher than 0.9 for incidence angles up to

almost π/2. Examples of wave fields at small incidence

angle are shown on Fig. 7.

T

θ
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0.4
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0.8

1

FIG. 6: Grating made of a sound hard material: Transmission
as a function of the incidence angle θ for three gratings with
the same filling fraction ϕ = 0.5. Red symbols: the SLG
b = 0.5, black symbols: the RIG with a = 0.53 and b = 0.95,
green symbols: the DLG with a = 0.2, b = 0.95, and c = 0.4
(plain lines for the full wave calculation and dotted lines from
Eqs. (4) and (8)). The frequency is kd = 0.1, and L/d = 5,
l/d = 20.

The case of a non magnetic material with large ρ/ρ0
is even more amusing. Indeed in that case, it is possible

to tune the geometry of the DLG to maximize the trans-

mission at θ = 0. To do that, it is sufficient to start with

rectangular inclusions (with ab close to ϕ, as in the RIG)

connected with very thin part of size c = (1 − a)ρ0/ρ.
This is illustrated in Figs. 8 and 9 where ρ/ρ0 = 50 has

been considered. The RIG is formed of rectangular in-

clusions of size b = 0.7 and a = 0.5 and this produces

a transmission at normal incidence T = 0.74. The SLG

with the same filling fraction ϕ = 0.35 produces a very

small transmission (T = 0.32) although the area open

to the incoming wave is higher. We designed the DLG

4

FIG. 7: Spatial repartition of the wavefields for the three

gratings (same as in Fig. 6) for θ = 0.4.
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FIG. 8: Grating of non magnetic material (ρ/ρ0 = 50): Same

representation as in Fig. 6. The gratings have the same filling

fraction ϕ = 0.35. For the SLG (red): b = 0.35, for the RIG

(black): a = 0.5 and b = 0.7, for the DLG (green): a = 0.5,
b = 0.7 and c = 0.01 (realizing the condition (1−a)/c = ρ/ρ0).
The frequency is kd = 0.5, and L/d = 5, l/d = 20.

FIG. 9: Spatial repartition of the wavefields for the three

gratings (same as in Fig. 8) for θ = 0.

starting from the same rectangular inclusions as in the
RIG but by connecting them with thin parts of width
c = 0.01 tuned to produce a maximum transmission: this
indeed produces a transmission close to unity at normal
incidence (T = 0.98).

In conclusion, we have shown that it is possible to build
sub-wavelength gratings realizing broadband high trans-
mission for a wide range of incidence angles. This can
be done by playing with both the contrasts between the
constitutive material of the grating and the geometry of
the grating. In this context, the homogenization theory
of layered medium has been shown to be a very efficient
tool to predict the wave physics, providing simple ana-
lytical predictions.
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ANR ProCoMedia, project ANR-10-INTB-0914.
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What do we do with more complexe structures ?.

tensors of at least 2. We choose a somewhat arbitrary value
of 2.4, which is typical for materials needed to realize
designs based on transformation acoustics.

Our engineered material is made of arrays of identical
unit cells, as illustrated on the left side of Fig. 1(a). Using
the procedure described in Ref. 17 we designed a unit cell
satisfying the above constraints. Its structure is presented in
Fig. 1(b). The background fluid is air and is characterized by
a bulk modulus of k0 ¼ 141 kPa and a density of q0 ¼ 1:29
kg/m3. The cell dimension is 9.53 mm " 9.53 mm and con-
sists of a rectangular block of aluminum (kAl ¼ 68:9 GPa,
qAl ¼ 2712:63 kg/m3) of dimensions 1.59 mm" 7.94 mm
placed in the middle of the cell. It is the rotational asymme-
try in the geometry of this aluminum inclusion that is respon-
sible for the anisotropic behavior of the cell. We align the
coordinate system so that the x and y axes are perpendicular
and respectively, parallel to the longest side of the rectangu-
lar inclusion.

As described in Ref. 17 the effective material parame-
ters associated with the metamaterial are retrieved from two
numerical simulations performed with COMSOL Multiphy-
sics in which plane waves are sent through the metamaterial
from two different angles. We are using the Acoustic-Struc-
ture Interaction module (frequency response analysis) and all

the elastic properties of the solid inclusions are taken into
consideration. More specifically, in order to obtain the effec-
tive bulk modulus and the component of the effective density
tensor in the x direction, we send a plane wave along the x
axis through a thin metamaterial sample. It has been shown17

that a sample as thin as one unit cell in the propagation direc-
tion and infinitely long in the transverse direction can be
used in order to obtain accurate effective parameters. Such a
sample is shown in the middle section of Fig. 1(a). The other
relevant component of the density tensor can be obtained by
sending a plane wave along the y direction through a similar
thin slab of metamaterial, as illustrated on the right side of
Fig. 1(a).

The slab infinite extent in the transverse direction is
simulated in COMSOL Multiphysics through the use of rigid
walls. This allows efficient one cell simulations that result in
the effective parameters of the bulk metamaterial. The pres-
sure fields computed for each direction of incidence are pre-
sented in Figs. 1(c) and 1(d). These fields are used to
determine the complex reflection and transmission coeffi-
cients in each case. The coefficients are then inverted using
the procedure described in Ref. 20 in order to obtain the
effective material parameters. Given the dimensions speci-
fied above, the two relevant components of the effective

FIG. 1. (Color online) (a) Left: metama-
terial composed of arrays of identical
unit cells. Middle: one cell thick meta-
material sample used to obtain one com-
ponent of the effective density tensor qx.
Right: one cell thick metamaterial sam-
ple used to obtain the second component
of the effective density tensor qy. (b)
Unit cell used to analyze the effective
material properties and its orientation;
(c) simulations for acoustic plane wave
propagation in the x direction (f ¼ 3
kHz); (d) simulations for acoustic plane
wave propagation in the y direction
(f ¼ 3 kHz); (e) broadband effective
mass density in the x direction; (f)
broadband effective mass density in the
y direction.
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(more than 1000 Hz for our design) of negative index,
whereas for traditional locally resonating structure, the
negative index can only be found in a narrow frequency
band around the resonating peak; second, it circumvents
the high absorption loss adhesively associated with a
locally resonating peak. The dimensions of the unit cell
and a photograph of a fabricated cell are shown in Fig. 1.
The dispersive characteristics can be easily tailored by
carefully designing the geometry of the cross section of
the unit cell.

The labyrinthine unit cells were fabricated with thermo-
plastics via 3D printing. First, we experimentally verified
the negative refractive index of the labyrinthine unit cell
by retrieving its effective material parameters inside a
one-dimensional waveguide using a method similar to
that presented in Ref. [20]. To perform the measurement,
we built a 2.4 m long rectangular waveguide made of rigid
plastic. The waveguide dimensions were chosen such that
one unit cell filled the entire transverse section of the wave-
guide. The cell was placed in the middle of the waveguide.
Short (approximately 5 periods at the center frequency),
modulated Gaussian pulses having center frequencies
varying from 2000 to 3000 Hz in steps of 50 Hz were
sent through the unit cell, and the reflected and transmitted
pulses were recorded by two microphones situated 63.5 cm
before and, respectively, 22.86 cm after the unit cell. These
distances were chosen such that the reflected and trans-
mitted pulses could be easily isolated from the incident
pulse and other subsequent reflections from the waveguide
ends. These isolated transmitted and reflected pulses were
Fourier transformed and calibrated with similar signals
obtained when the cell was replaced by two calibration
standards in order to obtain the complex reflection and
transmission coefficients (or S parameters). The two cali-
bration standards were, first, a section of an empty wave-
guide the same size as the unit cell. In this case the
reflection coefficient is 0 and the transmission coefficient
is expð"j!d=vÞ, where! is the angular frequency, d is the
cell diameter, and v is the speed of sound in air. The second
standard is a perfect reflector in the form of a metal plate
filling the entire cross section of the waveguide, i.e., reflec-
tion coefficient of 1. The calibrated S parameters were
inverted using the method outlined in Ref. [18].

A comparison between the complex refractive indices
(n ¼ n0 þ in00) obtained in numerical simulations and
retrieved experimentally using the method outlined above
is given in Fig. 2. In the negative index region, the mea-
sured refractive index changes towards zero as frequency
increases, and both the real part and the imaginary part of
the measured values agree well with the simulated values.
Note that the imaginary part of the refractive index (n00) is
too small to be reliably measured by our retrieval system;
therefore, the fluctuation of n00 above and below zero is
consistent with the close-to-zero value obtained in simula-
tion. The simulated and measured values of the refractive
index show that the effective wavelength in a material
generated by this unit cell varies between approximately
3 unit cell diameters at 2000 Hz and very large values
around 2800 Hz where the refractive index approaches
zero. This is the first indication that effective medium
theory holds for materials based on this cell.
The one-dimensional parameters retrieved experimen-

tally verify the theoretically predicted broad negative
index band. In order to show that the labyrinthine unit
cells are able to generate metamaterials characterized by
well-defined effective material parameters and usable in
real devices, we performed a two-dimensional prism-based
measurement to demonstrate negative refraction. A total of
55 identical unit cells were assembled to form the prism
shown in Fig. 3(a). In our prism, we turned neighboring
unit cells upside down, so that the prism top and bottom
would be more symmetric, and the gap between unit cells
would be lessened. Note that, even though each flipped
unit cell is now the mirror image of the unflipped one, the
dispersion characteristics remain the same. To rigorously
verify this argument, various numerical calculations were
performed, including dispersion comparison between a
single unflipped unit cell and a single flipped unit cell,
groups of 2-by-2 unflipped unit cells and groups of 2-by-2
alternatively flipped unit cells, as well as the comparisons
between field patterns of prisms with and without flipped

FIG. 1 (color online). Labyrinthine unit cell: (a) Designed
dimensions of the unit cell. (b) Photograph of a fabricated
unit cell.
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FIG. 2 (color online). Retrieved refractive index: (a) Retrieved
index from experiment (pink circles for real part, red asterisks
for imaginary part). (b) Retrieved index from simulation (solid
blue line for real part, dashed blue line for imaginary part).
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LAUM, CNRS, Université du Maine, Le Mans, France
simon.felix@univ-lemans.fr

Jean-François MERCIER
Poems, CNRS, ENSTA ParisTech, INRIA, Palaiseau, France
jean-francois.mercier@ensta-paristech.fr

Agnès MAUREL
Institut Langevin, CNRS, ESPCI ParisTech, Paris, France
agnes.maurel@espci.fr

ProCoMedia
ANR-10-INTB-0914

http://blog.espci.fr/procomedia/accueil/

7/7

Experiments

Electromagnetism (A. Ourir)

Acoustics (Y. Auregan, S. Felix,O. Richoux)

Water waves (A. Maurel, V. Pagneux, P. Petitjeans)

vendredi 13 septembre 2013



Electromagnetic waves
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Water waves ∇. (h(r)∇η(r)) +
ω2

g
η(r) = 0,

!

"
η

g

3

all cases. In transmission, the wave pattern matches our
expectations: the wavefronts maintain their original di-
rection (vertical in the representation of Figure 3) and
this is visible also near the walls. This means that the
homogenization of the layered metamaterial is efficient
even near the wall. Remark that, even if the shallow
water approximation is questionable in the deeper layer
of the metamaterial structure, the experimental results
show that the whole structure behaves as expected by the
homogenized shallow water theory. Finally, attenuation
of the transmitted field is visible inside the metamaterial
waveguide. This is due to the small water depth h2 above
the layered structure which produces the bottom friction
responsible for the observed attenuation. With smaller
and smaller depths h2 needed for a higher bending angle,
the attenuation increases with the angle θ.

(a) θ = 10◦

(b) θ = 20◦

(c) θ = 30◦

FIG. 3: Real part of the measured fields of surface elevation in
the reference empty waveguide without metamaterial (top) and in

the metamaterial waveguide (bottom) at frequency f = 4 Hz.
Then waveguides have a bending angle of (a) 10◦, (b) 20◦ and (c)

30◦.

To quantify the efficiency of the bent metamaterial
guide, we carry out a modal analysis of the measured
fields inside the waveguides, before and after the bend.
The modal decomposition is performed in the virtual

space (X,Y )

η(X,Y ) = η0(X) +
∞
∑

n=1

ηn(X) cosnπY/H, (0.5)

with














η0(X) =

∫ H

0

dY η(X,Y ),

ηn(X) =
√
2

∫ H

0

dY η(X,Y ) cosnπY/H, n > 0.

(0.6)
Before the bend, we simply have (X = x, Y = y) and
after the bend, the measured field η(x, y) is interpolated
on a grid (X,Y ) built using the optical transformation
X = x and Y = y− tan θx. Figures 4 show the results at
f = 4 Hz (the first three propagative modes are shown).
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(c) θ = 30◦

FIG. 4: Modal components ηn(X), n = 0 (black) n = 1 (red)
and n = 2 (green) as a function of X (see text) before and after
the bend. For each angle θ, the reference empty waveguide (top)

and the waveguide with metamaterial (bottom) are shown.

Results confirm the qualitative observations drawn
from Fig. 3. In the absence of a metamaterial, the bend

Effect of a layered medium on the water wave propagation
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Measurements of the surface wave elevation η(r)
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