Enhanced transmission through gratings: Compositional and geometrical effects

Agnès Maurel Institut Langevin, Paris - France

Simon Félix LAUM, Le Mans - France

Jean-François Mercier Poems, Palaiseau - France

Enhanced transmission through gratings: Compositional and geometrical effects

Plasmon resonance $\rightarrow T \sim 1$

T.W. Ebbesen *et al.*, Nature 391, 667 (1998).

Enhanced transmission through gratings: Compositional and geometrical effects

Frequency broadband EOT reported first by Huang, Peng and Fan, PRL 105 243901 (2010) Then extensively studies in a series of papers by Alú and coworkers

D'Aguanno et al., Scientific Report, 2340~(2012).

Previous studies: metallic grating effect of the filling fraction

Our interest: penetrable material effect of the geometry beyond the filling fraction

leading to the expression of the transmission coefficient

$$t = \frac{4ue^{ikl\cos\theta}}{(1+u)^2 e^{-ik_{\parallel}l} - (1-u)^2 e^{ik_{\parallel}l}},$$

$$u \equiv \frac{k\cos\theta}{k_{\parallel}} \frac{\rho_{\parallel}}{\rho} \quad \text{and} \quad k_{\parallel}^2/\rho_{\parallel} + k^2\sin^2\theta/\rho_{\perp} = \omega^2/B_e.$$

$$\begin{cases} \frac{1}{\rho_{\parallel}} = \frac{b}{\rho_0} + \frac{(1-b)}{\rho}, \\ \rho_{\perp} = b\rho_0 + (1-b)\rho, \\ \frac{1}{B_e} = \frac{b}{B_0} + \frac{(1-b)}{B}. \end{cases}$$
Perfect transmission, $|t| = 1$

$$k_{\parallel}l = n\pi \quad \Rightarrow \quad \text{Fabry-Perot resonances,} \\ u = 1 \quad \Rightarrow \quad \text{frequency broadband EOT} \end{cases}$$

Grating made of simple layers

vendredi 13 septembre 2013

Grating with double layers

Perspectives

Inspect the limit of this simple homogenization (notably the case of the squares ;-)

Compare our prediction on the effective parameters to the inversion proposed by V. Fokin, M. Ambati, C. Sun, and X. Zhang, Phys. Rev. B 76, 144302 (2007).

What do we do with more complexe structures ?.

Experiments

Electromagnetism (A. Ourir) Acoustics (Y. Auregan, S. Felix, O. Richoux) Water waves (A. Maurel, V. Pagneux, P. Petitjeans)

Perspectives

Electromagnetic waves

$$\begin{cases} \nabla \cdot \left(\frac{1}{\epsilon(\mathbf{r})} \nabla H(\mathbf{r})\right) + \mu(\mathbf{r}) \omega^2 H(\mathbf{r}) = 0, \\ \nabla \cdot \left(\frac{1}{\mu(\mathbf{r})} \nabla E(\mathbf{r})\right) + \epsilon(\mathbf{r}) \omega^2 E(\mathbf{r}) = 0, \end{cases}$$

Abdelwaheb Ourir, Ahmed Akarid

Simple layers: Teflon/Air and Teflon/epoxy gratings

Perspectives

Water waves

$$\nabla . \left(h(\mathbf{r})\nabla \eta(\mathbf{r})\right) + \frac{\omega^2}{g}\eta(\mathbf{r}) = 0,$$

A. Maurel, V. Pagneux & P. Petitjeans

G. Favraud & E. Monsalve

Measurements of the surface wave elevation $\eta(\mathbf{r})$

Effect of a layered medium on the water wave propagation

submitted to PRB