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The scattering of an acoustic wave propagating in
a non-uniform waveguide is inspected by revisiting
improved multimodal methods in which the
introduction of additional modes, so-called boundary
modes, allows to better satisfy the Neumann boundary
conditions at the varying walls. In this paper, we
show that the additional modes can be identified
as evanescent modes. Although non-physical, these
modes are able to tackle the evanescent part of
the field omitted by the truncation and are able to
restore the right boundary condition at the walls. In
the low-frequency regime, the system can be solved
analytically, and the solution for an incident plane
wave including one or two boundary modes is shown
to be an improvement of the usual Webster equation.

1. Introduction
Since the pioneering work of Stevenson [1,2], the
multimodal propagation method has been widely used
to describe propagation in non-uniform waveguides
in acoustics [3–7] and in elasticity [8,9]. In the two-
dimensional acoustic case, the pressure p satisfies the
Helmholtz equation:

(�+ k2)p(x, y) = 0, (1.1)

in a waveguide of height h(x) (located in y ∈ [0, h(x)]) with
boundary conditions ∂yp(x, 0) = 0 and

∂yp(x, h) = h′(x)∂xp(x, h). (1.2)
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In a uniform waveguide of constant height h, the solution p(x, y) is expanded in a series p(x, y) =∑N
n=0 pn(x)ψn(y), using the transverse modes of the waveguide ψn(y) = An cos(nπy/h) (where

An are normalization coefficients). The function ψn satisfies the boundary conditions ψ ′
n(0) = 0

and ψ ′
n(h) = 0 (as p). For a non-uniform waveguide, p(x, y) is still expanded as a series using

the local transverse modes ψn(y; x) = An cos(nπy/h(x)) (ψn depends now on x, and we still have
∂yψn|y=h(x) = 0). Although modal approaches have been shown to be efficient when sufficient
evanescent modes are taken into account [4], this representation of p(x, y) is incompatible with
the boundary condition (1.2) if h′(x) �= 0. Further, for each x-value, the convergence of the series
is poor, and the derivative of the series does not converge uniformly in the interval [0, h(x)]. In
a series of papers, Athanassoulis & Belibassakis [10,11] propose an improved representation in
which the function q(x, y) is introduced

q(x, y) ≡ p(x, y) − ∂yp(x, h)ξ (y; x), (1.3)

where ξ is a function satisfying ∂yξ|y=h(x) = 1 and ∂yξ|y=0 = 0. This new function satisfies ∂yq(x, 0) =
0 = ∂yq(x, h) (as ψn), so that the series q(x, y) =∑N

n=0 qn(x)ψn(y; x), and its derivative with respect
to y converge uniformly in the interval y ∈ [0, h(x)]. However, the value of ∂yp(x, h) is, in general,
unknown a priori, so that it is not possible to write p as a function of q.

An exception occurs in the case of an impedance boundary condition of the form ∂yp(x, h) =
Y0p(x, h) as considered in Bi et al. [6]. Choosing ξ (h; x) = 0, we deduce from (1.3) that q(x, h) =
p(x, h), leading to p(x, y) = q(x, y) + Y0q(x, h)ξ (y; x) and thus the solution can be written as

p(x, y) =
N∑

n=0

qn(x)[ψn(y; x) + Y0ξ (y; x)ψn(h; x)].

In this case, the convergence of the truncated series p(x, y) is the same as the convergence of the
series q =∑N

n=0 qnψn, and the boundary condition ∂yp(x, h) − Y0p(x, h) = 0 is satisfied strictly for
any truncation number N.

When considering the boundary condition (1.2), ∂yp(x, h) is unknown, and the approach must
be modified. Athanassoulis & Belibassakis [10,11] propose to keep the additional transverse mode
ξ and to introduce an additional unknown modal component qN+1(x) in the expansion:

p(x, y) =
N∑

n=0

qn(x)ψn(y; x) + qN+1(x)ξ (y; x), (1.4)

where qN+1(x) is expected in fine to behave as ∂yp(x, h). However, this cannot be guaranteed for
any finite truncation. Using this decomposition in (1.1) and (1.2), a system of coupled ordinary
differential equations is obtained

N+1∑
m=0

Anm(x)q′′
m(x) + Bnm(x)q′

m(x) + Cnm(x)qm(x) = 0, (1.5)

for n = 0, . . .N + 1. The system is found to remain coupled in the straight part of the waveguide
which implies that the classical radiation condition q′

n = ±iknqn cannot be applied directly at the
inlet/outlet of the scattering region (where h′ �= 0), with the wavenumbers kn≤N ≡

√
k2 − (nπ/h)2.

In Athanassoulis & Belibassakis [10,11] and Hazard & Lunéville [12], the system (1.5) was solved
using finite difference methods by imposing qN+1 = 0 at the inlet/outlet and the usual radiation
conditions on the qn≤N . The convergence of the improved representation has been shown [12].

In this paper, we revisit the coupled mode equation (1.5) in order to derive an improved system
adapted to define radiation conditions. To do so, we need to define the modal components:

pn ≡ (p,ψn),
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in an orthogonal basis of transverse functions (ψn). This is possible, defining from (1.4), the
supplementary transverse function ψN+1 ≡ ξ −∑N

n=0 αnψn with αn ≡ (ξ ,ψn), n ≤ N. We obtain

p(x, y) =
N+1∑
n=0

pn(x)ψn(y; x), (1.6)

with
pn≤N ≡ qn + αnqN+1

and pN+1 ≡ qN+1.

}
(1.7)

The resulting coupled mode equations are a partially decoupled system for the (pn) components,
n = 0 to N + 1, which is the key point of our new formulation:

p′′
n(x) + k2

npn(x) =
N+1∑
m=0

Dnm(x)pm(x) + Enm(x)p′
m(x), (1.8)

where D, E vanish in the straight parts of the waveguide. Now, approximate solutions can be
found using successive Born approximations, as in Maurel & Mercier [13]. The leading-order
solution is found for an incident wave pinc(x, y) and

p(0)
n = (pinc,ψn)

is solution of our system (1.8) for h′ = 0, namely p(0)
n

′′ + k2
np(0)

n = 0. Then, this solution can be used
as the first step of an iterative process to obtain the solution p(1)

p(1)
n

′′
(x) + k2

np(1)
n (x) =

N+1∑
m=0

Dnm(x)p(0)
m (x) + Enm(x)p(0)

m
′
(x). (1.9)

Applications of the first Born approximation are presented in §4, leading to improved
approximate equations compared with the usual Webster equation.

The main advantage of system (1.8) is that, in the straight part of the waveguide, we obtain
p′′

n + k2
npn = 0, for n ≤ N, as expected. More surprisingly, the equation for n = N + 1 is

p′′
N+1 + K2pN+1 = 0,

and introduces a new wavenumber K (we prefer the notation K rather than kN+1 to avoid
confusion with the usual wavenumber). Although this wavenumber is non-physical, it turns
out that K2 < 0, indicating that the boundary mode can be interpreted as an evanescent mode.
Instead of imposing vanishing value of pN+1 at the inlet/outlet of the scattering region, as
in Athanassoulis & Belibassakis [10,11] and Hazard & Lunéville [12], we can associate to the
boundary mode a radiation condition p′

N+1 = ±iKpN+1. This makes possible the implementation
of efficient numerical multimodal methods, as proposed in Pagneux et al. [4], Felix & Pagneux [5]
and Pagneux & Maurel [8].

The paper is organized as follows. Section 2 presents in detail the derivation of the improved
modal system written using the modal components (pn) for the case of a waveguide with one
varying wall. The advantages of this formulation are discussed when compared with the classical
formulation (without boundary mode). It is shown that, thanks to the boundary mode, the system
can be practically truncated at the number of propagating modes. The boundary condition on the
varying wall is also inspected as a function of the truncation number, leading to the conclusion
that the desired behaviour of the truncated solution pN(x, y), namely ∂ypN(x, h) = h′(x)∂xpN(x, h), is
reached asymptotically, for N → ∞. The case of two varying walls, where two boundary modes
are considered, is presented in §3. Although more involved, the conclusions are the same in this
case. Finally, for low frequencies, the systems can be solved in the first Born approximation.
The contribution of the boundary mode(s) to the plane wave is shown to improve the Webster
equation. This is considered in the §4 and illustrated with examples. Technical calculations and
discussion on the derivation of the modal systems are collected in the appendices.
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2. The case of one varying wall

(a) Derivation of the improved coupled representation
The initial geometry of the waveguide is set in the (x, y) plane with y ∈ [0, h(x)] and x ∈] − ∞, ∞[.
Let us introduce a change of variables to obtain a problem set in a straight guide of unitary
height. Considering the transformation X = x, Y = y/h(x) and with p(x, y) satisfying the Helmholtz
equation (1.1), the field p(X, Y) satisfies

∇ ·
[

JTJ
det(J)

∇p(X, Y)

]
+ k2

det(J)
p(X, Y) = 0,

where J is the Jacobian of the transformation (x, y) → (X, Y):

J =

⎛
⎜⎜⎝

1
−h′Y

h

0
1
h

⎞
⎟⎟⎠ .

We deduce the modified Helmholtz equation:

∂X(h∂Xp − h′Y∂Yp) − ∂Y

(
h′Y∂Xp − 1 + h′2Y2

h
∂Yp

)
+ k2hp = 0, (2.1)

for X ∈] − ∞, ∞[, Y ∈]0, 1[. The boundary conditions ∂yp(x, 0) = 0 and (1.2) become⎧⎨
⎩

∂Yp(X, 0) = 0,

hh′∂Xp(X, 1) = (1 + h′2)∂Yp(X, 1).
(2.2)

Equation (2.1) is projected onto a basis ϕn(Y), and we obtain

∫ 1

0
dYϕn[∂X(h∂Xp − h′Y∂Yp) + k2hp] +

∫ 1

0
dYϕ′

n

[
h′Y∂Xp − 1 + h′2Y2

h
∂Yp

]
= 0, (2.3)

where we have used the boundary conditions equation (2.2). The system of coupled mode
equations resulting from this projection depends on the expansion chosen for p. First, we will
derive the system of equations using the usual expansion without boundary mode. Then, we will
show that using the expansion as used in Athanassoulis & Belibassakis [10] and in Hazard &
Lunéville [12] results in a system of equations that remain coupled in the straight parts of
the waveguide (where h′(X) = 0). As already mentioned, this is not suitable to use the Born
approximation or to define radiation conditions. Finally, we use our new formulation based on
a similar expansion, leading to a system that decouples the modes in the straight parts of the
waveguide.

(i) Classical representation

In the classical modal approach (without additional boundary mode):

p(X, Y) =
N∑

n=0

pn(X)ϕn(Y),

where ϕn(Y) are the transverse modes of a straight unitary waveguide:

{
ϕ0(Y) = 1,

ϕn(Y) = √
2 cos(nπY).
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Because of the orthogonality of the ϕn-functions, (ϕn,ϕm) = δmn, the functions pn are the modal
components pn(X) ≡ (p,ϕn) = ∫1

0 p(X, Y)ϕn(Y) dY. We obtain, from equation (2.3) and for 0 ≤ n ≤ N:

(hp′
n)′ + k2

nhpn =
N∑

m=0

[
h′2

h
dmnpm − h′amnp′

m + anm(h′pm)′
]

, (2.4)

where we have used (ϕ′
n,ϕ′

m) = (nπ )2δnm to obtain kn(x)2 ≡ k2 − (nπ/h(x))2 and where we have
defined:

amn ≡ (Yϕm,ϕ′
n), dmn ≡ (Y2ϕ′

m,ϕ′
n). (2.5)

The above system differs from the derivation proposed in Pagneux et al. [4] (this derivation
corrects an error in the original derivation of Stevenson 1951 [2]). This is discussed in appendix
A. As expected in the straight parts of the waveguide, we recover the usual one-dimensional
Helmholtz equations p′′

n + k2
npn = 0.

(ii) Coupled mode equations for the qn-components

We consider now the expansion of p as carried out in Athanassoulis & Belibassakis [10]:

p(X, Y) =
N∑

n=0

qn(X)ϕn(Y) + qN+1(X)χ (Y),

and we choose χ such as χ ′(1) �= 0. For instance, a convenient choice is

χ (Y) =
√

2 cos
(
πY
2

)
.

Note that (ϕ0, . . . ϕN) and χ are linearly independent as soon as N is finite. The system of coupled
mode equations can be found in Hazard & Lunéville [12, see eqn. (4.11)]. Here, we just inspect the
form of this system in the straight parts of the waveguide. We obtain, for h′(X) = 0:

(q′′
n + αnq′′

N+1) + k2
n(qn + αnqN+1) = 0, for 0 ≤ n ≤ N

and
N∑

n=0

αn(q′′
n + k2

nqn) + q′′
N+1 +

[
k2 −

( π
2h

)2
]

qN+1 = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

with
αn ≡ (χ ,ϕn), n ≤ N.

Surprisingly, the qn components, n ≤ N, appear to be coupled with the qN+1 component,
although we expect qN+1 to be useless in the straight parts of the guide. In Athanassoulis &
Belibassakis [10], Hazard & Lunéville [12], qN+1 = 0 is imposed outside a bounded calculation
domain. Then, (2.6) implies q′′

n + k2
nqn = 0 for n ≤ N, and the usual radiation conditions q′

n = ±iknqn

(0 ≤ n ≤ N) for ±x → ∞ can be applied. Obviously, this means that the solutions (qn)n≤N+1 depend
on the size of the bounded calculation domain. In the following section, we show that it is possible
to decouple the mode equations outside the scattering region independently of the size of the
calculation domain. In the process, the mode qN+1 is identified as an evanescent mode, associated
with a new wavenumber K. Our coupled mode equation does not restrict to a bounded calculation
domain, because a natural radiation condition pN+1 = ±iKpN+1 is obtained.

(iii) New coupled mode equations on the pn-components

To prevent the modal components from remaining coupled in the straight parts of the waveguide,
we use a reformulation of the expansion in terms of new unknowns pn such that

p(X, Y) =
N∑

n=0

pn(X)ϕn(Y) + pN+1(X)ϕN+1(Y), (2.7)
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ϕN+1(Y) ≡ χ (Y) −
N∑

n=0

αnϕn(Y). (2.8)

The pn and the qn components are linked by the relations:

pn(X) ≡ (p,ϕn) =
{

qn(X) + αnqN+1(X), if 0 ≤ n ≤ N,

qN+1(X), if n = N + 1.

We obtain, for 0 ≤ n, m ≤ N + 1,

βn(hp′
n)′ +

N+1∑
m=0

amnh′p′
m − anm(h′pm)′ − 1

h
[γnδmn − k2h2βnδmn + dmnh′2]pm = 0, (2.9)

where anm and dnm are defined in equation (2.5) (and applied here for 0 ≤ n, m ≤ N + 1) and with

(ϕm,ϕn) ≡ βnδmn, (ϕ′
m,ϕ′

n) ≡ γnδmn. (2.10)

The above properties are important. The functions (ϕn)n≤N+1 are orthogonal, by construction
and the functions, (ϕ′

n)n≤N+1 are also orthogonal. It follows that our reformulation of the modal
expansion succeeds in decoupling the modal components in the straight parts of the waveguide:
for the N + 1 first modes, 0 ≤ n ≤ N, we recover the expected propagation equations p′′

n + k2
npn = 0,

as in the classical projection. For n = N + 1, we obtain

p′′
N+1 +

[
k2 − 1

h2
γN+1

βN+1

]
pN+1 = 0. (2.11)

We have (βn)n≤N = 1, (γn)n≤N = (nπ )2 and

βN+1 = 1 −
N∑

n=0

α2
n ∼ 1

3π2
1

N3 ,

and γN+1 =
(π

2

)2 −
N∑

n=0

(nπ )2α2
n ∼ 1

N
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12)

This shows that the additional mode is associated with a wavenumber K such that

K2 ≡
[

k2 − 1
h2
γN+1

βN+1

]
. (2.13)

Let us prove now that pN+1 is an evanescent mode. For each x-value, we note np(x) the number
of propagating modes (np is the integer part of kh(x)/π plus one). If we introduce Np = sup np(x),
where the sup is taken on all the x-values, then the mode ϕNp is the first mode evanescent in
the whole waveguide. Assuming that the truncation does not eliminate the propagating modes
(N ≥ Np − 1), we have K2 < 0 which corresponds to an evanescent mode. Indeed, using nπαn ≥
(N + 1)παn for all n ≥ N + 1, we obtain

K(x)2 = k2 − 1
h(x)2

∑∞
n=N+1(nπαn)2∑∞

n=N+1 α
2
n

≤ k2 −
(

(N + 1)π
h(x)

)2
≤ k2 −

(
Npπ

h(x)

)2
= k2

Np
,

and k2
Np
< 0 for all x-values by definition of Np.
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We return to our system of coupled mode equations. In the part of the waveguide with varying
cross section, we have

p′′
n +

[
k2 − 1

h2
γn

βn

]
pn = 1

βn

N+1∑
m=0

[
anm

1
h

(h′pm)′ − (amn + βnδmn)
h′

h
p′

m + h′2

h2 dmnpm

]
. (2.14)

A reasonable question is what happens for N → ∞. The equations for pn, n ≤ N + 1 involve
(an,N+1, aN+1,n) and (dN+1,n, dn,N+1). We have for n ≤ N

an,N+1 = (Yϕn,χ ′) −
N∑

m=0

αmanm =
∞∑

m=N+1

αmanm,

aN+1,n = (Yχ ,ϕ′
n) −

N∑
m=0

αmamn =
∞∑

m=N+1

αmamn

and dN+1,n ≡ (Y2χ ′,ϕ′
n) −

N∑
m=0

αmdmn =
∞∑

m=N+1

αmdmn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

and

aN+1,N+1 =
∞∑

m=N+1

αmαnanm

and dN+1,N+1 =
∞∑

m=N+1

αmαndmn.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.16)

The expressions of the coefficients anm and dnm are given in the appendix B. When N → ∞, it is
easy to check the following behaviours:

dN+1,n ∼ 8n2(−1)n

3π
1

N3 , aN+1,n ∼ 2n2(−1)n

3π
1

N3 ,

a0,N+1 ∼ −
√

2
π

1
N

, an,N+1 ∼ −2(−1)n

π

1
N

and dN+1,N+1 ∼ 1
N

, aN+1,N+1 ∼ 1
3π2

1
N3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

(an example of derivation of this equivalent is given in appendix A). Let us consider the equation
on pn, n ≤ N in equation (2.14). It is easy to check that the equation tends to the classical equation
(2.4) when N → ∞ (without boundary mode). For instance, anm ∼ m2/(n2 − m2), so that anm → −1
for large m, while an,N+1 ∼ 1/N → 0. This is expected, because the additional degree of freedom
pN+1 becomes unnecessary. The equation on pN+1 has the same structure, but with an non-
physical wavenumber K that depends on the truncation. Asymptotically, equation (2.14) for
n = N + 1 leads to constant pN+1 (the dominant term is (h′/h)δm,N+1p′

m in the right-hand side term,
which is O(N3)) and uncoupled to the other modes pm.

(b) Convergence and boundary condition in the improved representation
The convergence and the errors of the improved method compared with the classical method are
illustrated in figures 1 and 2. In the calculation, the non-uniform part of the waveguide is given
by h(x) = h[1 + 0.75(1 + cos 2πx)] for x ∈ [−0.5, 0.5] (geometry A). A plane wave is sent from the
left at a frequency kh = 2, for which Np = 2, two propagating modes exist in the largest part of
the waveguide. The presented results have been obtained using a numerical scheme based on
the use of the admittance matrix, as described in Pagneux et al. [4], (A. Maurel, J.-F. Mercier &
V. Pagneux 2013, unpublished data), implementing the evanescent boundary mode such as other
evanescent modes.

Figure 1 shows the real part of the acoustic field, in the improved method for a truncation just
at the two propagating modes (N = 1, the field is described by Nd.f. = 3 degrees of freedom (d.f.),
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(a)

y

Nd.f. = 2+1BM Nd.f. = 3

Nd.f. = 43

Nd.f. = 3

Nd.f. = 43

Nd.f. = 13

Nd.f. = 13

y

(b)

y

x

y

x

Nd.f. = 2+1BM

Figure 1. Real part of the acoustic field in the geometry A, with kh= 2 (two propagating modes for khmax = 5). With the
boundary mode and after truncation at the two propagating modes (Nd.f. = 2 + 1BM), and without boundary mode after
truncation at N = Nd.f. = 3, 13 and 43. The set of (b) on the right-hand side shows zooms of the (a) on the left-hand side.
(Online version in colour.)

the two propagating modes and the boundary mode) and in the classical method for truncations
including the two propagating modes plus 1–41 additional evanescent modes. It can be seen that
the upper wall boundary condition is reasonably verified in the improved method, whereas the
classical method suffers from oscillations, and it needs about 40 evanescent modes to behave
satisfactorily at the walls. More quantitatively, figure 2a shows the errors on the total field as
a function of the truncation N. The reference field has been calculated considering N = 100, for
which the fields obtained with or without boundary modes are equal up to less than 1 per cent.
The error is defined in L2 norm: ‖pN − p100‖L2/‖p100‖L2 . The general trends of the errors are in
agreement with the prediction of Hazard & Lunéville [12], with an error varying such as N−3/2 in
the classical method and N−7/2 in the improved method (the dependence of the ‖qn‖L2 and ‖pn‖L2

modal components is also reported in figure 2b as a function of n; ‖qn‖L2 ∝ n−4 in the improved
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10−4

10 102

10−8

10−7

Nd.f.

10−6

10−5

10−4

10−3

er
ro

r

10−2

10−1

(a) (b)

10

1

1

10−6

10−2

1

1
n

−2

−4

|p
n|

,|q
n|

Figure 2. (a) Errors as a function of the truncation in the geometry A. Red symbols (four upper curves) for the classical method
and black symbols (four lower curves) for the improved method; open circles for the error in the propagating part of the field,
diamonds for the errors for the evanescent part of the field and close circles for the error on the total fields. The insets show the
evanescent part of the field (left inset) and the propagating part of the field (right inset). (b) Dependence on qn (open circles)
and pn (filled circles) as a function of n in the geometry A. Dashed lines are guidelines with slopes−2 and−4. (Online version
in colour.)

method, whereas ‖pn‖L2 ∝ n−2 in the classical modal method). More remarkable is the case where
Nd.f. = 3 d.f. (three terms taken into account in the modal expansion) are considered, already seen
qualitatively in figure 1. Adding to the two propagating modes, the third d.f. is the first evanescent
mode in the classical method and it is the boundary mode in the improved method. The resulting
error on the total field is about 30 per cent in the classical method, whereas it is only 5 per cent
in the improved method, and one has to consider more than 10 evanescent modes in the classical
method to reach the same small error (note that, although the error on the total field is small for
N around 10, one can see in figure 1 that the field still suffers from oscillations).

We now focus on the boundary condition on the non-uniform wall at y = h(x). The mode pN+1
has been shown to be an evanescent mode. This mode is excited in the perturbed region h′ �= 0 but
is not equal to zero outside this region, it is only exponentially decreasing in the straight part of the
waveguide. This seems to be in contradiction with the desired condition ∂yp(x, h) = h′∂xp(x, h) = 0
in the straight part. To clarify this point, let us consider the truncated condition as a function of
the truncation number. The change of variable (x, y) → (X, Y) implies that

∂ypN(x, h) − h′∂xpN(x, h) = 1 + h
′2

h
∂YpN(X, 1) − h′∂XpN(X, 1)

= 1 + h′2

h
pN+1(x)χ ′(1) − h′

N∑
m=0

q′
m(x)ϕm(1), (2.18)

and we will prove now that this quantity is of order O(1/N). In this aim, the equation for pN+1 in
(2.14) is rearranged in the following way:

γN+1 + h′2dN+1,N+1

h
pN+1 − h′

N∑
n=0

an,N+1p′
n = βN+1[(hp′

N+1)′ + k2hpN+1]

+ aN+1,N+1[h′p′
N+1 − (h′pN+1)′] −

N∑
n=0

[
h′2

h
dn,N+1pn + aN+1,n(h′pn)′

]
. (2.19)

Owing to the behaviour of the coefficients in equations (2.12) and (2.17), it appears that the left-
hand side in (2.19) is of order 1/N (let us recall that pn decreases with n, |pn| ∼ 1/n2), whereas the
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right-hand side is of order 1/N2. More precisely, we obtain at dominant order:

1 + h′2

h
pN+1(X) + h′ 1

π

[√
2p′

0(X) + 2
N∑

n=0

(−1)np′
n(X)

]
= O

(
1
N

)
.

Using ϕ0(1) = 1, ϕn(1) = √
2(−1)n, 0< n ≤ N and χ ′

N+1(1) = −π/√2, the above equation can be
written as

1 + h′2

h
pN+1(X)χ ′(1) − h′

N∑
m=0

p′
m(x)ϕm(1) = O

(
1
N

)
.

It is also easy to see, from pn = qn + αnpN+1, that

N∑
n=0

q′
n(x)ϕn(1) =

N∑
n=0

p′
n(x)ϕn(1) + O

(
1
N

)

(using
∑N

n=1 1/(n2 − 1
4 ) = 2 + O(1/N)). It follows that the truncated boundary condition (2.18)

satisfies

h′∂xpN(x, h) − ∂ypN(x, h) = O
(

1
N

)
,

and the right boundary condition is verified for N → ∞.

3. The case of two varying walls
In the case of two varying walls of shapes h1(x) and h2(x), two extra degrees of freedom pN+1(x)
and pN+2(x) are considered in the expansion of p(x, y), and it is expected that each degree of
freedom will tackle one of the two boundary conditions on the non-uniform walls.

The procedure to derive a family of one-dimensional wave equations is similar to the case
of one varying wall. The transformation (x, y) → (X, Y) is now defined by x = X and y = h1 + Yh,
where h = h2 − h1. The Jacobian of this transformation is

J =

⎛
⎜⎝1

−f (Y)
h

0
1
h

⎞
⎟⎠ ,

with f (Y) ≡ h′
1 + Yh′, from which we deduce the modified Helmholtz equation:

∂X(h∂Xp − f∂Yp) − ∂Y

(
f (Y)∂Xp − 1 + f 2

h
∂Yp

)
+ k2hp = 0,

with boundary conditions:

hf (0)∂Xp(X, 1) = [1 + f (0)2]∂Yp(X, 0)

and hf (1)∂Xp(X, 1) = [1 + f (1)2]∂Yp(X, 1),

⎫⎬
⎭ (3.1)

where p(X, Y) is expanded onto the usual basis (ϕn)n≥0, and on two additional modes ϕN+1 and
ϕN+2:

p(X, Y) =
N∑

n=0

pn(X)ϕn(Y) + pN+1(X)ϕN+1(Y) + pN+2(X)ϕN+2(Y),

and we choose ϕN+1 and ϕN+2 as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕN+1(Y) ≡ χ1(Y) −
N∑

n=0

α
(1)
n ϕn(Y),

ϕN+2(Y) ≡ χ2(Y) −
N∑

n=0

α
(2)
n ϕn(Y),
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with ⎧⎪⎪⎨
⎪⎪⎩
χ1(Y) ≡ ξ1

[
cos

(
πY
2

)
+ sin

(
πY
2

)]
,

χ2(Y) ≡ ξ2

[
cos

(
πY
2

)
− sin

(
πY
2

)]
.

and
α

(j)
n ≡ (χj,ϕn), j = 1, 2. (3.2)

The normalizations are ξ1 = 1/
√

1 + 2/π and ξ2 = 1/
√

1 − 2/π . The projection of the wave
equation (3.1) is

βn(hp′
n)′ −

N+2∑
m=0

[(anmh′ + h′
1bnm)p′

m]′ + [amnh′ + h′
1bmn]p′

m

−
N+2∑
m=0

1
h

[(1 + h′2
1 )γnδmn − k2h2βnδmn + dmnh′2 + 2h′h′

1cmn]pm = 0,

for 0 ≤ n, m ≤ N + 2, with anm and dnm defined in equation (2.5) and

bmn ≡ (ϕm,ϕ′
n), cmn ≡ (Yϕ′

m,ϕ′
n).

The key point is that we have chosen χ1 and χ2 such that (ϕN+1,ϕN+2) = (ϕ′
N+1,ϕ′

N+2) = 0
(otherwise, for n ≤ N, (ϕN+1,ϕn) = (ϕN+2,ϕn) = 0 and (ϕ′

N+1,ϕ′
n) = (ϕ′

N+2,ϕ′
n) = 0 by construction).

This is because we have chosen (χ1,χ2) = (χ ′
1,χ ′

2) = 0 and such that α(1)
n α

(2)
n = 0 for any n-value

(see equation (B 8)), from which we deduce

(ϕN+1,ϕN+2) = (χ1,χ2) −
N∑

n=0

α
(1)
n α

(2)
n = 0,

and (ϕ′
N+1,ϕ′

N+2) = (χ ′
1,χ ′

2) −
N∑

n=0

α
(1)
n α

(2)
n (nπ )2 = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

Again, the equations on pn are decoupled in the straight parts of the waveguide, with p′′
n + k2

npn =
0 (and k2

n = k2 − (nπ/h)2) for the usual modes n ≤ N and

p′′
N+j + K2

j pN+j = 0, j = 1, 2, (3.4)

and

K2
j ≡

[
k2 − 1

h2

γN+j

βN+j

]
. (3.5)

In the part of the waveguide with varying cross section, we have, for n = 0, . . . (N + 2)

p′′
n +

[
k2 − 1

h2
γn

βn

]
pn = 1

βn

N+2∑
m=0

[
1
h

(anmh′ + bnmh′
1)p′

m

]′
−
[

(amn + βnδmn)
h′

h
+ bmn

h′
1

h

]
p′

m

+
[
γnδmn

h′2
1

h2 + dmn
h′2

h2 + 2cmn
h′h′

1
h2

]
pm. (3.6)

The coefficients (anm, bnm, cnm, dnm) and (γn,βn) are given in the appendix B. As for one varying
wall, we find that the modal components pn≤N are the usual modal components associated
with the wavenumbers kn =

√
k2 − (nπ/h(x))2, whereas the two boundary modes appear to be

evanescent with purely imaginary wavenumbers Kj ≡
√

k2 − γN+j/βN+jh2, j = 1, 2.
Typical results are shown in figure 3 for two varying walls with h1(x) = (tanα)x for x ∈ [0, 1] and

h2(x) = h1(x) + 1. We consider α = 0.25π (geometry B) and α= 0.37π (geometry C). At a frequency
kh = 2, only the plane mode is propagating. It can be seen that the boundary conditions on each
walls are reasonably verified as soon as N = 2 in the improved method (Nd.f. = 4), whereas the
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Figure 3. Real part of the acoustic field in the geometry B (left) and C (right), with kh= 2.With the boundarymodes and after
truncation at the two propagating modes (Nd.f. = 2 + 2BM), and without boundary mode after truncation at N = Nd.f. = 4,
11 and 41. (Online version in colour.)

classical method suffers from oscillations after truncation at a few modes and it needs more
than 10 evanescent modes to approach reasonably the boundary conditions. The conclusions (not
reported) on the convergence versus N and the boundary conditions are the same as in the case
of one varying wall.

4. Low-frequency limit: revisiting Webster equation
In this section, the low-frequency regime is inspected and the possibility to improve the usual
Webster equation, namely

h(p′′
0 + k2p0) = −h′p′

0, (4.1)

where p0(x) = eikx at leading order is investigated. At a given frequency kh (h is the height outside
the perturbed area), the Webster equation inspects the first-order correction in O(h′) owing to
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the inhomogeneity in the cross section. A derivation of the Webster equation can be found in
Rienstra [14] (see also a brief discussion in the appendix C).

We will show that (2.14) for one boundary mode and (3.6) for two boundary modes degenerate
in coupled equations of the general form

h(p′′
0 + k2p0) = −h′p′

0 + G(h′p̃)′,

and h(p̃′′ + K2p̃) = −Fh′p′
0,

⎫⎬
⎭ (4.2)

where K, p̃ refer to the wavenumber and modal component of one boundary mode, F, G are
constants that will be given later. The coupled system involves now p̃ = O(h′), so that the
plane mode p0 can be determined up to O(h′2). In the following, we refer to the improved
Webster approximation as IWA (note that a different improvement is proposed for axisymmetric
three-dimensional geometry in reference [15]).

Although Webster’s equation (4.1) and the improved representation (4.2) can be solved
numerically, we consider here analytical solutions by using the first Born approximation (namely
p0(x) = eikx at leading order). We inspect two cases leading to simplifications. In the first case, h(x)
varies on a typical scale L much larger than h (slowly varying section), and in the second case, L
is much smaller than any scale of the problem (sudden variation).

(a) General expressions
In this section, we propose an analytical solution of the IWA equation (4.2), considering the case
of one boundary mode. The case of two boundary modes follows simply by linearity. The second
equation of (4.2) is solved in the first Born approximation (p0(x) � eikx):

p̃(x) = −ikF
∫

dy gK(x − y)
h′(y)
h(y)

eiky, (4.3)

where gK(x) ≡ eiK|x|/(2iK) is the Green function for the one-dimensional wave equation. Reporting
the solution for p̃ in the first equation of (4.2) leads to:

p0(x) = eikx + pW
0 + G

h

∫
dy g′

k(x − y)h′(y)p̃(y), (4.4)

where pW
0 refers to the solution of the Webster equation (4.1) and where g′

k(x − y) denotes the
derivative with respect to x. Note that we have used h(x) � h (remember that |h′| � 1) in the
second equation.

(i) Slowly varying waveguide

We consider a cross section varying of �h � h over a length L with h/L � 1. As previously
said, K is imaginary, and here, K2 = k2 − γN+1/βN+1h2 � −σ 2/h2, with σ 2 ≡ γN+1/βN+1. We use∫

dy e−|y|/lf (y) ∼ 2lf (0) for f varying over a typical length L � l. Applying this result with σL/h �
1, we obtain from equation (4.3), at dominant order and in the perturbed area (where h′ �= 0):

p̃(x) = ikh
F
σ 2 h′(x) eikx. (4.5)

Equation (4.4) simply becomes

p0(x) = eikx + pW
0 + ikC

∫
dyh′(y)2sgn(x − y) eik|x−y|+iky, (4.6)

where C ≡ FG/(2σ 2).
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(ii) Sudden variation in the section

We consider now a sudden variation located at x = x0, in which h varies of �h on a typical
scale L much smaller than any scale of the problem. Then, h′(x) =�hδ(x − x0) and equation (4.3)
reduces to:

p̃(x) = ik
2

F
σ
�h eikx0 e−σ |x−x0|/h. (4.7)

Then, the solution of the equation (4.4) simply follows (note that here the solution pW
0 takes a very

simple form, because its second order in (�h/h)2 vanishes):

p0(x) = eikx − �h
2h

[
1 − 2iD(kh)

�h
h

sign(x − x0)
]

eikx0 eik|x−x0| + O

((
�h
h

)3
)

, (4.8)

with D = FG/4σ .

(b) The case of one varying boundary
Here, the case of one boundary mode is treated, and a discussion on the use of two boundary
modes is proposed in the following section. With a00 = d00 = 0, and, for N = 0, we have from
equations (B 3)–(B 4): a0+1,0 = d0,0+1 = 0 and a0,0+1 = −2

√
2/π (and γ0+1 = (π/2)2, β0+1 = 1 − 8/π2,

from equations (B 1)–(B 2)), the system (2.14) reduces to the following system at dominant order:

⎧⎪⎨
⎪⎩

h(p′′
0 + k2p0) = −h′p′

0 + a0,0+1[h′p̃]′,

h(p̃′′ + K2p̃) = − a0,0+1

β0+1
h′p′

0,

which can be identified to the system (4.2) with F = a0,0+1/β0+1 and G = a0,0+1. Then, the
expressions (4.6) and (4.8) can be directly applied, taking C = a2

0,0+1/(2γ0+1) ∼ 0.1643 and D =
a2

0,0+1/(4
√
β0+1γ0+1) ∼ 0.2964. The comparisons of IWA solutions to the Webster approximation

(WA) are illustrated in figures 4 and 5 for a slowly varying waveguide with cosine modulation
and for a waveguide with the upper boundary varying suddenly. In both cases, a significant
improvement is observed although a quite high frequency kh = 2 is considered. In the case of
the sudden variation of the upper boundary (figure 5), the IWA solution is able to capture the
discontinuity of the plane mode at the expansion location (from the Webster equation (4.1) written
in the conservative form (hp′

0)′ + k2hp0 = 0 it is possible to prove that its solution is continuous,
even for h discontinuous).

(c) The case of two varying walls
We use a00 = b00 = c00 = d00 = 0, to obtain, from equations (B 10)–(B 11): for j = 1, 2, a0+j,0 = â(j)

0 = 0,

b0+j,0 = b̂(j)
0 = 0, c0+j,0 = c(j)

0 = 0 and d0+j,0 = d(j)
0 = 0; we also have a0,0+1 = a(1)

0 = ξ1(1 − 4/π ),

b0,0+1 = b(1)
0 = 0, a0,0+2 = a(2)

0 = −ξ2, b0,0+2 = b(2)
0 = −2ξ2, the system of equation (3.6) leads, at

dominant order, to the simplified system for (p0, p̃1, p̃2):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h(p′′
0 + k2p0) = −h′p′

0 +
[
ξ1

(
1 − 4

π

)
h′p̃1 − ξ2(2h′

1 + h′)p̃2

]′
,

h(p̃′′
1 + K2

1p̃1) = − ξ1

β1

(
1 − 4

π

)
h′p′

0,

h(p̃′′
2 + K2

2p̃2) = ξ2

β2
(2h′

1 + h′)p′
0.
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Figure 4. (a) Real part of the scattered pressure field p(x, y) − eikx in a waveguide with a cosine modulation of the upper
boundary (localized between kx = 2.5 and kx = 7.5 with amplitude 0.5) at the frequency kh= 2. (b) Real part of the plane
mode p0(x) − eikx , deduced from the reference calculation (black line), in the WA (dotted red line) and in the IWA, including
the contribution of the boundary mode (solid red line from equation (4.6)), with C = 0.1643. (Online version in colour.)
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Figure 5. (a) Real part of the scattered pressure field p(x, y) − eikx in a waveguide with a sudden variation of the upper
boundary (localized at kx = 5 with amplitude 0.5) at the frequency kh= 2. (b) Real part of the plane mode p0(x) − eikx ,
deduced from the reference calculation (black line), in the WA (dotted red line) and in the IWA, including the contribution of
the boundary mode (solid red line from equation (4.8)), with D= 0.2964. (Online version in colour.)

By identifying the above system with equation (4.2), it is straightforward to use equations (4.6)
and (4.8). Indeed, p̃1 tackles the variation of cross section h with F1 ≡ ξ1(1 − 4/π )/β1 and G1 =
ξ1(1 − 4/π ), whereas p̃2 tackles the variation of the centreline of the waveguide (here 2h1 +
h = h1 + h2 plays the role of h′ in (4.2)) with F2 = −ξ2/β2 and G2 = −ξ2. We also have, from
equations (B 8) and (B 9), β1 = 1 − (4ξ1/π )2, γ1 = (π/2)2 − πξ2

1 and β2 = 1, γ2 = (π/2)2 + πξ2
2 .
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Figure 6. (a) Real part of the scattered pressure field p(x, y) − eikx in a waveguide with a sudden bend (h′1 = tanα = 0.1
between kx = 2.5 and kx = 7.5) at the frequency kh= 2. (b) Real part of the plane mode p0(x) − eikx , deduced from the
reference calculation (black line), in the WA (dotted red line) and in the IWA, including the contribution of the boundary mode
(solid red line from equation (4.10)). (Online version in colour.)

More precisely, equations (4.5)–(4.6) become, for slowly varying h and h1:

p̃1(x) = ik
ξ1

γ1

(
1 − 4

π

)
hh′(x) eikx,

p̃2(x) = −ik
ξ2

γ2
h[2h′

1(x) + h′(x)] eikx

and p0(x) = eikx + pW
0 (x) + ik

∫
dy[C1h′(y)2 + C2[2h′

1(y) + h′(y)]2] sign(x − y) eik|x−y|+iky,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

where C1 ≡ ξ2
1 (1 − 4/π )2/2γ1 = 2(1 − 4/π )2/[π2(1 − 2/π )] ∼ 0.042 and C2 ≡ ξ2

2 /2γ2 = 2/[π2(1 +
2/π )] ∼ 0.124. Note that in the case of one varying wall, h′

1 = 0, the solution for p0(x) in (4.9) is
identical to the solution of equation (4.6) using one boundary mode by considering the change
C → C1 + C2 and, as expected, we have C1 + C2 ∼ 0.1655, very close to the value C ∼ 0.1643 when
using one boundary mode.

An illustration of a slowly varying waveguide is given in figure 6 for a constant section guide
but varying h1 (the deviation is sudden but h1 is continuous). We considered the simplified
expression obtained for a portion of waveguide between a and b with constant height h and
forming an angle α with x (leading to h′ = 0, h′

1 = tanα). Equation (4.9) simplifies in

p0(x) = eikx + 8ik
π2(1 + 2/π )

(tanα)2
∫ b

a
dy sign(x − y) eik|x−y|+iky. (4.10)

The result is shown in figure 6 for α = 0.1 and (a = 2.5, b = 7.5) at a frequency kh = 2. Here, because
h′ = 0, the Webster’s equation does not predict any effect of the bending on the plane mode, and
the effect captured by the boundary mode in IWA follows a (tanα)2 law.
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Figure 7. (a) Real part of the scattered pressure field p(x, y) − eikx in a waveguide with a symmetric sudden expansion
(localized at kx = 5 with amplitude 0.5 on both sides) at the frequency kh= 2. (b) Real part of the plane mode p0(x) − eikx ,
deduced from the reference calculation (black line), in the WA (dotted red line) and in the IWA, including the contribution of
the boundary mode (solid red line from equation (4.11)), with D= 0.2964. (Online version in colour.)

If the variations are sudden for both walls, then we consider h1(x) =�h1δ(x − x0) in addition
to h(x) =�hδ(x − x0), which leads to, using equations (4.7) and (4.8):

p̃1(x) = ikξ1

2β1σ1

(
1 − 4

π

)
�h eikx0 e−σ1|x−x0|/h,

p̃2(x) = − ikξ2

2β2σ2
(2�h1 +�h) eikx0 e−σ2|x−x0|/h

and p0(x) = eikx +
{

−�h
2h

+ ikh sign(x − x0)

[
D1

(
�h
h

)2
+ D2

(
2�h1 +�h

h

)2
]}

eikx0 eik|x−x0|,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)

where D1 = ξ2
1 (1 − 4/π )2/(4

√
β1γ1) � 0.1584 and D2 ≡ ξ2

2 /(4
√
β2γ2) � 0.2064 (where we used σj =√

γj/βj, j = 1, 2). Note again that if only the upper boundary experiences a sudden change (figure 5
with�h1 = 0), then the solution for p0(x) in (4.11) is identical to the solution of equation (4.8) using
one boundary mode with D → D1 + D2. Although we have here D1 + D2 ∼ 0.3648, quite different
from D ∼ 0.2964 when using one boundary mode, no significant difference is observed in the IWA
profile p0(x) (the result is not reported).

The result for a symmetric sudden expansion at frequency kh = 2 is shown in figure 7. The
agreement between the reference solution and the IWA solution is excellent, better than the
agreement found for a sudden change in the upper boundary only (figure 5). This is probably
due to the symmetry of the sudden expansion: because odd modes are not allowed, the first
evanescent mode that can be excited is the mode 2, associated with the cut-off frequency k2h = 2π .
This frequency is far from the incident wave frequency kh = 2, which means that the mode
2 is very evanescent, well captured by the added boundary modes. On the contrary, for the
non-symmetric expansion, the mode 1 of cut-off frequency k1h = π seems to be too close to a
propagating mode to be satisfactorily tackled by the boundary mode.
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5. Conclusion
In this paper, we have revisited an efficient method developed earlier which consists of adding
an extra non-physical mode to the usual modal expansion to obtain a better convergence of the
modal series. By performing a change of unknowns we are able to partially decouple the modal
components, which improves the boundary mode method and leads to at least two interesting
consequences. (i) It allows to identify the nature of the boundary mode and its relation with the
usual modes. This defines radiation conditions and thus facilitates the use of efficient numerical
methods such as the admittance matrix method. The numerical tests have shown that our method
is very efficient in reducing the number of degrees of freedom: adding to the boundary modes, it is
sufficient to take only the propagating modes to obtain very good results. Works are in progress to
investigate in detail the strength of such approach in multimodal numerical schemes (A. Maurel,
J.-F. Mercier & V. Pagneux 2013, unpublished data). (ii) In the low-frequency regime, which is the
main goal of the present paper, the boundary mode is used to derive new approximate equations
improving the Webster equation. Extensions to three-dimensional axisymmetric waveguides and
to bent waveguides with varying cross section are under progress.

We acknowledge the support from the Agence Nationale de la Recherche, ANR-10-INTB-0914 ProComedia.
The authors thank Christophe Hazard and Eric Lunéville for useful discussions.

Appendix A. Projection of the wave equation
The derivation of the wave equation (2.9) (with h′

1 = 0) is here recovered, and compared with
classical projection. For the classical projection, we refer to Pagneux’s derivation [4], who avoided
an error in Stevenson 1956 that is commented below. The direct projection of the wave equation
onto the eigenfunctions ψn is classic Stevenson (1951), Pagneux et al. [4], with

p(x, y) =
∑

n
pn(x)ψn(y; x), ∂xp(x, y) =

∑
n

rn(x)ψn(y; x),

and ψ0(y; x) = 1, ψn(y; x) = √
2 cos nπy/h(x), satisfying hrn = (hpn)′ − h′pm(fmn − amn), with fmn ≡

ψm(h; x)ψn(h; x). The projection of ∂2
y is, using the boundary condition at y = h:

∫ h

0
dyψn∂

2
y p =

∫ h

0
dyp∂2

yψn + h′∂xp(x, h)ψn(h; x) = −
(nπ

h

)2
pn + fmnh′rm.

The projection of ∂2
x starts with

d
dx

∫ h

0
dy(pψn) =

∫ h

0
dy(∂xpψn + p∂xψn) + h′p(x, h)ψn(h; x), (A 1)

and the difference in the obtained representation comes from the treatment of this derivative.
In the following, we need the following relations:

— Starting from the definition of amn = ∫h(x)
0 (y∂yψn(y; x))ψm(y; x), we deduce y∂yψn(y; x) =

alnψl(y; x). Then, it follows alnflm = 0 for any (n, m), where we used ∂yψ(h; x) = 0.

— We also have dmn ≡ ∫h(x)
0 dy(y∂yψn(y; x))(y∂yψm(y; x)) = aln

∫h(x)
0 dyψl(y; x)(y∂yψm(y; x)) =

alnalm.
— Integrating by part

∫h(x)
0 dy yψn(y; x)ψm(y; x), we have amn + anm = −δmn + fmn.
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(a) Classical derivation by direct projection of the wave equation
In Pagneux et al. [4], the second derivative is, from equation (A 1),

d2

dx2

∫ h

0
dy(pψn) =

∫ h

0
dy∂2

x pψn +
[

(anm + δnm)h′′ − dmn
h′2

h

]
pm

− (2amn − fmn(1 + h′2))h′rm,

using the boundary condition for p at y = h(x) to obtain (d/dx)p(x, h) = (1 + h′2)∂xp(x, h) and
our ψn(h; x) is independent of x. Note that it is this derivation that is done in Stevenson
by deriving term by term, namely Stevenson considers (d/dx)p(x, h) =∑

m p′
m(x)ψm(h; x). Using

rather [−2amn + fmn(1 + h′2)]hrm = [−2amn + fmn(1 + h′2)]p′
m + 2(h′/h)dmnpm, we obtain the system

of coupled differential equations on the pn:

p′′
n + k2

npn = pm

[
h′′

h
anm + h′2

h2 dnm

]
+ p′

m
h′

h
[2anm − fmn(1 + h′2)]. (A 2)

(b) Alternative projection
Alternatively, we can consider the derivation of equation (A 1):

d2

dx2

∫ h

0
dy(pψn) ==

∫ h

0
dy∂2

x pψn(amn + δmn)h′rm + [(anm + δmn)h′pm]′.

Using amnhrm = amnhp′
m − dmnh′pm, we obtain

p′′
n + k2

n(x)pn = dmn
h′2

h2 pm − (amn + δmn)
h′

h
p′

m + 1
h

[anmh′pm]′,

that corresponds to our equation (2.4).

Appendix B. Expressions of (α,β), (a, b, c, d)
For m ≤ N and n ≤ N, we have obviously βn = 1 and γn = (nπ )2. Then

amn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,√
2(−1)n,

1
2

,

2(−1)n+mn2

n2 − m2 ,

bmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if n = 0,
√

2((−1)n − 1); if m = 0, n �= 0,

0 if n = m,

((−1)n+m − 1)
2n2

n2 − m2 otherwise,

and

cmn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0,
n2π2

2
,

((−1)n+m − 1)
4n2m2

(m2 − n2)2 ,

dmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if m or n = 0,

n2π2

3
− 1

2
, if m = n �= 0,

8
(−1)n+mn2m2

(n2 − m2)2 , otherwise.
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(a) For one degree of freedom
We have

αm ≡ (ϕm,χ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

2
π

, if m = 0,

(−1)m+1

π (m2 − 1/4)
, if m �= 0.

(B 1)

The coefficients βN+1 and γN+1 are given using (χ ,χ ) = 1, (χ ′,χ ′) = (π/2)2 and (ϕn,ϕm) = δmn,
(ϕ′

n,ϕ′
m) = (nπ )2δmn for (m, n) ≤ N

βN+1 = (ϕN+1,ϕN+1) = 1 −
N∑

n=0

α2
n,

and γN+1 ≡ (ϕ′
N+1,ϕ′

N+1) =
(π

2

)2 −
N∑

n=0

(nπαn)2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B 2)

We also need the coefficients a, b, c, d for the boundary mode (although not necessary for one
varying wall, we define also the coefficients b and c, see following section).

am,N+1 = am −
N∑

n=0

αnamn, aN+1,m = âm −
N∑

n=0

αnanm,

bm,N+1 = bm −
N∑

n=0

αnbmn, bN+1,m = b̂m −
N∑

n=0

αnbnm

and cm,N+1 = cm −
N∑

n=0

αncmn, dm,N+1 = dm −
N∑

n=0

αndmn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

where am ≡ (Yϕm,χ ′), âm ≡ (Yχ ,ϕ′
m), bm ≡ (ϕm,χ ′), b̂m ≡ (χ ,ϕ′

m), cm ≡ (Y2χ ′,ϕ′
m) and dm ≡

(Y2χ ′,ϕ′
m).

am =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2
√

2
π

, if m = 0,

−(−1)m

π

m2 + 1/4
(m2 − 1/4)2 , if m �= 0,

, âm = (−1)m

π

2m2

(m2 − 1/4)2

and bm =

⎧⎪⎨
⎪⎩

−√
2, if m = 0,

1
2(m2 − 1/4)

, if m �= 0,
, b̂m =

⎧⎪⎨
⎪⎩

0, if m = 0,

−2m2

m2 − 1/4
, if m �= 0,

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 4)

and

cm = m
2

[
1

(m + 1/2)2 − 1
(m − 1/2)2 − 2πm(−1)m

m2 − 1/4

]

and dm = (−1)m m2

m2 − 1/4

[
2
π

m2 + 3/4
(m2 − 1/4)2 − 1

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 5)
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The asymptotic forms of am,N+1, aN+1,m and dm,N+1 can be checked numerically, but, because they
are rests of series, they can be evaluated explicitly. For instance, we have dm,N+1 =∑∞

n=N+1 αndmn

dm,N+1 = − 2(−1)mm2

π (m2 − 1/4)2

∞∑
n=N+1

[
m2 − 1/4
(n − m)2 + m2 − 1/4

(n + m)2 + 1
(n2 − 1/4)

− 2(m2 + 1/4)
(n2 − m2)

]
. (B 6)

We can now evaluate
∑∞

n=N+1 1/(n2 − a2) ∼ ∫∞
N+1 dx/(x2 − a2) � 1/N + a2/(3N3), and

∑∞
n=N+1

1/(n + a)2 ∼ ∫∞
N+1 dx/(x + a)2 � 1/(N + a) � 1/N − a/N2 + a2/N3, for large N. It follows that

dm,N+1 ∼ 8(−1)mm2/(3πN3).
Finally, we also need (Yχ ,χ ′) = − 1

2 , (χ ,χ ′) = −1, (Yχ ′,χ ′) = π2/8 + 1
2 and (Y2χ ′,χ ′) = π2/12 +

1
2 to obtain

aN+1,N+1 = (Yχ ,χ ′) −
N∑

n=0

αn(an,N+1 + aN+1,n) −
N∑

n,m=0

αnαmanm,

bN+1,N+1 = (χ ,χ ′) −
N∑

n=0

αn(bn,N+1 + bN+1,n) −
N∑

n,m=0

αnαmbnm,

cN+1,N+1 = (Yχ ′,χ ′) − 2
N∑

n=0

αncn,N+1 −
N∑

n,m=0

αnαmcnm

and dN+1,N+1 = (Y2χ ′,χ ′) − 2
N∑

n=0

αndn,N+1 −
N∑

n,m=0

αnαmdnm,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 7)

(b) For two degrees of freedom
It is more convenient to express the coefficients as a function of the formers. We have

α
(1)
m = ξ1√

2
(1 + (−1)m)αm, α

(2)
m = ξ2√

2
(1 − (−1)m)αm, (B 8)

with αm given in equation (B 1). We also have

βN+1 = 1 −
N∑

n=0

α
(1)
n

2
, βN+2 = 1 −

N∑
n=0

α
(2)
n

2
,

and γN+1 =
(π

2

)2 − πξ2
1 −

N∑
n=0

(nπα(1)
m )2, γN+2 =

(π
2

)2 + πξ2
2 −

N∑
n=0

(nπα(2)
m )2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B 9)

Then, we define, for j = 1, 2

am,N+j = a(j)
m −

N∑
n=0

α
(j)
n amn, aN+j,m = â(j)

m −
N∑

n=0

α
(j)
n anm,

bm,N+j = b(j)
m −

N∑
n=0

α
(j)
n bmn, bN+j,m = b̂(j)

m −
N∑

n=0

α
(j)
n bnm

and cm,N+j = c(j)
m −

N∑
n=0

α
(j)
n cmn, dm,N+j = d(j)

m −
N∑

n=0

α
(j)
n dnm,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 10)
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with cm,N+j and dm,N+j being the symmetrical forms. The coefficients a(j), â(j), b(j), b̂(j), c(j), d(j) can

be expressed as a function of the coefficients a, â, b, b̂, c, d in equation (B 5).

a(1)
m =

⎧⎪⎨
⎪⎩
ξ1(1 − 4/π ),

ξ1√
2

[
am + cm + b̂m

2πm2

]
,

a(2)
m =

⎧⎪⎨
⎪⎩

−ξ2, m = 0,

ξ2√
2

[
am − cm + b̂m

2πm2

]
, m> 0

â(1)
n = ξ1√

2

[
ân − 2

π
cn

]
, â(2)

n = ξ2√
2

[
ân + 2

π
cn

]
,

b(1)
n = ξ1√

2

(
bn + π

2
αn

)
, b(2)

n = ξ2√
2

(
bn − π

2
αn

)
,

b̂(1)
n = ξ1√

2
(b̂n − 2πn2αn), b̂(2)

n = ξ2√
2

(b̂n + 2πn2αn),

c(1)
n = ξ1√

2

(
ĉn + π

2
ân

)
, c(2)

n = ξ2√
2

(
ĉn − π

2
ân

)
,

d(1)
n = − ξ1

2
√

2(n2 − 1/4)

[
4n2an − ân + 2

π
(2cn + b̂n) − 2n2(−1)n

]

and d(2)
n = − ξ2

2
√

2(n2 − 1/4)

[
4n2an − ân − 2

π
(2cn + b̂n) − 2n2(−1)n

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 11)

The coefficients for n = N + j or m = N + j, j = 1, 2 are of the form (we give the example for
aN+1,N+2)

aN+1,N+2 = (Yχ1,χ ′
2) −

N∑
n=0

α
(1)
n an,N+2 −

N∑
m=0

α
(2)
m aN+1,m −

N∑
n,m=0

α
(1)
n α

(2)
m anm, (B 12)

and this can be carried out for all coefficients b, c, d. It appears that we need the following
integrals (Yχ1,χ ′

1) = −ξ2
1 /π , (Yχ2,χ ′

2) = ξ2
2 /π , (Yχ1,χ ′

2) = −ξ1ξ2/(2 + π ), (Yχ2,χ ′
1) = −ξ1ξ2/(2 −

π ) (χ1,χ ′
1) = 0, (χ2,χ ′

2) = 0, (χ1,χ ′
2) = −πξ2/(2ξ1) (χ2,χ ′

1) = πξ1/(2ξ2) (Yχ ′
1,χ ′

1) = ξ2
1π

2/(8(1 −
2/π )), (Yχ ′

2,χ ′
2) = ξ2

2π
2/(8(1 + 2/π )), (Yχ ′

1,χ ′
2) = ξ1ξ2/2, (Y2χ ′

1,χ ′
1) = −ξ2

1π
2[ 1

12 + 1/π3 − 1/4π ],
(Y2χ ′

2,χ ′
2) = −ξ2

2π
2[ 1

12 − 1/π31/4π ], (Y2χ ′
1,χ ′

2) = −ξ1ξ2/2.

Appendix C. On the Webster equation
The plane wave approximation, where p(x, y) � p0(x) is known to produce the Webster equation:

p′′
0 + k2p0 = −h′

h
p0.

In the low-frequency regime (ε ≡ kh � 1), we have p0 = O(1) (incident mode). For n �= 0, from
equation (2.4), using k2

n � (nπ/h)2 we deduce that pn = O(h′2, εh′). For n = 0, with a00 = d00 = 0,
equation (2.4) leads to:

p′′
0 + k2p0 + h′

h
p′

0 = k2O

(
h′3

ε2 ,
h′2

ε

)
,

from which the Webster equation can be deduced if h′2 � ε� 1. A particular case satisfying such
condition is used in [14] with h′ = ε. Equation (A 2) leads to a slightly different equation:

p′′
0 + k2p0 + h′

h
(1 + h′2)p′

0 = k2O

(
h′3

ε2 ,
h′2

ε

)
.
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As it was already mentioned in Pagneux et al. [4], equation (A 2) seems to have an extra term
in h′3. However, the extra term,

h′3

h
p0 = k2O

(
h′3

ε

)
� O

(
h′3

ε2

)
,

has to be neglected, leading to the usual Webster equation.
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