An example of mechanical cell competition

Philippe Marcq

Physique et Mécanique des Milieux Hétérogènes Sorbonne Université Paris, France

Acknowledgements

Physico Chimie Curie, Paris Isabelle Bonnet Jacques Camonis Simon Garcia Tobias Martin Sarah Moitrier Pascal Silberzan Kristina Sliogeryte University of Geneva Carles Blanch-Mercader

Cell competition: how to eliminate your neighbours

Amoyel et al., Development (2014)

 Image: Section of the sectio

Trends in Cell Biology

M.M. Merino et al., Trends in Cell Biology (2016)

Human Embryonic Kidney cells - Wild Type vs. Ras

Experimental data

Same division rate

Different traction forces

Tissue scale data

Tissue scale data

Epithelial spreading

C. Blanch-Mercader et al., Soft Matter (2017)

Model (1)

One monolayer

Governing equations

$$\sigma = \eta \partial_x v$$

$$\partial_x \sigma = \xi v - T_0 p$$

$$0 = p - L_c^2 \partial_x^2 p$$

Boundary conditions

$$\sigma(x = L(t), t) = 0$$

$$p(x = L(t), t) = +1$$

Hydrodynamic length $L_{\eta} = \sqrt{\eta/\xi}$

Front velocity

$$v_{\text{front}} = \frac{T_0 L_c}{\xi(L_c + L_\eta)}$$

Model (2)

Two monolayers

Governing equations

$$\begin{aligned} \sigma^{l,r} &= \eta^{l,r} \partial_x v^{l,r}.\\ \partial_x \sigma^{l,r} &= \xi^{l,r} v^{l,r} - T_0^{l,r} p^{l,r}\\ 0 &= p^{l,r} - (L_c^{l,r})^2 \partial_x^2 p^{l,r} \end{aligned}$$

Boundary conditions

$$\sigma^{l}(x = L(t), t) = \sigma^{r}(x = L(t), t)$$

$$v^{l}(x = L(t), t) = v^{r}(x = L(t), t)$$

$$p^{l}(x = L(t), t) = 1$$

$$p^{r}(x = L(t), t) = -1$$

Interface velocity

$$v_{\text{interface}} = \frac{L_{\eta}^{r} \eta^{l} v_{\text{front}}^{l} - L_{\eta}^{l} \eta^{r} v_{\text{front}}^{r}}{L_{\eta}^{l} \eta^{r} + L_{\eta}^{r} \eta^{l}}$$

Model parameters

Wound healing assay: HEK wt and HEK Ras

O. Cochet-Escartin, J. Ranft et al., Biophysical J. (2014)

Conclusion

- Good agreement with a model of the cell monolayers as compressible and active materials with different material parameters
- Collective stresses drive competition between monolayers of normal and Ras-transformed cells
- Velocity measurements yield (model-dependent) estimates of parameter ratios

Conclusion

- Good agreement with a model of the cell monolayers as compressible and active materials with different material parameters
- Collective stresses drive competition between monolayers of normal and Ras-transformed cells
- Velocity measurements yield (model-dependent) estimates of parameter ratios

Some open questions

- How to relate single data traction forces and collective traction forces?
- How general are our results?

S. Moitrier, C. Blanch-Mercader et al., Soft Matter (2019)

Madin-Darby Canine Kidney cells: Wild Type vs. Ras

2. RasV12 cell repulsion, contractility

3. RasV12 cell-cell contractility

S. Pozarinski et al., Current Biology (2016)

Cadherin localization

Thank you!