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This paper experimentally investigates topologically protected edge modes in a water wave channel through
a direct geometric mapping to the one-dimensional Su-Schrieffer-Heeger (SSH) model. By designing a periodic
channel with alternating widths, we replicate the key features of the SSH model, leading to the emergence of
robust zero-energy sloshing edge modes localized at the boundaries. Experimental data show excellent agreement
with theoretical predictions, supported by two-dimensional numerical simulations. In the nonlinear regime, two
distinct bifurcations are observed, indicating the appearance of secondary resonances. This study highlights the
relevance of the SSH model for water-wave systems and provides an accessible method to explore topological
edge states in classical wave systems.
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I. INTRODUCTION

Metamaterials are typically defined as artificially struc-
tured materials designed to control the propagation of waves
in unconventional ways. They are composed of unit cells
whose dimensions are much smaller than the incident wave-
length. This subwavelength condition is crucial for the
homogenization process, which plays an essential role in
deriving the effective medium approximation [1]. However,
unique wave phenomena can also emerge in structures where
the wavelength is comparable to or exceeds the unit cell
size [2,3]. The study of such phenomena has been explored
in the context of topological insulators, whose investigation
began after the discovery of the quantum Hall effect [4,5] and
has since been extended to various wave systems, including
acoustics [6–10], photonics [11–14], phononics [15–17], and
mechanics [18–21].

A key feature of topological metamaterials is the existence
of edge modes, topologically protected states localized at
boundaries [22]. These modes are robust against perturbations
that preserve the underlying symmetries of the system. In
bipartite systems, the stability of edge modes is ensured by
chiral symmetry, which protects them even when disorder
randomizes coupling strengths (as long as the bipartite struc-
ture and symmetry are preserved) [10,23,24]. These results
highlight the broader resilience of topological edge modes
under perturbations that respect the symmetry of the system.

One of the most well-known frameworks for describ-
ing topologically protected states is the Su-Schrieffer-Heeger
model (SSH) [25,26], which has been studied, e.g., in acous-
tics [27–30]. In the context of water waves, it has been studied
in an array of water tanks connected by narrow channels [31]
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and in systems featuring edge states over a structured bottom
[32,33]. In most of the cases, the theoretical approach relies
on coupled resonator systems within tight-binding approxi-
mation (TBA) and band inversion coming with gap closing.

In this experimental work, we use a different approach
that is not using TBA with resonators. The periodic geom-
etry of the water-wave channel allows to straightforwardly
implement the SSH model, enabling us to observe topolog-
ically protected edge modes in the laboratory-scale setup.

FIG. 1. (a) Scheme of the fully three-dimensional water-wave
problem. (b) Scheme of the two-dimensional periodic channel con-
sisting of the cells with different widths w1, w2 and the length d ,
with water waves following Eq. (1). (c) One-dimensional continuous
approximation [Eq. (2)] leaves us with η depending only on x. On the
axis, we identify points corresponding to the change of the channel
widths, where Eq. (3) applies. (d) Scheme of the one-dimensional
discrete SSH model [Eqs. (11) and (12)] corresponding to the water-
wave channel.
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This study also examines sloshing modes in both linear and
nonlinear regimes, highlighting how edge modes persist under
nonlinear conditions, similar to the persistence of topological
edge breathers in nonlinear SSH lattices [34]. Additionally,
the role of boundary conditions in shaping the edge states is
investigated, providing a more comprehensive understanding
of topological phenomena in water-wave systems. This setup
offers a practical way to study the connection between topol-
ogy, wave behavior, and nonlinearity in water-wave systems.

II. MODEL REDUCTION FROM 2D HELMHOLTZ
TO 1D SSH

In this section we follow the same lines as in Refs. [10,30]
where, for a waveguide with connected segments of equal
length, the initially three-dimensional (3D) continuous prob-
lem is transformed into a 1D continuous approximation and
then to a 1D discrete problem. Note that the same approach
can be applied to network of connected segments to obtain
a 2D discrete problem as well [35–38]. Here, a water-wave
channel with a constant depth h and vertical walls, character-
ized by segments of periodically alternating widths w1, w2,
but equal lengths d , is considered, as shown in Fig. 1(a).
Neglecting the effect of viscosity and in the linear regime, the
free surface elevation η(x, y), with time harmonic convention
e−iωt , satisfies the two-dimensional Helmholtz equation with
the homogenous Neumann boundary condition corresponding
to vanishing normal velocity on the walls [39,40]

�η + k2η = 0,

n · ∇η = 0 on walls, (1)

where n is a vector normal to the boundaries of the channel
and the wave number k satisfies the dispersion relation for
water waves ω2 = gk tanh(kh), where g denotes the gravita-
tional acceleration, ω is the frequency, and h is the depth
of the channel. Then, we further simplify the 2D Helmholtz
equation by using the monomode approximation assuming
sufficiently large wavelengths (low frequencies; with the
cutoff k < π/w2). This allows us to transition to a one-
dimensional, continuous wave equation

η′′ + k2η = 0, (2)

where now η = η(x) depends only on the horizontal direction
x. At each cross section, corresponding to changes in channel
width, we ensure the continuity of the free surface elevation
and its derivative (representing flow rate) using the following
jump conditions:

[η] = 0 and [wη′] = 0, (3)

where [ f ] = f + − f − describes the difference at each cross
section from the right side limit ( f +) and the left side limit
( f −). After reducing the two-dimensional continuous model
to its one-dimensional counterpart, we can further reduce
the description to a one-dimensional discrete framework. The
channel features two types of cross sections, designated as
P and Q. Cross section P corresponds to transitions from
w1 to w2, while Q represents the transition from w2 to w1.
Leveraging the known analytical solution to the Eq. (2) under

condition (3), we derive the relationship between the neigh-
boring points (here for sections Q)

η
(
xQ

n

) = η
(
xP

n

)
cos kd + η′(xP+
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)
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sin kd, (4)
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)
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By multiplying Eq. (4) by w2, Eq. (5) by w1, subsequently
summing the results, and taking advantage of (3) we obtain

w2η
(
xQ

n

) + w1η
(
xQ

n−1

) = (w1 + w2)η
(
xP

n

)
cos kd. (6)

Applying a similar methodology to sections P, we derive

w2η
(
xP

n

) + w1η
(
xP

n+1

) = (w1 + w2)η
(
xQ

n

)
cos kd. (7)

The coupling coefficients, s and t , are introduced as

s = w1

w1 + w2
and t = w2

w1 + w2
. (8)

These coefficients are solely dependent on the geometry of the
system, are positive, and collectively sum to unity (s + t = 1).
Identifying

E ≡ cos kd, (9)

and for the sake of simplicity defining

Qn ≡ η
(
xQ

n

)
and Pn ≡ η

(
xP

n

)
, (10)

we can ultimately describe our system by

sQn−1 + tQn = EPn, (11)

tPn + sPn+1 = EQn, (12)

which effectively represents an eigenvalue problem

HX = EX, (13)

where

H =

⎛
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. . .
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...

Qn−1

Pn

Qn

Pn+1
...

⎞
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.

(14)

The above representation of our system precisely aligns with
the SSH model [26]. Given that the SSH Hamiltonian H is
solely geometry dependent, the eigenfrequencies k are di-
rectly deduced from the eigenvalues of H. Furthermore, the
pseudoenergy E (k) = cos kd closely mirrors its counterpart
in the SSH model.

To determine the dispersion relation of the system, we
adopt the Bloch wave solution

Pn = Peiqn and Qn = Qeiqn, (15)

where q is the Bloch wave number. Substituting (15) into (11)
and (12) yields the following eigenvalue problem:(

0 se−iq + t
seiq + t 0

)(
P
Q

)
= E

(
P
Q

)
. (16)

224311-2



EXPERIMENTAL STUDY OF SU-SCHRIEFFER-HEEGER … PHYSICAL REVIEW B 111, 224311 (2025)

FIG. 2. Dispersion relation of the SSH model (17). (a) Pseu-
doenergy E as a function of the Bloch wave number q for s = 1/3.
(b) Undimensionalized wave number k over the Bloch wave number
q for s = 1/3.

This 2 × 2 Hamiltonian matrix, characteristic of the periodic
one-dimensional SSH system, facilitates the direct determina-
tion of the dispersion relation of the system

E = cos kd = ±
√

s2 + 2st cos q + t2. (17)

Due to the chiral symmetry of the system [26], the disper-
sion relation exhibits symmetry around E = 0 [Fig. 2(a)]
that can be unwound as kd = (m + 1/2)π (m = 0, 1, 2 . . . )
[Fig. 2(b)]. Furthermore, the zero-energy mode (E = 0)
emerges when the wavelength is quadruple the length of
segment d . This relation can be straightforwardly derived as
E = 0 → kd = π/2 → λ = 4d . To demonstrate the applica-
bility of the SSH model for water waves, we analyze a finite
symmetric channel comprising an odd number of segments,
2N + 1 = 15, alongside its asymmetric counterpart with an
even number of segments, 2N = 14. The channel is closed on
both ends, imposing a homogenous Neumann boundary con-
dition at each wall, ensuring that the normal velocity vanishes.
This setup corresponds to applying the model within a cavity.
Consequently, the Hamiltonian and the vector of variables in
the eigenvalue problem HX = EX are written as follows:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
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and X =
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QN−1
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. (18)

Eigenvalues derived from the SSH model for odd-segment
scenarios are depicted in Fig. 3(a), while those for even-
segment cases are presented in Fig. 3(b) (for all possible

FIG. 3. Eigenvalues of the channel with (a) an odd number of
segments (2N + 1 = 15) and (b) an even number of segments (2N =
14) obtained by the SSH model (plain curves) and the numerical
simulation (dashed curves) as a function of the parameter s.

values of s and t = 1 − s). In the odd case (11), (12) it is
straightforward to obtain an explicit form of the zero-energy
mode localized at the edge for the system (18)(

Pn

Qn

)
= c

(
0
1

)(
− s

t

)n
, (19)

where c is the normalization constant.

III. NUMERICAL SIMULATIONS

To evaluate the applicability of the SSH model that is a 1D
approximation, we numerically solve the full two-dimensional
eigenvalue problem for the even and odd cases separately

�η = −k2η,

n · ∇η = 0 on walls. (20)
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FIG. 4. (a) Conceptual view of the channel, including the wave maker placed at the left end of the channel, and two confocal displacement
sensors attached to a movable trolley. (b) Photograph of the periodic channel used in the experiments, showing a top view with the wave
maker positioned at the left end. (c) Photograph of the left end of the channel with the wave maker and the two confocal displacement sensors
suspended above the channel.

The solution is derived using the finite element method, set-
ting parameters at w1 = 0.05, w2 = 0.1, d = 0.1, L = 1.4 (L
being the total length of the channel), with results displayed
in Fig. 3(a) for the scenario involving an odd number of
segments, and in Fig. 3(b) for the configuration with an even
number of segments. It is evident that, in the case of an even
number of segments [2N = 14, as shown in Fig. 3(b)], the
system accommodates a single localized mode of zero energy.
For s < t the edge wave localizes on the left side of the chan-
nel, and vice versa, for s > t the mode localizes on the right
side. This behavior is readily explicable upon reexamining the
formulation of the edge wave (19) as derived from the SSH
model. It appears that only the edge segments where w1 < w2

are able to host the edge wave.
Analyzing the case where we have an odd number of

segments [2N + 1 = 15, Fig. 3(a)], we see that for s < t ,
our system can host two zero-energy modes, one localized
at the left end and the other localized at the right end. For
s > t , the edge mode disappears, as our system is unable to
host the localized edge wave since on both ends we have
segments with w1 > w2. It is worth mentioning that for s = t ,
we obtain the case where the channel is rectangular, thus
the localization of the zero-energy mode does not occur.
The discrepancies between the eigenvalues derived from the
SSH model and those from the numerical solution can be
explained by the fact that one-dimensional approximation
is not able to account for near-field effects close to each
cross-section change [10]. Nonetheless, the one-dimensional
approximation remains satisfactorily precise, provided that
the aspect ratio of the segment remains sufficiently small and
the wavelength exceeds the width of the channel.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup comprises a periodic channel [il-
lustrated in Fig. 4(a)] with a length of L = 140 cm, featuring

alternating widths of w1 = 5 cm and w2 = 10 cm, corre-
sponding to a parameter setting of s = 1 − t = 1/3. In order
to facilitate the measurement of the topological edge mode,
we choose the case of one isolated edge mode (even number
of segments); thus, the channel consists of 14 segments [as in
Fig. 3(b)] of length d = 10 cm with a constant water depth of
h = 2 cm. Note that we have selected the number of segments
large enough in order to see the whole exponential decay of
the edge wave (19) (the edge mode has a negligible amplitude
on the other end). The aspect ratio of the cells is small enough
to apply the 1D approximation leading to the discrete SSH
model, as shown in the previous section. On the other hand,
from the water-waves perspective, the aspect ratio has to be
sufficiently big in order to avoid the detrimental effects of the
meniscus that forms on the walls of the channel and whose
size is of the order of 2 mm. Indeed, in channels with small
aspect ratios, the presence of the meniscus could induce unde-
sirable shifts in the eigenfrequencies [41–43]. Additionally, as
a reference, a rectangular channel with identical length and a
constant width of w = 5 cm was constructed in order to verify
the regular modes of a straight cavity (s = t). The realization
of the point source is done by placing the wave maker consist-
ing of the linear motor with cylindrical tip [Fig. 4(b)] of the
diameter φs = 2 cm and that is placed on the left end of the
channel in the segment of smaller width, 0.5 cm from the wall.
The wave maker realizes the vertical motion corresponding to
a chirp signal, whose length is t = 60 s and whose frequency
spectrum varies from 0.1–2.5 Hz (the cutoff frequency cor-
responding to k = π/w2). The amplitude of the wave maker
motion ranges from As = 0.5 mm to As = 15 mm, allowing
us to cover both linear and nonlinear regimes for the water-
wave behavior. Free-surface elevation is measured using
two Keyence CL-P070 confocal laser displacement sensors.
These sensors employ a multicolor confocal method: they
emit several wavelengths at once, each with a distinct focal
distance, and determine the distance to the surface by detect-
ing which color is in focus on the target (free surface) [44].
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FIG. 5. Averaged spectrum of the free-surface elevation obtained by averaging the Fourier spectra measured at all sensor positions (spaced
every 2.5 cm along x direction) (a) for s = 1/3 (blue curve) with a 2D numerical prediction (dashed lines) and (b) for s = 1/2 (orange curves)
with a numerical prediction (dashed lines). (c) Comparison of the 1D (plain lines) and the 2D (dashed lines) prediction of the eigenvalues with
the experimental values for s = 1/3 (blue dots) and s = 1/2 (orange dots).

Only the wavelength that is precisely in focus at that specific
distance is sharply reflected back and detected by a spectrom-
eter, which identifies the wavelength and correlates it to the
exact position of the surface. This provides high-precision
(±2.2 µm), noncontact height measurements that are robust to
surface reflectivity (unlike classical triangulation [45]). These
two confocal displacement sensors (with an acquisition fre-
quency of 1 kHz), positioned above the channel [as shown in
Fig. 4(b)], are spaced at an interval of 10 cm, corresponding
to the length of the segment, permitting us to measure at
two cross-section changes simultaneously. The sensors are
connected to the trolley to change its position and measure
at different points along the channel (every 2.5 cm).

B. Linear regime

We report in Fig. 5(a) the average of all measured spectra
for the periodic channel with w1 = 5 cm and w2 = 10 cm
[s = 1/3 in Eq. (8)]. The edge mode is visible at fE =
1.097 Hz and is represented by the most prominent reso-
nance peak surrounded by the large band gap. The vertical
dashed lines in the figures represent the eigenvalues from
the numerical solution of the two-dimensional Helmholtz
eigenproblem (20), showing excellent agreement with the
experimental data. The same procedure is applied to the rect-
angular channel, characterized by s = 1/2. In this scenario,
the resonance modes are observed to be equally spaced [as
shown in Fig. 5(b)], aligning with the expected regular modes
of a rectangular cavity (kL = mπ with m = 1, 2, . . . ). Fig-
ure 5(c) presents a comparison involving the experimental
values (represented by dots), the one-dimensional predic-
tions of the SSH model (illustrated by solid curves), and
the solutions of the two-dimensional eigenproblem obtained
numerically (indicated by dashed curves). The experimentally
obtained local maxima for s = 1/3 (blue dots) and s = 1/2
(orange dots) are notably indicated. There is an excellent
concordance between the theoretical predictions and experi-
mental measurements, with minor discrepancies between 1D

and 2D models attributable to near-field effects on each cross-
section change.

Figure 6(a) presents the profile of the absolute free-surface
elevation of the edge mode, with an excellent agreement
obtained between the experiment and both 2D and 1D SSH
prediction. Note that in our closed-cavity geometry the slosh-
ing edge mode is localized at the left end of the cavity, with
an amplitude that is negligible on the right edge. It means
that we could have replaced the rigid wall at the right end
with an absorbing beach without changing the edge mode
(however, this absorbing beach would influence strongly the
other sloshing modes that are not localized at the edge). The
collection of experimental results is showcased in Fig. 6(b)

FIG. 6. (a) Edge mode localized at the left side of the channel
obtained experimentally (blue dots), by 2D simulation (averaged
along y, plain curve), and by the SSH model (19) (pink symbols).
(b) Experimental results for s = 1/3. (c) Absolute value of the free
surface elevation obtained using finite element method.
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FIG. 7. Example of the time signal [associated with the amplitude peak of the fundamental frequency at (b)] measured by a displacement
sensor (a) and its corresponding spectrum (b) obtained by the Fourier transform. Resonant curves of the fundamental frequency A0( fs ) (blue
curve), the first harmonic A1( fs ) (orange curve), the second harmonic A2( fs ) (yellow curve), the third harmonic A3( fs ) (purple curve), and the
fourth harmonic A4( fs ) (green curve) for (c) As = 0.7 mm, (d) As = 2.5 mm, and (e) As = 15 mm.

and compared with the numerical simulations conducted via
the finite element method depicted in Fig. 6(c). The simula-
tion is carried out as follows: we solve the two-dimensional
Helmholtz equation (1) with a source term s(x, y), for wave
numbers k = κ + iβ, where the imaginary part of the wave
number accounts for an adhoc viscous attenuation following
the bulk law β = 4κ2νω/g, with ν the kinematic viscosity.
The source is modelled as a Gaussian bell of the form

s(x, y) = 1

2πσxσy
exp

[
−

(
(x − x0)2

2σ 2
x

+ (y − y0)2

2σ 2
y

)]
,

(21)

where σx = σy = w1/30, x0 = d/2, and y0 = w2/2. The pro-
file of the wave is obtained by averaging the result along the y
axis and is presented in Fig. 6(c) for different frequencies f =
ω/2π , where ω2 = gk tanh(kh). The edge mode, prominently
localized on the left side of the channel, is clearly discernible
and aligns closely with the numerical simulation results. This
mode is encapsulated within a band gap, beyond which the
bulk extended modes of the channel manifest.

C. Nonlinear regime

Nonlinear effects in water waves occur readily, and in our
experiment, as the source amplitude (and thus the wave am-
plitude) increases, secondary peaks arise around the resonance
peak of the edge mode. To delve deeper into this phenomenon,
we now analyze the dependence of the spectrum on amplitude
variations.

Since we are no longer in the linear regime, the approach
using a chirp signal that benefits from the linear properties

of the Fourier transform can no longer be used. Therefore,
the point source realizes vertical sinusoidal motion with the
frequency fs and the amplitude As. The set of measurements,
focused around the frequency of the edge mode, is studied
for different values of fs and As, i.e., As ∈ [0.5, 15] mm, fs ∈
[0.9, 1.2] Hz, � fs = 0.003 Hz. For each source amplitude As,
the amplitude of the wave is registered using a confocal dis-
placement sensor at x/d = 4. The signal of the length t = 20 s
is measured for a given frequency fs, then the frequency is
increased by � fs, and the stationary state of the wave is
anticipated before registering the next signal. Usually it takes
around 80 s to measure one signal for the pair (As, fs). Due
to the time-consuming procedure, an automatic script is put
in place that changes both As and fs and registers the signals.
To avoid the change of the water properties, the channel is
covered with a transparent foil preventing the surface from be-
ing polluted, and also to suppress the evaporation that would
result in decreasing the water depth and therefore changing
the resonant frequencies. The signal is trimmed to obtain an
integer number of periods to extract the exact values of its
spectrum. The determination of the resonance curves is done
by extracting the values of the fundamental frequency, first
five harmonics ( f0, . . . , f5) and its amplitudes (A0, . . . , A5).

One measurement for the pair of (As, fs) [Figs. 7(a) and
7(b)] represents one point on the resonance curves [Figs. 7(c)–
7(e)]. We report in Fig. 7 three different regimes of the reso-
nant behavior of the edge mode for As = 0.7 mm [Fig. 7(c)],
As = 2.5 mm [Fig. 7(d)], and As = 15 mm [Fig. 7(e)]. As
the driving frequency fs corresponds almost exactly to the
fundamental frequency f0 and the harmonics ( f1 = 2 f0, f2 =
3 f0, . . . ) (with an error smaller than 1%) we compare them on
the same horizontal axis f0. We can see that for As = 0.7 mm

224311-6
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we obtain only one resonant peak of the edge mode, and
the contribution of higher harmonics is relatively small (less
than 20%). For the amplitude of the source of As = 2.5 mm
[Fig. 7(d)] secondary peaks around the main resonant peak of
the edge mode appear (first bifurcation). The contribution of
the harmonics becomes more important. Note that the peak
on the right side of the peak of the fundamental frequency
(blue curve) of the edge mode corresponds to the maximum
of the second harmonic (yellow curve). On the other hand, the
left side peak correlates with the maximum of the first har-
monic (orange curve). With further increase of the amplitude
As we can observe the emergence of additional peaks (second
bifurcation) reported in Fig. 7(e) where the resonant curves for
As = 15 mm are shown. The amplitudes of the first and sec-
ond harmonic are now higher than the fundamental frequency
amplitude. Experimental measurements show the existence of
nonlinear interactions near the resonant frequency of the edge
mode. Note that similar behavior for the rectangular channel
was obtained experimentally and described theoretically in
Refs. [46–48]. The apparent resonant energy transfer between
the fundamental frequency and its harmonics, as described in
Ref. [49], can be analyzed using a modal expansion approach,
where the evolution of mode amplitudes follows a set of
weakly nonlinear coupled equations. To further investigate
the emergence of the secondary resonances, we introduce the
Ursell number as Ur = Asλ

2/h3, where λ ≈ 4d stands for
the wavelength of the edge mode and h denotes the water
depth. In our case, the system is deeply in the shallow water
regime since λ = 40 cm is much larger than the water depth
h = 2 cm [tanh(kh)/(kh) ≈ 0.97]. This condition allows the
long-wave approximation to apply, making the Ursell number
a valid descriptor for the observed phenomena. The ensemble
of the measurements is shown in Fig. 8. It appears that the
first bifurcation, where two secondary peaks emerge, happens
when the Ursell number Ur ≈ 25. The peaks are placed al-
most symmetrically at around ±5% fE away from the main
resonance of the edge mode ( fE ). The second bifurcation,
i.e., when additional peaks arise at approximately ±10% fE

away from the original edge mode resonance, occurs at
Ur ≈ 100.

V. CONCLUSION

The main objective of the presented work is to experi-
mentally investigate the topologically protected edge states
and band gaps in a water waveguide with periodic geometry
which can be mapped to the Su-Schrieffer-Heeger model.
A waveguide with step periodic width (s = 1/3) is manu-
factured and examined using confocal displacement sensors
allowing the measurement of water free-surface elevation.
Two-dimensional numerical simulations are carried out and
compared to the discrete SSH model and experimental data.
The obtained results show that this very simple setup ex-
hibits all the properties of the SSH model with an excellent
agreement to the water-wave systems. Furthermore, the sys-
tem is analyzed in a nonlinear regime, revealing two distinct
bifurcation regimes. The first bifurcation corresponds to the
emergence of two secondary resonances around the primary
edge wave resonance for Ursell number Ur > 25. The sec-
ond bifurcation, with the appearance of additional peaks

FIG. 8. Resonant curves for the fundamental frequency for dif-
ferent Ursell numbers. The inset shows the region around the edge
mode peak, where the measurements are carried out.

around the main edge mode resonance, is recognized for Ur >

100. This phenomenon, tentatively interpreted as an energy
transfer between the fundamental frequency and harmonics,
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warrants further theoretical investigation for comprehensive
understanding.

ACKNOWLEDGMENT

A.A., A.M., P.P., and V.P. acknowledge the support of the
French Agence Nationale de la Recherche (ANR), under grant
ANR-21-CE30-0046 (project CoProMM).

DATA AVAILABILITY

The data that support the findings of this article are not
publicly available upon publication because it is not techni-
cally feasible and/or the cost of preparing, depositing, and
hosting the data would be prohibitive within the terms of this
research project. The data are available from the authors upon
reasonable request.

[1] O. A. Oleïnik, A. Shamaev, and G. Yosifian, Mathematical
Problems in Elasticity and Homogenization (Elsevier, Amster-
dam, 2009).

[2] M. Rybin, D. Filonov, K. Samusev, P. Belov, Y. Kivshar, and
M. Limonov, Phase diagram for the transition from photonic
crystals to dielectric metamaterials, Nat. Commun. 6, 10102
(2015).

[3] C. Yi, Y. J. Yoo, Y. J. Kim, K. W. Kim, Y. Lee, and J. Y. Rhee,
Role of Wood’s anomaly in the performance of metamaterial
absorbers with periodicity comparable to wavelength, J. Phys.
D: Appl. Phys. 49, 195103 (2016).

[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall conductance in a two-dimensional peri-
odic potential, Phys. Rev. Lett. 49, 405 (1982).

[5] R. E. Prange and S. M. Girvin, The Quantum Hall Effect
(Springer, Berlin, 1990).

[6] D. Zhao, M. Xiao, C. W. Ling, C. T. Chan, and K. H. Fung,
Topological interface modes in local resonant acoustic systems,
Phys. Rev. B 98, 014110 (2018).

[7] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen,
Topological sound, Commun. Phys. 1, 97 (2018).

[8] H. Xue, Y. Yang, G. Liu, F. Gao, Y. Chong, and B. Zhang, Re-
alization of an acoustic third-order topological insulator, Phys.
Rev. Lett. 122, 244301 (2019).

[9] G. Ma, M. Xiao, and C. T. Chan, Topological phases in acoustic
and mechanical systems, Nat. Rev. Phys. 1, 281 (2019).

[10] A. Coutant, A. Sivadon, L. Zheng, V. Achilleos, O. Richoux,
G. Theocharis, and V. Pagneux, Acoustic Su-Schrieffer-Heeger
lattice: Direct mapping of acoustic waveguides to the Su-
Schrieffer-Heeger model, Phys. Rev. B 103, 224309 (2021).

[11] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.
Kargarian, A. H. MacDonald, and G. Shvets, Photonic topo-
logical insulators, Nat. Mater. 12, 233 (2013).

[12] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological pho-
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