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 A B S T R A C T

We report on the scattering of a plane wave from a vertically oscillating plate in the low 
frequency approximation by means of Floquet theory. In the case of a static plate, the scattering 
coefficients are evaluated via mode matching method for the full two-dimensional linearized 
water wave problem and are compared with the coefficients obtained from a reduced one-
dimensional model in the shallow water approximation. The main part of the analysis is the 
extension of this 1D shallow water approximation to the case of a vertically oscillating plate, 
where time modulation is only encapsulated in the blockage coefficient. We show that the 
incident wave is scattered into Floquet sidebands and extract the scattering coefficients for 
each harmonic using a Floquet scattering formalism. Finally, considering a slowly oscillating 
plate, we propose a quasistatic approximation which appears to be particularly accurate.

. Introduction

Time-dependent systems involving wave-matter interactions have been extensively studied over the years, as they encompass 
ntriguing wave phenomena which are universal from quantum mechanics to condensed matter and fluid mechanics [1–4]. These 
ffects include time reversal [5], frequency conversion [6], parametric amplification [7], transient amplification [8], temporal 
aveguiding [9] among many others. An increasing activity regarding time-varying media concerns electromagnetic platforms; 
t dates back to the pioneering works of Morgenthaler in the 1950s [10] on waves passing through media where the phase 
elocity is rapidly modified. Thenceforth, the research on time-varying metamaterials as a means to control and harness waves 
as significantly grown [11]. Understanding the interaction of waves with scatterers exhibiting time-variation can be challenging 
nd often requires the development of new theoretical and numerical tools. Floquet theory [12] has been long applied for scattering 
roblems in periodically driven systems, denoted as Floquet scattering as discussed in [13,14] for the transmission of electrons 
hrough harmonically modulated potentials and in [15] for the propagation of waves in layered optomagnonic structures.
In the realm of water waves, the bathymetry can play a key role in the wave dynamics and thus has been a topic of interest 

or many years in terms of wave scattering. More specifically, the reflection and transmission of waves by different bottom profiles 
as been already examined through the conformal mapping technique, which was first proposed by Fitz-Gerald (1976) [16] and 
amilton (1977) [17], and afterwards implemented by Evans and Linton (1994) [18]. This technique relies on using a conformal 
ransformation which enables to map an initial fluid domain with an irregular bottom boundary into a constant strip of fluid with the 
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M. Koukouraki et al. Wave Motion 136 (2025) 103530 
Fig. 1. Schematic representation of wave scattering by an infinitely thin plate of height ℎ𝑝(𝑡) inside a channel of depth ℎ.

only added implication being an extra coefficient at the surface condition. Porter (2005) [19] subsequently revisited the technique 
to account for steep components in the bottom profile, concentrating on Roseau, shoaling and ridge-type profiles.

For the particular bathymetry with vertical barriers, numerous theoretical works have been made on wave scattering in infinitely-
deep water [20,21] and on structured beds composed of periodically arranged vertical plates in shallow water [22–24]. Even though 
the forementioned literature involves static plates, there have also been works on moving underwater barriers and time-varying 
topographies. Evans (1970) in [25] reports on the forces and moments on a vertical plate performing rolling oscillations under the 
water surface. Also, Tuck (1977) in [26] treats the general scattering problem of water waves from a space–time dependent bottom 
profile in the shallow water approximation where the wavelength is much larger than the water depth, by using matched asymptotic 
expansions.

In this study, we focus on the linear long-wavelength water wave theory and we wish to model the interaction of a monochromatic 
wave with a submerged infinitely thin vertical plate, whose height is a function of time. First, we formulate the problem where 
the plate is static and then we proceed to the case where the plate is vertically oscillating. For the static plate, we present the 
full linearized problem and extract the two-dimensional field and the scattering coefficients for all range of frequencies. Then, 
by moving from the mid to the low frequency range of shallow water approximation, the field can be described effectively by 
the one-dimensional wave equation where the effect of the plate is incorporated in jump conditions at the plate position. For the 
vertically oscillating plate and in this low-frequency limit, we propose a Floquet theory approach in order to retrieve the reflected 
and transmitted fields, as well as a quasistatic approximation for the case where the plate is oscillating sufficiently slow compared 
to the period of the incident wave. Finally, we discuss the two methods in terms of their agreement and limitations.

2. Scattering by a submerged vertical plate

2.1. Governing equations

Let us consider the irrotational flow of an incompressible and inviscid fluid of depth ℎ, extending horizontally in an unbounded 
domain, and an infinitely thin plate of height ℎ𝑝 sitting at the fluid bottom at position 𝑥 = 0, as depicted in Fig.  1. We wish to 
characterize the scattering problem of a plane wave, incident on the plate from 𝑥 = −∞, when the plate height can also be allowed 
to vary with time. Following the classical linearized water-wave theory, which is addressed in one of the textbooks [27–30], the 
problem translates as: 

⎧

⎪

⎨

⎪

⎩

𝛥𝛷 = 0, in 𝛺(𝑡)
n̂ ⋅ ∇𝛷 = 0, on 𝛤 (𝑡)
𝜕𝛷
𝜕𝑦 = − 1

𝑔
𝜕2𝛷
𝜕𝑡2
, 𝑦 = 0,

(1)

where 𝛷(𝑥, 𝑦, 𝑡) denotes the velocity potential, 𝑔 the acceleration of gravity and n̂ the unit normal vector on 𝛤 (𝑡). Note that by 
assuming that the plate has an infinitely small width, we guarantee that the plate will not act as a source when vertically oscillating 
(see Mei [27]). This is evident from the absence of a source term on the impermeable boundary condition on 𝛤 (𝑡).

2.2. Shallow water model with jump conditions

As demonstrated in [26], by starting from the system (1) and implementing matched asymptotic expansions, one can eliminate 
the wave-field dependence on 𝑦 in the long-wavelength limit and obtain a reduced one-dimensional model with jump conditions at 
the position of the plate. This model reads as 

𝜕2𝜙
𝜕𝑥2

− 1
𝑐20

𝜕2𝜙
𝜕𝑡2

= 0, (2a)

[𝜙]0
+

0− = 2𝐵𝜇(𝑡)ℎ𝜕𝑥𝜙
|

|

|0
,

[

𝜕𝑥𝜙
]0+

0− = 0, (2b)

where 𝜙(𝑥, 𝑡) = 𝛷(𝑥, 0, 𝑡) is now the 𝑦-independent velocity potential, 𝑐0 =
√

𝑔ℎ is the velocity at which long waves propagate and 
𝐵  is known as the blockage coefficient. 𝐵  is determined strictly from the geometrical profile of the fluid bottom and is a function 
𝜇 𝜇
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M. Koukouraki et al. Wave Motion 136 (2025) 103530 
of time when the topography is time-varying. For an infinitely thin plate, the blockage coefficient is given in the following explicit 
form: 

𝐵𝜇(𝑡) = − 2
𝜋
ln
[

sin
(𝜋
2
(1 − 𝜇(𝑡))

)]

, 𝜇 =
ℎ𝑝(𝑡)
ℎ

, (3)

where ℎ𝑝(𝑡) is the height of the oscillating vertical plate. Further information on the derivation of Eq.  (3) can be found in the 
paper [19].

3. The static plate

First, as a warm-up and in order to assess the validity range of the shallow water approximation, we are going to tackle the 
scattering problem for a static plate.

3.1. Mode matching method for any water depth regime

In order to determine the reflection 𝑅 and transmission 𝑇  coefficients in the time-harmonic regime (convention 𝑒−𝑖𝜔𝑡) for each 
dimensionless frequency 𝜔

√

ℎ∕𝑔 of the incident wave we follow the mode matching method. Although this method is already 
discussed in [27], in this section we revisit its key points for our case, where the scatterer is an infinitely thin vertical plate.

First, we rewrite the system (1) in its time-independent form, by setting 𝛷 = ℜ{𝛷̃𝑒−𝑖𝜔𝑡} and then dropping the tilde: 
⎧

⎪

⎨

⎪

⎩

𝛥𝛷 = 0, in 𝛺
n̂ ⋅ ∇𝛷 = 0, on 𝛤
𝜕𝛷
𝜕𝑦 = 𝜔2

𝑔 𝛷, 𝑦 = 0.
(4)

We start by expanding the solution (for 𝑥 ≠ 0) on the basis of orthonormal transverse eigenfunctions 𝑔𝑛(𝑦), 𝑛 ≥ 0, which by solving 
the system (4) are found to be 

𝑔𝑛(𝑦) = 𝐺𝑛 cosh[𝑘𝑛(𝑦 + ℎ)], 𝐺𝑛 =

√

sinh (2𝑘𝑛ℎ)
4𝑘𝑛

+ ℎ
2
, (5)

with 𝑘𝑛 the roots of the dispersion relation 
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ, (6)

with 𝑘0 the positive real solution and 𝑘𝑛 the purely imaginary ones for 𝑛 ≥ 1 with positive imaginary parts. The above functions 
satisfy both the Robin-type condition at 𝑦 = 0, and the Neumann boundary condition at 𝑦 = −ℎ. Therefore, the most general solution 
of the scattering problem reads as 

𝛷(𝑥 < 0, 𝑦) = (𝑒𝑖𝑘0𝑥 + 𝑅𝑒−𝑖𝑘0𝑥)𝑔0(𝑦) +
∞
∑

𝑛=1
𝐴𝑛𝑒

−𝑖𝑘𝑛𝑥𝑔𝑛(𝑦), (7)

𝛷(𝑥 > 0, 𝑦) = 𝑇 𝑒𝑖𝑘0𝑥𝑔0(𝑦) +
∞
∑

𝑛=1
𝐵𝑛𝑒

𝑖𝑘𝑛𝑥𝑔𝑛(𝑦), (8)

with 𝑅 and 𝑇  the reflection and transmission coefficients of the plane wave mode respectively and 𝐴𝑛 and 𝐵𝑛 are the coefficients 
of the evanescent modes which are excited near the plate. By looking at the symmetry of the problem, it is straightforward to split 
it into two sub-problems: a symmetric and an antisymmetric part, 

𝛷 = 𝛷𝑠 +𝛷𝑎, with 𝛷𝑠(𝑥, 𝑦) = 𝛷𝑠(−𝑥, 𝑦), 𝛷𝑎(𝑥, 𝑦) = −𝛷𝑎(−𝑥, 𝑦), (9)

where we use the subscript ‘‘s’’ for symmetric and ‘‘a’’ for antisymmetric. We then need to solve the problem just at the region 𝑥 < 0
and extend the solution for 𝑥 > 0.

Due to symmetries, on the one hand, the boundary conditions which should be satisfied at 𝑥 = 0 are respectively 
𝜕𝛷𝑠
𝜕𝑥

(𝑥 = 0, 𝑆−) = 𝛷𝑎(𝑥 = 0, 𝑆−) = 0, (10)

for the surface 𝑆− = {𝑥 = 0, 𝑦 ∈ [−(ℎ − ℎ𝑝), 0]} above the plate.
On the other hand, the impermeability condition along the rigid surface of the plate 𝑆𝑝 = {𝑥 = 0, 𝑦 ∈ [−ℎ,−(ℎ − ℎ𝑝)]} yields 

𝜕𝛷𝑠
𝜕𝑥

(𝑥 = 0, 𝑆𝑝) =
𝜕𝛷𝑎
𝜕𝑥

(𝑥 = 0, 𝑆𝑝) = 0. (11)

Therefore, we use the following expansion for the left region with respect to the plate: 

𝛷𝑠,𝑎(𝑥 < 0, 𝑦) = (𝑒𝑖𝑘0𝑥 + 𝑅𝑠,𝑎𝑒−𝑖𝑘0𝑥)𝑔0(𝑦) +
∞
∑

𝑛=1
𝐴𝑛𝑒

−𝑖𝑘𝑛𝑥𝑔𝑛(𝑦), (12)

where 𝑅𝑠,𝑎 denote the reflection coefficients of each subproblem and it can be shown that 

𝑅 = 1 (

𝑅 + 𝑅
)

, 𝑇 = 1 (

𝑅 − 𝑅
)

, (13)

2 𝑠 𝑎 2 𝑠 𝑎

3 
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with |𝑅𝑠,𝑎| = 1 because of energy conservation. The symmetric part has a trivial solution, since the Neumann boundary condition 
at 𝑆 = 𝑆𝑝

⋃

𝑆− yield 𝑅𝑠 = 1. Hence, the only part which contributes to the variation of the scattering coefficients with frequency is 
𝑅𝑎, the antisymmetric one.

It is convenient to write the antisymmetric part of solution (12) in a more general form, such as 

𝛷𝑎(𝑥 ≤ 0, 𝑦) =
∞
∑

𝑛=0
𝑎𝑛(𝑥)𝑔𝑛(𝑦), (14)

where we decompose the coefficients 𝑎𝑛 into the ones of the incoming wave and of the reflected wave, 

𝑎𝑛(𝑥) = 𝑎𝑛,0(𝑥) + 𝑎𝑛,𝑟(𝑥), (15)

with 𝑎𝑛,0(𝑥) = 𝛿0𝑛𝑒𝑖𝑘0𝑥 and 𝑎𝑛,𝑟(𝑥) = 𝐶𝑛𝑒−𝑖𝑘𝑛𝑥. Next, we apply condition (10) for the component 𝛷𝑎(𝑥 = 0, 𝑆−), and project over the 
transverse functions 

𝑔̂𝑝(𝑦) = 𝐺̂𝑝 cosh [𝑘̂𝑝(𝑦 + (ℎ − ℎ𝑝))], 𝐺̂𝑝 =

√

√

√

√

sinh (2𝑘̂𝑝(ℎ − ℎ𝑝))

4𝑘̂𝑝
+

(ℎ − ℎ𝑝)
2

, (16)

with 𝑘̂𝑝 satisfying 𝜔2 = 𝑔𝑘̂ tanh 𝑘̂(ℎ − ℎ𝑝). Doing so we obtain 

Ft𝐚(0) = 0, (17)

with the vector 𝐚(0) containing the components 𝑎𝑛(𝑥 = 0) and the matrix elements of F are given as 

(F)𝑚𝑝 = ∫

0

−(ℎ−ℎ𝑝)
𝑔𝑚(𝑦)𝑔̂𝑝(𝑦)𝑑𝑦. (18)

Then, we can rewrite the continuity condition of 𝜕𝑥𝛷𝑎 at 𝑥 = 0 as 

𝜕𝑥𝛷𝑎|𝑥=0 =

⎧

⎪

⎨

⎪

⎩

0, at 𝑆𝑝
∞
∑

𝑝=0
𝑐𝑝𝑔̂𝑝(𝑦), at 𝑆−. (19)

Deriving Eq. (14) with respect to 𝑥, using Eq. (19), and projecting on the functions 𝑔𝑚 we have that 

𝐚′(0) = F𝐜. (20)

Taking the derivative of 𝑎𝑛 in Eq.  (15), we have 

𝐚′(0) = Y(𝐚𝟎(0) − 𝐚𝐫 (0)), (21)

where (𝐚𝟎)𝑚 = 𝛿𝑚0 and Y a diagonal matrix with elements (Y)𝑚,𝑚′ = 𝑖𝑘𝑚𝛿𝑚,𝑚′ . Next, a simple manipulation of Eqs. (15) and (17) 
yields the relation 

Ft𝐚𝐫 (0) = −Ft𝐚𝟎(0). (22)

Finally, combining Eqs. (22), (20) and (21) one can extract that 
𝐚𝐫 (0) = 𝐚𝟎(0) − Y−1F𝐜, (23)

where 
𝐜 = 2(FtYF)−1Ft𝐚𝟎(0). (24)

Computing Eqs. (23) and (24) numerically and using a number of modes around 𝑁 = 50 for the expansion on 𝑆(𝑁, 𝑔𝑛) and a number 
𝑃 ∼ (𝑆−∕𝑆)𝑁 for the expansion on 𝑆−(𝑃 , 𝑔̂𝑝), we retrieve 𝑅 and 𝑇  as well as the full wave field for each frequency. In Fig.  2 we show 
the two-dimensional field recovered for ratio 𝜇 = 0.5 and two water depth regimes: the finite-water depth and the shallow water 
limit. As illustrated, the wave field becomes almost homogeneous with 𝑦 when 𝜔

√

ℎ∕𝑔 ≪ 1 (notice the variation of the colorbar on 
panel (b)), which justifies simplifying the set of Eqs. (4) to just one partial differential equation at the surface supplemented with 
the effective boundary conditions at 𝑥 = 0.

3.2. Low frequency approximation: the shallow water regime

As was previously discussed, for waves of sufficiently small amplitude (linear regime) and of very long wavelength compared to 
the water depth (shallow water regime), the wave dynamics can be well approximated by the wave equation (2a). In this shallow 
water approximation (SWA), waves are nondispersive and satisfy the dispersion relation 𝜔 = 𝑐0𝑘, with 𝑘 the wave number.

Considering once again the harmonic regime, so that 𝜙 = ℜ{𝑓 (𝑥)𝑒−𝑖𝜔𝑡}, and a non-moving plate, such that 𝐵𝜇(𝑡) = const in Eq. 
(2b), we construct the solution of Eq.  (2a) as follows: For 𝑥 < 0, the wave is composed of an incident, right-propagating, wave and 
a reflected wave, 𝑓− = 𝑒𝑖𝑘𝑥 + 𝑅 𝑒−𝑖𝑘𝑥, while for 𝑥 > 0 the solution takes the form of a transmitted wave, 𝑓+ = 𝑇 𝑒𝑖𝑘𝑥. By using 
𝑠𝑤 𝑠𝑤

4 
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Fig. 2. Two-dimensional profile of the wave field recovered via mode-matching method for (a) 𝜇 = 0.5, 𝜔√ℎ∕𝑔 = 1 and (b) 𝜇 = 0.5, 𝜔√ℎ∕𝑔 = 0.2.

Fig. 3. Variation of |𝑅| and |𝑇 | for 𝜇 = 0.75 and 𝜇 = 0.875. The shallow water approximation (SWA) is given by Eq.  (25).

these expressions for 𝑓+ and 𝑓− when applying the continuity of 𝜕𝑥𝜙 and the jump condition of 𝜙 at 𝑥 = 0 (Eq. (2b)), we obtain 
the reflection and transmission coefficient in the shallow water approximation as 

𝑅𝑠𝑤 = −
𝑖𝑘ℎ𝐵𝜇

1 − 𝑖𝑘ℎ𝐵𝜇
, 𝑇𝑠𝑤 = 1

1 − 𝑖𝑘ℎ𝐵𝜇
. (25)

Notice that these scattering coefficients satisfy the energy conservation |𝑅𝑠𝑤|2 + |𝑇𝑠𝑤|
2 = 1.

In Fig.  3, we portray 𝑅 and 𝑇  obtained from the mode matching method along with the relations (25) with respect to the 
frequency for two values of 𝜇. Notice that the reflection increases as the plate height approaches the surface (increasing 𝜇). 
Furthermore, the SWA holds sufficiently up to 𝜔

√

ℎ∕𝑔 = 0.2, which leads us to establish a frequency interval of 𝜔
√

ℎ∕𝑔 ∈ [0, 0.5]
for our study in the shallow water limit.

4. The vertically oscillating plate: shallow water regime

Now, we are going to the main part of this work where we evaluate the scattering by a vertically oscillating plate in the shallow 
water approximation.

4.1. Floquet theory

In this paper we are interested in the simplest case where the time variation is introduced in the blockage coefficient. We hereafter 
consider that 

𝐵𝜇(𝑡) = 𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡), (26)

with 𝜔𝑝 the characteristic parameter of oscillation, which consequently leads to a more complex plate motion, defined as 

𝜇(𝑡) = 1 − 2
𝜋
arcsin

[

exp
(

−𝜋
2
𝐵𝜇(𝑡)

)]

. (27)

Our starting point is the problem already introduced in Section 2.2 with a right-propagating monochromatic wave of frequency 𝜔
impinging on the periodically driven scatterer. First, Floquet theorem [12,31] allows us to write the solution in the form 

𝜙 = ℜ{𝑒−𝑖𝜔𝑡𝜓}, 𝜓(𝑥, 𝑡) = 𝜓(𝑥, 𝑡 + 𝑇 ), (28)
𝑝

5 



M. Koukouraki et al. Wave Motion 136 (2025) 103530 
with 𝑇𝑝 = 2𝜋∕𝜔𝑝. Since 𝜓 is periodic, it can be expanded in the Fourier series 

𝜓(𝑥, 𝑡) =
∑

𝑛
𝜓𝑛(𝑥)𝑒

−𝑖𝑛𝜔𝑝𝑡, (29)

with 𝑛 ∈ (−∞,+∞) and the Fourier modes 𝑒−𝑖𝑛𝜔𝑝𝑡 satisfying the orthogonality relation: 
1
𝑇𝑝 ∫

𝑇𝑝

0
𝑒𝑖(𝑚−𝑛)𝜔𝑝𝑡𝑑𝑡 = 𝛿𝑚𝑛. (30)

Substituting Eqs. (28) and (29) into Eq. (2a), projecting on 𝑒−𝑖𝑛𝜔𝑝𝑡 and using Eq. (30), we find for 𝑥 ≠ 0 that 
𝑑2𝜓𝑛
𝑑𝑥2

+ 𝑘2𝑛𝜓𝑛 = 0, 𝑘𝑛 =
𝜔𝑛
𝑐0
, (31)

where 𝜔𝑛 = 𝜔 + 𝑛𝜔𝑝. It follows from Eq. (2b) that the boundary condition for 𝜓𝑛 reads as: 

[𝜓 ′
𝑛]

0+
0− = 0, [𝜓𝑛]0

+

0− = 2𝐵𝜇,0ℎ𝜓 ′
𝑛 + 𝐵𝜇,1ℎ(𝜓

′
𝑛+1 + 𝜓

′
𝑛−1). (32)

Hence, one can write the solution for 𝜓𝑛 in the regions 𝑥 < 0 and 𝑥 > 0 as follows: 

𝜓−
𝑛 (𝑥 < 0) = 𝛿0𝑛𝑒

𝑖𝑘𝑛𝑥 + 𝑟𝑛𝑒−𝑖𝑘𝑛𝑥, (33)

𝜓+
𝑛 (𝑥 > 0) = 𝑡𝑛𝑒

𝑖𝑘𝑛𝑥, (34)

with 𝑟𝑛 and 𝑡𝑛 the scattering coefficients of each harmonic. The next step is to evaluate the jump conditions by substituting Eqs. (33) 
and (34) in Eq.  (2b), in order to derive the expressions for 𝑟𝑛 and 𝑡𝑛. First, we proceed with the continuity of 𝜕𝑥𝜙 at 𝑥 = 0, which 
yields 

∑

𝑛
(𝛿0𝑛 − 𝑟𝑛)𝑘𝑛𝑒

−𝑖𝑛𝜔𝑝𝑡 =
∑

𝑛
𝑡𝑛𝑘𝑛𝑒

−𝑖𝑛𝜔𝑝𝑡. (35)

By projecting on the Fourier modes, using the orthogonality relation (30), and representing the scattering coefficients in vector 
forms, with vector components (𝐭)𝑚 = 𝑡𝑚, (𝐫)𝑚 = 𝑟𝑚, we find that 

𝐭 = 𝐛 − 𝐫, (36)

where (𝐛)𝑚 = 𝛿0𝑚. Notice that 𝑟𝑚 = −𝑡𝑚, for 𝑚 ≠ 0, which is consistent with the symmetry of the problem.
Then, the discontinuity of 𝜙 at 𝑥 = 0 translates into 

∑

𝑛

(

𝑡𝑛 − 𝛿0𝑛 − 𝑟𝑛
)

𝑒−𝑖𝑛𝜔𝑝𝑡 =

∑

𝑛
𝑖𝑘𝑛

(

𝛿0𝑛 − 𝑟𝑛
)

[

2𝐵𝜇,0ℎ𝑒
−𝑖𝑛𝜔𝑝𝑡 + 𝐵𝜇,1ℎ

(

𝑒−𝑖(𝑛−1)𝜔𝑝𝑡 + 𝑒−𝑖(𝑛+1)𝜔𝑝𝑡
)]

,
(37)

which after following the same procedure as before can be adapted into a form of a linear system: 

𝐭 = (I + V)𝐛 + (I − V)𝐫, (38)

with 

(V)𝑚,𝑚′ = 𝑖𝐵𝜇,1ℎ
(

𝑘𝑚′+1𝛿𝑚,𝑚′+1 + 𝑘𝑚′−1𝛿𝑚,𝑚′−1
)

+ 2𝑖𝐵𝜇,0ℎ𝑘𝑚′𝛿𝑚,𝑚′ , (39)

and I denoting the identity matrix. Since V induces coupling between the harmonics, Eq. (38) demonstrates the fact that the incident 
wave is scattered into Floquet sidebands with frequencies 𝜔𝑛. Substituting Eq. (36) into Eq. (38) we obtain the relation 

𝐫 = −(2I − V)−1V𝐛. (40)

Finally, by performing some algebraic manipulations combining the boundary conditions (32) for 𝜓𝑛 and the form of solutions for 
𝜓𝑛 given in Eqs. (33) and (34), one can derive the conservation of the quantity 

 + = 1, (41)

with  =
∑

𝑛 |𝑡𝑛|
2𝑘𝑛∕𝑘0, and  =

∑

𝑛 |𝑟𝑛|
2𝑘𝑛∕𝑘0. More precisely, for this derivation one needs to proceed as follows. First, one 

evaluates the discontinuity of the product 𝜓̄𝑛𝜓 ′
𝑛 at 𝑥 = 0 using Eq. (32): 

[𝜓̄𝑛𝜓 ′
𝑛]

0+
0− =

[

2𝐵𝜇,0ℎ𝜓̄ ′
𝑛(0) + 𝐵𝜇,1ℎ

(

𝜓̄ ′
𝑛+1(0) + 𝜓̄

′
𝑛−1(0)

)]

𝜓 ′
𝑛(0). (42)

Then, one takes the sum of this product over all 𝑛-harmonics which gives 

[
∑

𝜓̄𝑛𝜓
′
𝑛]

0+
0− = 2𝐵𝜇,0ℎ

∑

|𝜓 ′
𝑛(0)|

2 + 𝐵𝜇,1ℎ
∑

(

𝜓 ′
𝑛(0)𝜓̄

′
𝑛+1(0) + 𝜓̄

′
𝑛−1(0)𝜓

′
𝑛(0)

)

. (43)

𝑛 𝑛 𝑛
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Fig. 4. (a) Temporal variation of the blockage coefficient in one period 𝑇𝑝, and the corresponding plate oscillation. (b) Reflection coefficients of the generated 
harmonics for the plate oscillation of panel (a), with 𝜔√ℎ∕𝑔 = 0.2 and 𝜔𝑝 = 𝜔∕4.

Fig. 5. Variation of the reflection coefficient of each harmonic in terms of 𝜔𝑝 normalized by the fixed incident frequency 𝜔
√

ℎ∕𝑔 = 0.1, for −1 ≤ 𝑛 ≤ 3 in (a), 
and for −5 ≤ 𝑛 ≤ −2 in (b).

Rewriting that ∑𝑛 𝜓̄
′
𝑛−1𝜓

′
𝑛 =

∑

𝑛 𝜓̄
′
𝑛𝜓

′
𝑛+1 + 𝜓̄

′
−𝑁−1𝜓

′
−𝑁 − 𝜓̄ ′

𝑁𝜓
′
𝑁+1 and given than 𝜓−𝑁−1 = 𝜓𝑁+1 = 0, since 𝑛 ∈ [−𝑁,𝑁], Eq. (43) takes 

the form 
[
∑

𝑛
𝜓̄𝑛𝜓

′
𝑛]

0+
0− = 2𝐵𝜇,0ℎ

∑

𝑛
|𝜓 ′
𝑛(0)|

2 + 2𝐵𝜇,1ℎ
∑

𝑛
ℜ{𝜓 ′

𝑛(0)𝜓̄
′
𝑛+1(0)}. (44)

From there one finds that 
[ℑ{

∑

𝑛
𝜓̄𝑛𝜓

′
𝑛}]

0+
0− = 0, (45)

which indicates the conservation of the total flux at 𝑥 = 0. Furthermore, since the total flux is also conserved for 𝑥 < 0 and 
𝑥 > 0 separately, a property stemming from Eq.  (31), it is conserved everywhere in space: [ℑ{

∑

𝑛 𝜓̄𝑛𝜓
′
𝑛}]

+∞
−∞ = 0. In the end one 

obtains Eq. (41). Incidentally, this conservation law is also found in the case of the Schrödinger equation (see [15]), referring to 
the probability current conservation, with   the transmittance and  the reflectance.

4.1.1. Generation of harmonics
Equipped with Eqs. (36) and (40), we can now investigate and quantify the harmonic generation. In order for the plate to have 

a visible impact on the wave at low frequencies, we choose to impose a strong vertical plate movement as shown in Fig.  4a, where 
𝜇(𝑡) ∈ [0, 0.95]. For this configuration, and setting 𝜔

√

ℎ∕𝑔 = 0.2 and 𝜔𝑝 = 𝜔∕4, the harmonics which are produced at 𝑛 = ±1 represent 
roughly 49% of the fundamental one in terms of reflection, while at each higher order of 𝑛 the coefficient |𝑟𝑛| drops an order of 
magnitude (see Fig.  4b). While in this example we witness an important contribution of the first sidebands (𝑛 = ±1) in the total 
reflected field, we wish to see if this is still true for different frequencies of oscillation. For this purpose we fix the frequency of the 
incident wave and vary 𝜔𝑝, so as to uncover how each harmonic is affected by this variation.

In Fig.  5 we depict a numerical application, where 𝜔
√

ℎ∕𝑔 = 0.1 and 𝜔𝑝
√

ℎ∕𝑔 ∈ [0, 0.5], plotting the harmonics corresponding 
to −1 ≤ 𝑛 ≤ 3 on panel (a) and −5 ≤ 𝑛 ≤ −2 on panel (b). It is clear that the harmonics with 𝑛 ≥ −1 are monotonic with 𝜔𝑝∕𝜔, and 
that the dependence on the plate oscillation decreases as we move from 𝑛 = 3 towards the fundamental harmonic, which appears 
constant compared to its counterparts. The first sidebands at 𝑛 = ±1 are almost identical, and we find that |𝑟−1| ≃ |𝑟1| as 𝜔𝑝∕𝜔→ 0, 
which will be explained in the following section concentrating on the quasistatic adiabatic limit. Interestingly, on panel (b) we 
observe the elimination of all 𝑟  with 𝑛 < −1 at 𝜔 = 𝜔  and the elimination of all 𝑟  with 𝑛 < −2 at 𝜔 = 2𝜔 .
𝑛 𝑝 𝑛 𝑝
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In fact, it appears that 
|𝑟𝑛| = 0, for 𝑛 < −𝑚, when 𝜔 = 𝑚𝜔𝑝, (46)

with 𝑚 ∈ N∗, 𝑛 ∈ Z. Indeed, at these frequencies the system (40) decouples and explicit relations can be found for 𝑛 ≥ −𝑚. For 
instance, for 𝑚 = 1 one can extract that 

𝑟−1 =
𝑖𝐵𝜇,1ℎ𝑘0

2
(𝑟0 − 1), (47)

𝑟1 =
𝑖𝐵𝜇,0ℎ𝑘0 + 𝑟0

(

1 − 𝑖𝐵𝜇,0ℎ𝑘0
)

𝑖𝐵𝜇,1ℎ𝑘0
, (48)

𝑟2 = −

{

2𝑖𝐵𝜇,0ℎ𝑘0 + (4𝐵2
𝜇,0 − 𝐵

2
𝜇,1)ℎ

2𝑘20 + [2 − 6𝑖𝐵𝜇,0ℎ𝑘0 − (4𝐵2
𝜇,0 − 𝐵

2
𝜇,1)ℎ

2𝑘20]𝑟0
}

3𝐵2
𝜇,1ℎ

2𝑘20
, (49)

and, as an extension, one can deduce that 𝑟𝑛 = 𝑠𝑛(𝑟0), with 𝑛 ≥ −1 and 𝑠𝑛 a function depending on 𝑛. This property of the system 
means that there are no reflected waves of the form 𝑒𝑖|𝑘𝑛|(𝑥+𝑐0𝑡). However, for a non integer ratio of 𝜔𝑝∕𝜔 this is no longer the case 
and it leads to harmonics with a reversed wave phase; it is visible from the rapid increase of the harmonic |𝑟−2| from a practically 
zero value at 𝜔𝑝∕𝜔 = 1 to the order of 10−4 when 𝜔𝑝∕𝜔 = 1.1. It is also worth commenting on the fact that while in the Schrödinger 
equation the harmonics with 𝜔𝑛 < 0 result in evanescent modes (see [13,15]), for the wave equation there is no restriction of that 
matter.

4.2. Quasistatic approximation

While Floquet theory gives a direct insight into the reproduced harmonics and their dependence on the frequency of oscillation, 
we have seen that we have small changes in the 𝑛-harmonic amplitude with 𝜔𝑝 for 𝑛 = −1, 0, 1, implying the existence of a quasistatic 
(QS) regime (𝜔𝑝 → 0) that needs to be examined.

In order to understand this quasistatic adiabatic limit, we focus on a barrier moving much slower than the period of the incident 
wave, such that 𝜔𝑝 ≪ 𝜔. Then, the static solution for the reflected and the transmitted waves given in Section 3.2 is modified only 
by adjusting the time-dependent blockage coefficient (Eq. (26)) in the relations (25). Hence, this yields 

𝑓𝑟(𝑥, 𝑡) = −
𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡))

1 − 𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡))
𝑒−𝑖(𝑘𝑥+𝜔𝑡), (50)

𝑓𝑡(𝑥, 𝑡) =
1

1 − 𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡))
𝑒𝑖(𝑘𝑥−𝜔𝑡), (51)

with 𝑓𝑟 and 𝑓𝑡 denoting the reflected and transmitted wave in this adiabatic limit. Next, we Fourier expand the two components 
using the series 

𝑓𝑟 =
∑

𝑛
𝑟𝑛𝑒

𝑖(𝑘𝑥−𝜔𝑛𝑡), (52)

𝑓𝑡 =
∑

𝑛
𝑡𝑛𝑒

𝑖(𝑘𝑥−𝜔𝑛𝑡), (53)

with 𝜔𝑛 = 𝜔 + 𝑛𝜔𝑝. Combining Eqs. (50), (51) with Eqs. (52), (53), then projecting on 𝑒−𝑖𝑛𝜔𝑝𝑡 and using the orthogonality of the 
modes, one can express the coefficients 𝑟𝑛 and 𝑡𝑛 in the quasistatic approximation as 

𝑟𝑛 =
1
𝑇𝑝 ∫

𝑇𝑝

0

𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡))
𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡)) − 1

𝑒−𝑖𝑛𝜔𝑝𝑡𝑑𝑡, (54)

𝑡𝑛 =
1
𝑇𝑝 ∫

𝑇𝑝

0

1
1 − 𝑖𝑘ℎ(𝐵𝜇,0 + 𝐵𝜇,1 cos(𝜔𝑝𝑡))

𝑒𝑖𝑛𝜔𝑝𝑡𝑑𝑡. (55)

By applying contour integration, which involves setting 𝜑 = 𝜔𝑝𝑡 and then integrating over the unit circle with complex variable 
𝑧 = 𝑒𝑖𝜑, we obtain the expressions 

𝑡𝑛 =

(

𝛽∕𝛾 −
√

(𝛽∕𝛾)2 − 1
)−|𝑛|

√

𝛽2 − 𝛾2
, (56)

𝑟𝑛 = 𝛿0𝑛 −

(

𝛽∕𝛾 −
√

(𝛽∕𝛾)2 − 1
)−|𝑛|

√

𝛽2 − 𝛾2
, (57)

with 𝛽 = 1 − 𝑖𝑘ℎ𝐵𝜇,0 and 𝛾 = 𝑖𝑘ℎ𝐵𝜇,1. Notice that the coefficients are symmetric around the fundamental, i.e. 𝑟𝑛 = 𝑟−𝑛 for 𝑛 ≠ 0, 
which is not the case in the Floquet theory (see Fig.  6b,c). They are also independent from 𝜔𝑝, as expected.

In order to test the robustness and the limitations of the QS approximation, as opposed to the Floquet theory, we once again fix 
the incidence frequency 𝜔 and vary 𝜔 . In Fig.  6a,b,c we illustrate the reflection amplitudes of each harmonic with index 𝑛 when 
𝑝
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Fig. 6. Reflection amplitudes calculated by the Floquet theory (in gray bars) and by the QS approximation (in blue points) for 𝜔√ℎ∕𝑔 = 0.1, with (a) 
𝜔𝑝

√

ℎ∕𝑔 = 𝜔∕1000, (b) 𝜔𝑝
√

ℎ∕𝑔 = 𝜔∕6 and (c) 𝜔𝑝
√

ℎ∕𝑔 = 𝜔∕4. (d) Relative difference of the two methods in terms of 𝜔𝑝∕𝜔 for the harmonics of indexes 
−2 ≤ 𝑛 ≤ 2.

Fig. 7. (a) Comparison of the coefficient |𝑟0| for a static plate of heights 𝜇𝑚𝑎𝑥 = 0.95, 𝜇𝑚𝑒𝑎𝑛 = 0.698 with the oscillating plate of Fig.  4a where 𝜔𝑝
√

ℎ∕𝑔 = 0.2, 0.1, 
along with the quasistatic result (QS) given by Eq.  (57). (b) Closer view of the change in |𝑟0| with the normalized frequency of oscillation 𝜔𝑝∕𝜔 for 
𝜔
√

ℎ∕𝑔 = 0.01, 0.1, 0.2.

𝜔
√

ℎ∕𝑔 = 0.1 for increasing values of 𝜔𝑝. It is evident that the closer we move to the adiabatic limit where 𝜔𝑝 ≪ 𝜔 the better 
the agreement between the QS approximation and Floquet theory as a whole, while in all cases the harmonics at 𝑛 = −1, 0, 1 are 
very well approximated by the QS approximation. A quantitative representation of the relative difference between the two methods, 
defined as 𝛿|𝑟𝑛| = ||𝑟𝑛| − |𝑟𝑛||∕|𝑟𝑛|, is depicted in Fig.  6d for 𝑛 = −2,−1, 0, 1, 2, spanning 𝜔𝑝∕𝜔 from 0 to 1. For 𝜔𝑝 → 0, we see that 
𝛿|𝑟0| ∼ 10−7, 𝛿|𝑟±1| ∼ 10−4 and 𝛿|𝑟±2| ∼ 10−3, whereas for the case of panel (c) where the mismatch is more visible, 𝛿|𝑟0| ∼ 5 ⋅ 10−4

and increases to 𝛿|𝑟±2| ∼ 0.2.
Focusing on the fundamental frequency 𝑛 = 0, we wish now to inspect the effect of the plate when it is static versus when it is 

moving. Taking two limit values of 𝜇, specifically the maximum height 𝜇𝑚𝑎𝑥 = 0.95 and the mean value of 𝜇(𝑡), 𝜇𝑚𝑒𝑎𝑛 = 0.698, we 
detect that |𝑅𝑠𝑤,𝜇𝑚𝑒𝑎𝑛 | < |𝑟0| < |𝑅𝑠𝑤,𝜇𝑚𝑎𝑥 | for all values of 𝜔 (see Fig.  7a). Interestingly, the coefficient |𝑟0| is also minimally affected 
with changes of 𝜔𝑝, as already discussed in Section 4.1.1, and is almost perfectly captured by the result given from the quasistatic 
approximation. Arguably, a slight deviation from this quasistatic result can be achieved for higher values of 𝜔 and working towards 
fastest plate oscillations, i.e by challenging the limits of the shallow water approximation. This remark can be made by viewing Fig. 
7b, where we find a relative variation of just 10−8 for 𝜔

√

ℎ∕𝑔 = 0.01, of 10−2 for 𝜔
√

ℎ∕𝑔 = 0.1 and of 3 ⋅ 10−2 for 𝜔
√

ℎ∕𝑔 = 0.2 in 
an interval of 𝜔 ∕𝜔 ∈ [0, 2].
𝑝
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5. Conclusion

In this paper we proposed a Floquet theory approach for the reflection and transmission of a plane wave from a vertically 
oscillating plate in the low frequency approximation. With this shallow water approximation this oscillation of the plate is reduced 
to a 1D model with the simple wave equation and a time-varying point discontinuity condition at the plate location. We show that 
even a slowly oscillating plate can have an important impact on the generation of reflected harmonics, notably the first sidebands 
(𝑛 = ±1) whose amplitude reaches close to 50% the one of the fundamental one (𝑛 = 0). When considering the quasistatic adiabatic 
limit 𝜔𝑝 ≪ 𝜔, explicit relations can be derived for the amplitudes of all harmonics which strongly agree with the full Floquet theory 
up to 𝑛 = ±2 for 𝜔𝑝 → 0. In addition, the reflection coefficient of the fundamental is nicely matched with the quasistatic result 
for all incident frequencies, and a slight variation when modifying 𝜔𝑝 can be only achieved by moving to higher frequencies and 
imposing even faster oscillations. This quasistatic value lies between the maximum and the mean value of the height oscillation. 
Overall, we conclude that the quasistatic approximation is surprisingly robust and can efficiently predict the behavior of the system 
with respect to the reflection coefficient of the fundamental harmonic regardless of the characteristic frequency of oscillation as 
long as the shallow water approximation is valid.
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