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In this study, we experimentally demonstrate the possibility of negative refraction of
water waves, using a locally resonant metamaterial. This metamaterial exhibits a dispersion
that encompasses elliptical and hyperbolic regimes, characterized by theoretical analysis
and supported by experimental validation. In the frequency range associated with hyper-
bolic dispersion, we confirm and characterize the appearance of negative refraction. Our
experimental achievement provides convincing evidence of the potential of metamaterials
for water wave control.
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Veselago’s pioneering work [1] laid the foundations for the exciting exploration of negative wave
refraction, a phenomenon that has captured the attention of researchers for many years [2–4]. While
the usual law of refraction predicts that, as a ray passes from one medium to another, the incident and
refracted rays lie on opposite sides of normal at the point of incidence, negative refraction defies this
law by producing incident and refracted rays on the same side of the normal. This intriguing property
has paved the way for innovative wave manipulation, offering potential applications across various
wave domains, from optics [5,6] to acoustics [7,8]. A promising approach to achieving negative
refraction is based on hyperbolic dispersion [9,10], departing from the traditional idea stemming
from Veselago’s work, which involved elliptical dispersion with double negativity. Materials char-
acterized by hyperbolic dispersion exhibit unusual optical or acoustic properties, where refractive
index curves take the form of hyperbolic branches rather than circles or ellipses. Although the
importance of hyperbolic metamaterials as a tool for controlling waves is substantial and has been
demonstrated experimentally in acoustics [11–13] and in elastodynamics [14,15], the realization of
a truly hyperbolic metamaterial for water waves has not been reported so far.

In this Letter, we present a detailed study focused on designing and characterizing a metamaterial
capable of inducing negative refraction of water waves. Our metamaterial is crafted using an array
of subwavelength resonators inspired by Helmholtz acoustic resonators [16,17]. This innovative
approach endows the metamaterial with highly anisotropic dispersion properties that span both el-
liptical and hyperbolic regimes, with negative refraction being observable in the hyperbolic regime.
We provide a comprehensive experimental characterization of this metamaterial, supported by an
in-depth theoretical analysis based on the Bloch-Floquet method combined with homogenization
techniques developed in [18], see also [19]. Additionally, we include direct numerical simulations
of the three-dimensional problem using Comsol Multiphysics.
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FIG. 1. (a) Conceptual view of the hyperbolic metamaterial for water waves that span elliptic and hyper-
bolic dispersions; (b) experimental realization of the metamaterial structure, built thanks to a 3D printer.

The resonant metamaterials is shown in Fig. 1. It consists of alternating open channels and
resonant channels, formed by an array of resonators whose vertical walls extend through the entire
water depth h = 2 cm. The three-dimensional unit cell is �x × �y × h, with �x = � = 2 cm and
�y = 2�; it consists of a single resonator and a part of the open canal, with horizontal cross sections
Sc = 1.82 cm2 and S = 1.8 × 2 cm2, respectively. The resonant cavities communicate with the
adjacent open canals through submerged circular holes drilled in two opposite walls and centered
at z = −h/2. These holes have a cross-sectional area s = π 0.52 cm2 and a length e = 0.2 cm,
which corresponds to the thickness of the wall. The design of this device, which enables negative
refraction, is based on the model introduced in [18]. In essence, the model analyzes the complete
three-dimensional problem in the harmonic regime with time dependence e−iωt , where ω = 2π f and
f represents the operating frequency. In this regime, the velocity potential ϕ(r), where r = (x, y, z),
within an inviscid, incompressible water column exhibiting irrotational motion, satisfies Laplace’s
equation, supplemented by boundary conditions at the free surface z = 0 (with z oriented vertically
upwards) and at the rigid wall boundaries, denoted by w, specifically

�ϕ(r) = 0,
∂ϕ

∂z
(x, y, 0) = ω2

g
ϕ(x, y, 0), ∇ϕ · n|w = 0, (1)

where g is the gravitational constant and n is the local normal to the walls, including the resonator
walls and the sea bottom at z = −h. The model assumes a subwavelength regime, indicating that the
wavelength corresponding to the wave number k, which satisfies the dispersion relation in a water
column of depth h as described by

ω2 = gk tanh(kh), (2)

is significantly greater than the dimension � of the unit cell. Through the combination of Bloch-
Floquet analysis with asymptotic homogenization (see Appendix A), the dispersion κ(ω) for this
metamaterial was derived in the following form:

hxκ
2
x + hyκ

2
y sinc2 κy�y

2
= ω2

ge
, hx = tanh(kh)

k
, hy = α2γ

1 − �2
h, ge = 1 − �2

1 + γ − �2
g, (3)

where sincx = sin x/x, γ = Sc/S is a constant nondimensional parameter, and both � and α are
nondimensional frequency-dependent parameters with

� = ω

F (kh)
, α = F (kh)�y

2
√

gh
, (4)
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FIG. 2. Theoretical full band structure κ = (κx, κy ) as a function of frequency f = ω/(2π ), from (3). The
white lines show isofrequency contours at the working frequencies, the black lines show the dispersion along
�X, �Y, and YM.

and F (kh) = 2π fsw
√

cosh(kh/2)/ cosh(kh). The resonance frequency of a single cavity is at
ω = 2π f0 realizing � = 1 and accordingly, f0 tends to fsw in the shallow water limit, see (A2)
in Appendix A.

The cavities were built using a 3D printer with a resin material that allows the menisci to slide
smoothly along the walls. We measured the resonance frequency of a single cavity at f0 = 3.22 Hz,
corresponding to fsw = 3.83 Hz, which matches the numerical value and is close to the theoretical
value of fsw = 3.18 Hz. Figure 2 presents the theoretical full band structure (κx, κy) from (3) as a
function of frequency, revealing elliptic dispersion for f < f0 (hy > 0) and hyperbolic dispersion
otherwise (hy < 0). It is noteworthy that, at low frequencies, the metamaterial already exhibits a
degree of anisotropy, albeit moderate, with hy/hx → α2γ ∼ 1.1. In contrast, at higher frequency,
anisotropy becomes very pronounced, with hy/hx → 0. In this latter case, propagation is allowed
only along the x direction, meaning that the resonant canal behaves as a plain block with κx = k
satisfying (2) [18,20,21]. Finally, we observe a flat branch at resonance f = f0 along YM, corre-
sponding to a localized mode characterized by arbitrary amplitude in a resonant cavity and zero
amplitude in the open channels (see Appendix A).

To experimentally characterize the anisotropy of water waves over our metamaterial, we use a
point source generated by a linear motor equipped with a fine tip that moves vertically in a sinusoidal
motion. Two sets of experiments are conducted, with the source positioned either inside or outside
a resonator. For each experiment, wave fields are measured using an optical method known as
Fourier Transform Profilometry (FTP, see Appendix B), which provides spatially and temporally
resolved measurements of the free surface elevation η(x, y, t ) [22–24]. Measurements are taken in
a 36 × 36 cm2 area with a spatial resolution of 0.35 mm; the temporal resolution, determined by
the camera’s frame rate, is 1/50 s. The fields η(x, y, t ) are measured for a source frequency f over a
duration of 20 periods, resulting in the complex fields η(x, y, f ) through a time Fourier transform.
Figure 3(a) shows typical measurements of η(x, y, f ) in real space (x, y), and Fig. 3(b) presents
their 2D spatial Fourier transforms η(κx, κy, f ). In these latter fields, the white lines correspond to
the theoretically predicted isofrequency contours, showing very good qualitative agreement.

These measurements were carried out for 22 values of f in the range of (2, 6) Hz to obtain
the experimental dispersion curves along the main directions of the Brillouin zone. Specifically,

L112801-3



LÉO-PAUL EUVÉ et al.

FIG. 3. (a) FTP measurements of free-surface elevation η(x, y, f ) for a point source emitting at frequency
f in the anisotropic metamaterial. (b) Experimental dispersion by means of η(κx, κy, f ) (red regions) obtained
by 2D spatial Fourier transforms of the fields in (a). The solid white lines show the theoretical dispersion,
according to (3); all fields are normalized to their maximum.

for each frequency, we extracted the value of κy for κx = 0 (�Y direction) and the value of κx

for κy = 0 and κy = π/�y (�X, YM directions). The results are shown in Fig. 4 (symbols), along
with the theoretical prediction from (3) (using fsw = 3.83 Hz as before) and the numerical results
obtained by solving the 3D problem in the unit cell, as described in [18]. The overall agreement
between the experiments, theory, and numerical simulations is good, although a loss of accuracy is
observed at the higher frequencies. This discrepancy can be attributed to surface tension, neglected
in the model and 3D numerical simulations, which increases the wavelength of propagating modes
in open channels, as it would in an open area. As expected, the flat branch along YM is not observed
experimentally, as it is associated with a mode confined within a single resonator. It should also be
noted that the model does not account for the avoided crossing between the two branches.

We now turn our attention to the potential for negative refraction in the structure. As can already
be seen from the results in Fig. 4, the group velocity ∂ω/∂κy is negative on the hyperbolic branch
along �Y, a phenomenon also visible in the isofrequency contours of Fig. 3(b) for f � 3.6 Hz.
Along this branch, near the � point, κy approaches zero, allowing us to unambiguously state, using

FIG. 4. Dispersion in the principal directions of the Brillouin zone. Solid lines show the theoretical
dispersion (3) using fsw = 3.83 Hz, symbols the experimental dispersion (for four sets of experiments), and
dashed lines correspond to numerical simulations of the three-dimensional problem. Along YM, the model
does not account for avoided crossing between the two branches.
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FIG. 5. Experimental evidence of negative refraction–(a), (b) FTP measurements of the surface elevation
η(x, y, f ) (real part and modulus) for an incident beam at an incidence θin = 31◦, showing negative refraction
within the metamaterial slab (θr = −33◦) and emerging at x = L = 9� ( f = 4 Hz). The fields are presented
with loss compensation; see Appendix B. (c) Normalized wave amplitudes |η(x, y, f )|2 at x = −� (blue) and
x = L + � (red). Solid curves represent data smoothing (dotted lines), and vertical dashed lines indicate the
theoretical positions of the centers of the incoming (blue) and outgoing (red) beams. (d), (e), (f) 2D spatial
Fourier transforms of η(x, y, f ) for (d) x < 0, (e) 0 < x < L and (f) x > L. In each panel, the solid white lines
represent the theoretical dispersion (2) or (3), and Poynting vector πin, from (6), or πr, from (5).

(3) with sincκy�y/2 � 1, that the Poynting vector inside the metamaterial takes the form

πr = 2ω|ϕ|2(hxκxex + hyκyey), (5)

while in the free water it is described by

πin = 2ω|ϕin|2h(kxex + kyey), (6)

with k =
√

k2
x + k2

y satisfying (2). As a result, for an incident wave in free water with kx, ky > 0
striking an interface with the metamaterial region, our model indeed predicts negative refraction
for ω > 2π f0, where hy < 0 since the sign of the y component of the Poynting vector changes.
Experimentally, this negative refraction was investigated by directing a wave beam at a frequency
of f = 4 Hz onto a metamaterial slab 9� (18 cm) long, placed in a 30� × 80� (1.6 × 0.6 m2) tank.
The incident beam was generated by an oscillating plate inclined at an angle θ = 31◦, producing
a refraction angle θr � −33◦, small enough to minimize the wave attenuation due to propagation
through the metamaterial. The fields shown in Figs. 5(a) and 5(b) correspond to the results obtained
in real space (x, y) (in real part and magnitude, respectively). To clearly visualize the negative
refraction, losses were compensated (see Appendix B). The dashed lines indicate the path predicted
by the model, according to (5) and (6), in good agreement with the measurements. Figures 5(d)–5(f)
display the two-dimensional spatial Fourier transforms inside and outside the metamaterial slab.
Outside the metamaterial, in the (kx, ky) plane [panels (d) and (f)], the energy maximum (red zone)
corresponds to the value of k, parallel to πin as given by (6). It should be noted that in panel
(d), the presence of a maximum at (−kx, ky) indicates reflection by the metamaterial, quantified
at approximately 60%, indicating an impedance mismatch between the two media. Inside the
metamaterial, in the (κx, κy) plane [panel (e)], the energy maximum yields the wave vector κ,
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which closely aligns with the theoretical dispersion (3). In this region, κ is not parallel to πr, which
represents the trajectory of the energy flux observed in panels (a) and (b).

In conclusion, the application of metamaterial concept to surface water waves has led to
innovative advancements in control [25–28], attenuation [29,30], and amplification [31], as well
as the realization of negative elliptical dispersion [32,33]. In this study, we present for the first
time a metamaterial that spans both elliptical and hyperbolic dispersion regimes, and we provide
experimental validation of negative refraction in the hyperbolic regime.

Acknowledgments. The authors acknowledge the support of the ANR under Grants No. ANR-
21-CE30-0046 CoProMM and No. ANR-19-CE08-0006 MetaReso.

Appendix A: Additional information on the model. The model in [18] analyzes the relationship
satisfied within the unit cell by the velocity potentials in a single resonator and in a part of the
adjacent open channel. According to Bloch-Floquet theory, these are denoted ϕ(r) = ϕreiκr and
ϕ(r) = ϕaeiκr, respectively, where (ϕr, ϕa) are constants that satisfy the relations

(�2 − 1)ϕr + 1

2
(1 + eiκy�y )ϕa = 0,

γ

2
(1 + e−iκy�y )ϕr +

(
�2 − γ − ghxκ

2
x

F 2(kh)

)
ϕa = 0, (A1)

(see (E3–E4) in [18]). The solvability condition of (A1) yields the dispersion (3). However, when
κy�y = ±π , (A1) predicts the existence of a flat branch at � = 1, associated with a compact
localized mode, where ϕa = 0 and ϕr can take any arbitrary value [34].

In the model developed in [18], the resonance frequency fsw in the shallow water limit is
derived by integrating the Laplace equation within a resonant cavity, while accounting for boundary
conditions at the free surface and at the walls. This yields

(2π fsw)2 = 2gs

Sceeff
, (A2)

where eeff = e + ε
√

s represents an effective length. The dimensionless parameter ε is determined
by solving the problem of a perfect fluid flowing though a hole of unitary section; for a circular
hole, ε = 1.12 resulting in fsw = 3.18 Hz, in agreement with 3D numerical simulation.

As mentioned earlier, the cavities were fabricated using a 3D printer with a resin material
designed to ensure smooth sliding of the menisci along the walls. This approach allowed us to
confirm that the piston mode within the cavities is observed without the influence of surface ten-
sion. The discrepancy between the resonant frequency, measured experimentally and numerically,
fsw = 3.83 Hz and the theoretical value fsw = 3.18 Hz, is due to the circular holes not being very
small compared to the cavity dimensions, as assumed in theory.

Appendix B: Additional information on the experiments. Wave field measurements are performed
using the Fourier Transform Profilometry (FTP) method [22,23]. This technique involves projecting
a fringe pattern onto the free surface of the water, which is then captured by a camera (see Fig. 6).
To enhance the diffusivity of the free surface, white dye is added to the water, which does not affect
the hydrodynamic properties of the water [24]. The deformed fringe pattern caused by the wave
propagation is compared to the original pattern (water at rest), allowing the generation of a phase
map from which the free surface elevation can be reconstructed.

The experimental set-up, illustrated in Fig. 6, involves conducting experiments in a water tank
measuring 1.6 m in length and 0.6 m in width. Two inclined beaches, each with a 5° slope, are
positioned at both ends of the tank to prevent unwanted reflections. For the negative refraction
experiments, the metamaterial slab is centrally placed within the tank. The wave maker, used for
the negative refraction result in Fig. 5, consists of a horizontal cylinder, 16 cm long (approximately
2 wavelengths) and 4 cm in diameter, driven by a linear motor. It is inclined relative to the y axis
to produce a wave beam with a specific incident angle. To measure the experimental dispersion
relation (Figs. 3 and 4), the horizontal cylinder is replaced by a fine tip to position the source inside
a resonator or an open channel.
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FIG. 6. Experimental setup for the negative refraction experiment, with the metamaterial slab positioned
centrally within the tank, the inclined wave maker and the system projector-camera for the FTP measurements.

The fields shown in Figs. 5(a) and 5(b) are presented with loss compensation to clearly delineate
the path of waves within the metamaterial, following the method described in [35]. For complete-
ness, the original field is depicted in Fig. 7 along with its y-averaged profile (using a logarithmic
scale). This representation indicates that the losses within the slab are well approximated by an
exponential decay of the form e−0.22|κ|x. Consequently, the loss-compensated fields displayed in
Fig. 5 were obtained by normalizing the fields with η(x, y) → η(x, y)/V (x), where

V (x) =
⎧⎨
⎩

1, x < 0,

e−0.22|κ|x, 0 < x < L,

e−0.22|κ|L, x > L.

(B1)

FIG. 7. (a) Original field η(x, y, f ). (b) Average of the original field along y (blue curve), fit of the losses
in the metamaterial (red line), and the two vertical lines representing the position of the metamaterial.
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We emphasize that the attenuation observed, due to viscous and meniscus effects, which are not
accounted for in the model or the numerical simulations, is particularly significant at the scale of
our laboratory experiments. This effect would diminish at larger scales.
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