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Backscattering reduction in a sharply bent water wave channel
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We study theoretically and experimentally how to reduce the backscattering of water waves in a channel with
multiple turns. We show that it is possible not only to cancel backscattering but also to achieve a remarkable
transmission in such geometries. In order to avoid the reflection that naturally arises at each turn of the
waveguide, an anisotropic metamaterial made of closely spaced thin vertical plates is used. The efficiency of the
metamaterial arrangement depends only slightly on the frequency of the incident wave, as long as its wavelength
is much larger than the periodicity of the array. This phenomenon is applies not only to water wave channels but
also to any type of waves with Neumann boundary conditions.
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I. INTRODUCTION

The use of metamaterials for wave manipulation has
generated considerable interest in recent years, both in elec-
tromagnetics and in acoustics and surface waves [1–4].
Metamaterials typically consist of a periodic structure whose
characteristic length is much smaller than the considered
wavelength and allow us to modify the natural propagation
of waves. They are able to generate, for example, invisibil-
ity cloaking [5–7], wave absorption [8–11], or wave shifting
[12–15], among other effects.

In particular, in the context of water waves, one type of
metamaterial commonly used to control wave propagation
is an array of rigid plates forming a subwavelength grating.
Systems of this type have been studied both experimentally
[13,16] and theoretically [17–20]. They have been found to
possess Brewster-angle-type behavior, in which backscatter-
ing is considerably reduced and near-zero reflection values
are achieved for a wide range of frequencies [21–24], without
relying on resonant phenomena. When it is not zero reflection
for a wide frequency band that is sought, but rather the objec-
tive is the stability of transparency with changing angle, note
that wide-angle transparent anisotropic metamaterials have
been proposed for electromagnetic waves [25,26].

In order to facilitate the modeling of the properties of
gratings with a subwavelength structure, homogenization
techniques have been developed [16,23,24,27,28]. These tech-
niques replace the perforated domain with a homogeneous and
anisotropic one. At low enough frequencies, under the ho-
mogenization regime approximation, they are capable of accu-
rately predicting the behavior of the system, with the decrease
in backscattering at the Brewster angle. If the plates constitut-
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ing the grating occupy the entire depth of the fluid, going from
the bottom to the surface, since the space between them is
smaller than the incident wavelength, the energy flow is forced
in one direction only. Of particular interest is the recent work
of Porter [17], who showed that if the thickness of the plates is
infinitely thin, then the reflection is exactly zero (i.e., without
making use of the homogenization regime approximation).

Naturally, there has been an interest in performing exper-
iments on shifting waves using a subwavelength grating. For
example, reflectionless waveguides with an angle up to π/6
have been achieved for water waves [13], using the theory
of transformation media to design a metabathymetry with
anisotropic properties. In the context of acoustics, a beam
shifter capable of exhibiting a high transmission at resonant
frequencies and at a Brewster-like incidence angle has been
realized [15].

In this paper, we show theoretically and experimentally a
broadband backscattering reduction in a sharply bent water
wave channel. This is achieved owing to an array of vertical
surface-piercing thin plates with a perpendicular angle with
respect to the incident wave, as shown in Fig. 1. The effect
is broadband because the spacing between the plates is much
smaller than the incident wavelength, resulting in an effective
medium without impedance mismatch between the inside and
the outside. The paper is organized as follows. In Sec. II
we characterize the reflection generated by the bending of a
waveguide. The use of a plate-array metamaterial to reduce
the backscattering after each turn is proposed in Sec. III.
We study the reflection coefficient given by a plane wave
incidence on a plate-array grating both in an infinite domain
and in a bent waveguide. We also propose a homogenized
model to replace the subwavelength grating by an effective
medium. Finally, in Sec. IV we show an experimental real-
ization of this system, exploring its capabilities in terms of
frequency.
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FIG. 1. Scheme of the experimental setup: a channel of width W
with a dislocation of length L0, where the plate-array metamaterial
is placed. An incident wave (inc) is reflected and transmitted with
scattering coefficients R and T .

II. SHARPLY BENT WATER WAVE CHANNEL

The system under consideration is depicted in Fig. 1. Sur-
face waves are generated at the beginning of the channel,
which undergoes a perpendicular turn of length L0 and then
continues in a direction parallel to the first section. At the end
of the channel an absorbing beach avoids reflections. We first
consider this geometry without metamaterial to characterize
the amount of reflection it generates. Thereafter we will show,
in the next section, that it is possible to reduce the backscatter-
ing generated by the turn by adding a plate-array metamaterial
in the central region that allows high values of transmission to
be achieved as well.

The free-surface elevation η(x, y) with time harmonic de-
pendence e−iωt is governed by the two-dimensional (2D)
Helmholtz equation

(� + k2)η(x, y) = 0, (1)

where k is the wave number, along with Neumann boundary
conditions on the vertical walls ∂nη = 0. This equation is valid
for irrotational and incompressible flows in geometries with a
flat bottom and vertical walls in the harmonic regime, under
the linear approximation.

We consider waves that are generated for frequencies be-
low the cutoff frequency of the waveguide of width W , i.e.,
kW < π , which only allows the propagation of the planar
mode. Under the wide-spacing approximation, it is then pos-
sible to construct a 1D model that takes into account the
scattering coefficients of each perpendicular turn individu-
ally, along with 1D propagation following the waveguide (see
Appendix A). It can be noticed that this system is analogous to
a Fabry-Pérot interferometer, in which waves pass through a
cavity made up of two parallel reflecting surfaces separated
by a distance L = L0 − W . Following this 1D model, the
absolute value of the reflection coefficient of the bent channel
is given by

|R|2 = F sin2
(

δ
2

)
1 + F sin2

(
δ
2

) , (2)

FIG. 2. Reflection coefficient for different ratios of L0/W with-
out the metamaterial. The solid blue curves exhibit the result of a
2D simulation of the full channel, the dashed red curves indicate the
Fabry-Pérot resonances, and the dash-dotted gray curves show the
envelope of |R|, obtained from Eq. (2).

defining F = 4r2
0/(1 − r2

0 )2 and δ = 2kL + 2ϕ, where r0 and
ϕ are the modulus and the phase, respectively, of the reflection
coefficient (r = r0eiϕ) for one single perpendicular turn (see
Appendix B).

Clearly, backscattering suppression is achieved when
sin2(δ/2) = 0, i.e., when kL + ϕ = mπ (m ∈ Z). Addition-
ally, the envelope of this expression can be obtained by
imposing sin2(δ/2) = 1 and is given by |R|2 = F/(1 + F ),
which depends only on r0. We may note that the absolute value
of the reflection coefficient for one corner yields the shape
of the envelope, while its phase provides the position of the
resonances, as we will see in Fig. 2.

In order to study the dependence of the reflection coeffi-
cient R on the distance L0 of the perpendicular turn, Fig. 2
shows the values of |R|, for different ratios of L0/W , obtained
from the 1D model [Eq. (2)] as well as the ones computed
numerically by solving Eq. (1) in the full 2D geometry us-
ing the finite-element method (MATLAB PDETOOL). There are
two behaviors that are worth noting when the ratio L0/W is
increased. Firstly, the number of resonances becomes con-
sequently higher, as expected from Eq. (2). Secondly, the
1D model agrees very well with the full 2D simulation, and
unsurprisingly under the wide-spacing approximation, this
agreement gets better and better when the two perpendicular
corners move away from each other since the near-field effects
decrease.

Regardless of the L0/W ratio, the general tendency of
the reflection coefficient is the same. It is zero at resonance
frequencies, while its upper envelope

√
F/(1 + F ) does not

depend on L0/W . In the following, we will add a plate-array
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FIG. 3. (a) Real part of the surface elevation field η(x, y) for a
plane wave incidence with wave number k and incident angle θ over a
semi-infinite array of tilted plates with a periodicity a and inclination
angle α = π/4. b is the spacing between the plates. Here, b/a = 0.8,
ka = π , and θ = θB. The dotted lines indicate where the channel
walls would be if we confined this system as in Fig. 1. (b) Reflection
coefficient as a function of ka for this geometry with α = π/4, for
different values of the filling ratio b/a, for a plane wave incidence
at the Brewster angle θB [Eq. (3)]. The star indicates the point that
corresponds to the surface shown in (a).

metamaterial in order to reduce the backscattering of the turn,
and without loss of generality, we will work at L0/W = 3.2.

III. PLATE-ARRAY METAMATERIAL

With the aim of reducing the reflection that naturally arises
at the turn, we are going to use an anisotropic metamaterial
that significantly diminishes the reflection at each turn. The
metamaterial consists of an array of thin parallel and closely
spaced plates of length L = L0 − W vertically placed in the
central region, as shown in Fig. 1. The vertical plates are
surface piercing, spanning from the channel bottom to above
the fluid surface.

A. Reflection on an infinite grating

First, to assess the reflection reduction capabilities, it is
necessary to determine the characteristics of the plate-array
metamaterial, namely, the thickness of the plates and the spac-
ing between them. In order to understand the effect of the plate
thickness on the scattered fields, we begin by considering the
problem of a plane wave incidence on an infinite periodic
grating made of parallel inclined plates, as shown in Fig. 3.
The periodic array is composed of plates with periodicity a
separated by a distance b, making an angle α with respect
to the x̃ axis [29]. We consider a plane wave incidence with
incident angle θ : For ka � π , no higher-order modes can

propagate, and there is only reflection with coefficient R̃(k, θ )
at the specular angle by the grating.

If the wavelength is much smaller than the periodicity of
the array, such that ka � 1, the hypothesis of the homog-
enization regime is satisfied. In this case, it is possible to
obtain a Brewster-like behavior, i.e., a zero of reflection for
an incidence angle θB given by

θB = cos−1

(
b

a
cos α

)
, (3)

in agreement with previous works [23]. It is worth mentioning
that when the plates have no inclination (α = 0), we recover
the expression for the Brewster angle as it is usually found for
subwavelength gratings [27].

Since we use the approximation ka � 1 to obtain the ex-
pression for θB [Eq. (3)], it is expected that the reflection is not
exactly zero. We examine then the exact reflection of a plane
wave at the Brewster angle θB, for different values of the filling
ratio of water, b/a. Results are displayed in Fig. 3 for the case
of α = π/4. We utilized COMSOL MULTIPHYSICS to conduct
these numerical simulations. In Fig. 3(a) an example of the so-
lution for b/a = 0.8 is presented; even at the Brewster angle,
there is a small amount of reflection, due to the deviation from
the homogenization theory. To get a quantitative evaluation of
these small reflection values at the Brewster angle, Fig. 3(b)
illustrates the absolute value of the reflection coefficient |R̃|θB

obtained for various configurations, changing the thickness
of the plates. As expected, |R̃|θB increases with ka. However,
surprisingly, this trend is not monotonous with b/a, with a
maximum around b/a ≈ 0.4. Incidentally, we verified that this
tendency is independent of the value of α.

The case where b = a is of particular interest because it
corresponds to exactly zero reflection up to ka = π for the
Brewster angle. This property can be explained by two ar-
guments [23]: (i) the invisibility of infinitesimally thin plates
when �k is parallel to the plates and (ii) the reciprocity imply-
ing R̃(θ ) = R̃(−θ ). In the following, we will work with the
thinnest plates achievable (since a zero thickness is unattain-
able in an experimental setup). Moreover, the angle α = π/4
that we have considered in the results yields a right angle
between the incident and transmitted waves for the Brewster
case, which corresponds to a turn of π/2 in the bent waveg-
uide.

B. Reflection on a grating in the bent waveguide

Bringing our focus back to the primary objective, i.e., to re-
duce the backscattering in a sharply bent water wave channel,
we consider plates with a finite thickness d , and we confine the
system into a waveguide of width W with two perpendicular
turns, each turn being constructed as indicated with dotted
lines in Fig. 3(a). Since we are going to perform experiments,
we chose the thickness of the plates to be d = 0.02W so that
the reflection is minimized and the plates are rigid enough.
Now the reflection is not exactly zero for two reasons: Firstly,
the plates have a nonzero thickness, and secondly, there are
edge effects because the channel walls stop the periodicity.
The case of infinitesimally thin plates in a waveguide is con-
sidered in Appendix C to illustrate these edge effects. In the
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FIG. 4. Mean (over all the frequencies below fcutoff) of the abso-
lute value of the reflection coefficient as a function of the number of
plates for different values of thickness. The thickness that we chose
to perform experiments is indicated in red.

following, we will evaluate the impact of the plate thickness
on |R|.

We performed numerical simulations taking a number N
of plates and computing the mean value of |R|2 over all
the frequencies below fcutoff, for different values of thick-
ness d/W ∈ [0.01, 0.10]. The obtained curves are shown in
Fig. 4. We can observe that, as expected, the mean reflection
diminishes with the plate thickness. The number of plates also
plays a role in the reflection coefficient. For a small number of
plates, the hypothesis ka � 1 is not satisfied, while for a large
value of N , the high density of plates creates a barrier within
the channel. There is therefore an optimal number of plates
for each thickness for which the minimum of |R| is achieved.
For the chosen value d/W = 0.02 (red curve in Fig. 4), the
optimal number of plates is N = 5. In this case, despite having
nonzero-thickness plates (rigid enough), the reflection coeffi-
cient is globally (broadband in frequency) small, not so far
from the ideal case of zero-thickness plates for an infinite
grating discussed in the previous section.

C. Homogenized model

As stated previously, the plate-array metamaterial only
allows 1D propagation in the direction of the plates, since
the periodicity of the array is much smaller than the wave-
length. It has been shown that, under this approximation,
the periodic structure yields the same wave properties as an
effective medium obtained through homogenization theory
[23,28]. Then, the plate-array metamaterial can be replaced
by a homogeneous anisotropic medium, and the homogenized
wave equation takes the form

divU + φk2η(x, y) = 0, U =
(

0 0
0 φ

)
∇η(x, y), (4)

with η and U · n being continuous at the interfaces between
the channel and the effective medium, and where φ is the
filling ratio of water, given by

φ = 1 − Nd/W. (5)

φ = 0 corresponds to the entire channel filled with plates,
while φ = 1 corresponds to plates with zero thickness.

In order to get more insight into the modeling of the be-
havior of the system, we are going to compare 2D numerical

FIG. 5. Numerical result: real part of the simulated field at kW =
9π/10 for an empty channel, a channel with five vertical plates in
the middle region, and a homogenized medium with the filling ratio
corresponding to N = 5.

simulations of the channel with the plate-array metamaterial
with the homogenization results. To illustrate this compari-
son, Fig. 5 shows the free-surface deformation field obtained
numerically for a fixed frequency for the channel in three
different configurations: without the metamaterial, with a
metamaterial made up of N = 5 vertical plates, and the cor-
responding effective medium with φ = 0.9. We observe that,
as already mentioned, there is a very high reflection in the
absence of the metamaterial, while the backscattering is con-
siderably reduced when the plates or the effective medium
are added. We also note a very good agreement between the
homogenized model and the real geometry (as also shown
in Appendix B). This agreement improves as the system ap-
proaches the solution of an infinite array of infinitesimally thin
plates, i.e., by increasing the number of plates and decreasing
their thickness.

The filling ratio of water can be adjusted by changing either
the thickness of the plates or their quantity. In this study, the
plate thickness is fixed at d/W = 0.02, as it strikes a balance
between minimizing backscattering and enabling practical ex-
periments. Therefore we varied the number of plates N to
modify the filling ratio. The reflection coefficient was then
computed at various frequencies for different values of N , as
illustrated in Fig. 6. The reflection coefficient obtained from
the homogenized model is also depicted in the same figure,
with the corresponding value of φ for each N , related by
Eq. (5).

In Fig. 6 we can observe that, in the absence of plates (N =
0), |R| increases with the frequency and exhibits Fabry-Pérot
resonance, as seen in Fig. 2. Surprisingly and interestingly,
the addition of only one plate already changes drastically the
behavior of |R|, resulting in low reflection values across all
frequencies, except at the resonances. In that case, of course,
the effective medium does not describe the system accurately.
The reflection coefficient obtained from the homogenized
model converges to the one from the actual problem as the
number of plates increases. It is worth mentioning that the
results of the 2D simulations with plates were used to average
across all frequencies and obtain the data points presented in
Fig. 4.
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FIG. 6. Reflection coefficient for different numbers of plates with
a fixed thickness of d = 0.02W (solid blue curves) and the one
obtained from the effective model with the corresponding value of
the filling ratio (dashed red curves).

IV. EXPERIMENTAL RESULTS

Experiments were performed in a 2.95-m-long channel of
width W = 0.10 m, with a turn of L0 = 0.32 m and a constant
water level of h = 0.05 m. Waves are generated at one side
of the channel by a wave maker for frequencies in the range
f ∈ [1.0, 2.7] Hz, with a 0.05-Hz step ( fcutoff = 2.69 Hz).
The frequency is linked to the wave number k through the
dispersion relation of gravity-capillarity waves

ω2 =
(

gk + σ

ρ
k3

)
tanh kh, (6)

where ω = 2π f , g is the gravity acceleration, ρ = 1000
kg/m3 and σ = 71 mN/m are the water density and surface
tension, respectively. This equation is only used to link the fre-
quency ω imposed by the wave maker with its corresponding
number k.

The wave maker is driven by a linear motor that generates
a sinusoidal vertical movement with an amplitude of 2 mm.
This amplitude has been checked to be low enough to remain
in the linear regime. On the other side of the channel we
placed an absorbing beach inclined at 5◦ in order to reduce
spurious reflections from the outgoing region. Measurements
were taken using the Fourier transform profilometry method
[30,31], which allows single-shot measurements of the whole
free surface. A sinusoidal (reference) pattern is projected on
the free surface of the liquid, and this projection is filmed from
above. We used distilled water with a small amount of TiO2

(4 g/L) in order to be able to project on its surface; it has been
shown that this concentration does not modify significantly
the hydrodynamical properties of water [32]. The phase of
the projected pattern is modified by the deformations of the

FIG. 7. Experimental result: real part (top graph in each panel)
and average of the absolute value (bottom graph in each panel) of the
measured free-surface deformation filtered at the forcing frequency
for kW = 9π/10 (normalized).

free surface; the difference between this deformed phase and
the reference one allows for the reconstruction of the height
field. Two identical systems consisting of a video projector
(Epson EH-TW9400) and a USB camera (Basler acA1920-
155um) arranged in a parallel-axis geometry were mounted
and synchronized at each side of the perpendicular turn. We
took measurements of the full width of the channel, 1.12 m at
each side of the turn, at 30 frames/s.

We investigated experimentally the effect of the filling
ratio, changing the number of plates with a fixed thickness of
d = 2 mm. Figure 7 shows the height fields at kW = 9π/10
for different numbers of plates between N = 0 (φ = 1) and
N = 5 (φ = 0.90). In the absence of metamaterial, the trans-
mission is close to zero, while in its presence the transmission
increases considerably. As mentioned earlier with the numeri-
cal results, it is worth noting that the addition of only one plate
has already a remarkable effect.

To obtain a more comprehensive understanding than can
be gained at just a single frequency, we subsequently explored
the broadband character of the backscattering reduction. In or-
der to extract the reflection and transmission coefficients, we
filtered the height field at the forcing frequency and averaged
it in the y direction: η(x) = 〈η(x, y)〉y. Then, since only the
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FIG. 8. Reflection and transmission coefficients obtained exper-
imentally for different numbers of plates.

plane mode is propagating, η can be written as

η(x) =
{

A(eikx + Re−ikx ), in region I
ATeikx, in region II,

(7)

where A is the amplitude of the incident wave, R and T
are the reflection and transmission coefficients, and regions
I and II correspond to the far field before and after the turn
(i.e., for x < 0 and x > 0), respectively. Figure 8 shows the
reflection and transmission coefficients as well as the energy
for 35 different frequencies, obtained by performing a fit on
each side with Eq. (7) [33]. For the measurement with N = 0
(gray curve), we recover the behavior of the reflection and
transmission coefficients predicted numerically as well as the
Fabry-Pérot resonance, which disappears almost completely
with the addition of the plates. Besides, we note that the scat-
tered energy flux decreases as the number of plates increases
for all frequencies. This is due to losses in the experiment
that were not considered in the numerical approach. If we
consider only viscous losses given by the bulk viscosity and
the bottom and wall friction, the theory [34–36] predicts much
lower dissipation than the one observed in the experiment
(Fig. 8). Therefore we can reasonably assess that this dissipa-
tion is generated mostly by meniscus effects. Consequently,
the optimal number of plates does not match the one found
numerically, since the transmission past the turn diminishes
with the number of plates. However, even in the cases where
high transmission is not entirely achieved, the plate array
reduces the backscattering significantly.

With a detailed inspection of Fig. 8, we can distinguish
several behaviors: The plate-array metamaterial can yield high
transmission, low reflection, or both, depending on the pa-
rameters chosen (filling ratio and frequency). When adding
the metamaterial, the reflection drops drastically and takes
values lower than 30% for all tested configurations, becoming
progressively smaller as the number of plates increases. Nev-
ertheless, due to the viscous losses, an experimental minimum
of reflection does not necessarily correspond to a maximum

of transmission. Indeed, the maximum of transmission occurs
when N = 1; this case is of particular interest especially for
high frequencies, where, as it turns out, adding as few as only
one plate is enough to considerably increase the transmission
through the turns.

V. CONCLUDING REMARKS

We designed and built an experimental plate-array meta-
material capable of reducing the backscattering of surface
waves in a sharply bent waveguide for a broadband range of
frequencies without relying on resonant phenomena. Essen-
tially, the role of the metamaterial is to reduce the reflection by
impedance matching, and in a lossless case, this implies auto-
matically a high transmission. In an experimental realization,
a high attenuation due to viscous friction might be anticipated
since the plates are closely spaced. However, by fine-tuning
the number of plates, we have shown that this device not only
reduces the backscattering but also allows for a remarkable
transmission. Surprisingly, even using only one plate provides
already a very strong reduction of backscattering and a good
transmission. It is important to point out that the broadband
backscattering reduction can be achieved for turns in channels
with angles other than π/2, where it can lead to the construc-
tion of more complex devices, e.g., with several successive
turns.
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APPENDIX A: 1D MODEL

We consider the problem of a plane wave within the time
harmonic regime that passes through two refractive interfaces
separated by a distance L. When the incident wave reaches the
first interface, there is a reflected wave and a transmitted wave.
The latter is then reflected and transmitted at the second in-
terface. The reflected wave coming from the second interface
arrives again at the first one, and this process continues an
infinite number of times. Therefore it is necessary to consider
the infinite sum of reflected and transmitted waves. Eventu-
ally, after infinite reflections, a stationary solution consisting

FIG. 9. Propagative waves established in the stationary solution
for a 1D problem with two reflective interfaces.
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FIG. 10. Numerical result. (a) Real part of the simulated field at
kW = 9π/10 for an incident wave reaching one perpendicular turn
with no plates, five vertical plates, and a homogenized medium with
the filling ratio corresponding to N = 5. (b) Absolute value of the
reflection coefficient for the above configurations.

of five propagating wave components is established, as shown
in Fig. 9.

These five waves can be expressed as

η+
1 (z) = A1eikz,

η−
1 (z) = B1e−ikz,

η+
2 (z) = A2eikz, (A1)

η−
2 (z) = B2e−ikz,

η+
3 (z) = A3eikz,

where A1 is known and where A1, A2, A3, B1, B2 ∈ C and can
be obtained from the matching conditions at z = 0 and z = L.
We will express these waves as a function of the reflection and
transmission coefficients of the interfaces, r and t , supposed
to be symmetric and the same for both the reflected wave and
the transmitted wave.

η+
2 (z = 0) = tη+

1 (z = 0) + rη+
2 (z = 0),

η−
1 (z = 0) = rη+

1 (z = 0) + tη−
2 (z = 0),

η−
2 (z = L) = rη+

2 (z = L),

η+
3 (z = L) = tη+

2 (z = L). (A2)

Evaluating the expressions at z = 0 and z = L, we obtain

A2 = tA1 + rB1,

B1 = rA1 + tB2,

B2e−ikL = rA2eikL,

A3eikL = tA2eikL. (A3)

The amplitude of the outgoing wave η+
3 can be expres-

sed as

A3 = t2A1

1 − r2e2ikL
. (A4)

This expression allows us to calculate the transmission as

|T |2 = |A3|2
|A1|2 = |t |4

|1 − r2e2ikL|2 . (A5)

Noting r = r0eiϕ (with r0 = |r|) and using the property |r|2 +
|t |2 = 1, we can write |T |2 as

|T |2 = 1

1 + F sin2
(

δ
2

) , (A6)

where F = 4r2
0/(1 − r2

0 )2 and δ = 2kL + 2ϕ. This equa-
tion depends on the absolute value of the reflection coefficient
r0 and its phase ϕ, as well as the distance L between the
interfaces. Since |R|2 + |T |2 = 1, we can easily obtain the
reflection coefficient:

|R|2 = F sin2
(

δ
2

)
1 + F sin2

(
δ
2

) . (A7)

APPENDIX B: ONE CORNER

We consider an incident plane wave with harmonic time
dependence propagating in a waveguide of width W and
reaching one perpendicular turn. We consider frequencies be-
low the cutoff frequency, i.e., kW < π , where only the planar
mode can propagate. We performed numerical simulations in
order to find the reflection coefficient r for this system. Three
different configurations were considered: an empty channel,

FIG. 11. (a) and (c) real part and (b) and (d) absolute value of the free-surface deformation at kW = 9π/10. (a) and (b) show the field in a
waveguide with one infinitesimally thin plate, while (c) and (d) show the plane wave incidence on a periodic grating made of vertical plates of
zero thickness. The grating has a periodicity of W/2. The dashed lines indicate where the channel walls would be if we confined this system
into a waveguide, and the outer field is slightly masked.
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one with a metamaterial made of N = 5 plates after the turn,
and one with a homogenized medium in its place, using the
filling ratio φ = 0.9 that corresponds to N = 5 plates. Fig-
ure 10 shows the simulated fields as well as the absolute value
of r as a function of the frequency for each case. While |r| in-
creases with frequency for the case without plates, it remains
mostly constant and near zero for the other two cases (with
N = 5 plates and a homogenized medium with φ = 0.9), as
expected. It should also be noted that there is good agreement
between the homogenized model and the field obtained with
the plate-array metamaterial. The complex value of r = r0eiϕ

for N = 0 was used to calculate the reflection coefficient R of
the complete system in the 1D model [Eq. (2)].

APPENDIX C: INFINITESIMALLY THIN PLATES

We consider an incident plane wave propagating in a bent
channel with one infinitesimally thin plate in the central re-
gion, and we compare it with a plane wave incidence on
a periodic grating made of infinitesimally thin plates. The
grating has a periodicity of W/2 to maintain the same distance
between plates as in the case of a waveguide.

Figure 11 shows the real part and the absolute value of the
free-surface deformation field for a fixed frequency, both in

FIG. 12. Numerical result: absolute value of the reflection co-
efficient for a channel with one vertical plate of zero thickness
[Figs. 11(a) and 11(b)] and for a periodic array of plates with zero
thickness [Figs. 11(c) and 11(d)].

a waveguide and in a periodic medium. Although these two
cases might appear similar, there is a difference if we inspect
closely in the neighborhood of the plates. The dashed lines in
Figs. 11(c) and 11(d) indicate where the channel walls would
be if we confined this system into a waveguide. The presence
of the channel imposes Neumann boundary conditions on the
walls. This confinement leads to a different behavior of the
field. In particular, the reflection coefficient for a plane wave
incidence in a waveguide is no longer zero as in the case of a
periodic grating, as shown in Fig. 12.
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