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Abstract: We report a theoretical and experimental investigation of the propagation of nonlinear
waves passing over a submerged rectangular step. A multimodal method allows calculating the first-
and second-order reflected and transmitted waves. In particular, at the second order, the propagation
of free and bound waves is theoretically presented. A detailed analysis of the convergence of the
second-order problem shows that a finite truncation of the series of evanescent bound waves is
necessary to obtain a smooth and convergent solution. The computed coefficients of the first and
second harmonics are experimentally validated via a complete space-time-resolved measurements
of the wave propagation, which permits us to verify the relative amplitude, phase and spatial
interference (beating) of the free and bound waves at the second order. This result can be useful in
future multimodal models since it not only keeps the accuracy of the model with the inclusion of the
first part of the evanescent bound terms (being also the dominants) but also ensures the convergence
of the multimodal computation with an error that decreases as a function of the number of modes.

Keywords: nonlinear waves; water waves; free waves; bound waves; submerged obstacle

1. Introduction

Depth transitions are ubiquitous in coastal environments, being a crucial zone for
understanding the hydrodynamics and morphology. For instance, recent investigations
showed that natural hazards such as extreme waves have a place preferentially in large-
depth discontinuities (Li et al. [1]). Due to widespread interest, a large variety of meth-
ods can be found in the mathematical modeling of surface water waves over variable
bathymetry. In particular for the step problem, which tries to solve the wave propagation
over an abrupt depth discontinuity, the scientific community’s interest has remained high
due to its canonical character. Among the earliest models that solve the linear problem, we
find Mei and Black [2], who developed a variational formulation, as well as Miles [3], who
calculated the scattering matrix with the transmission and reflection coefficients in both
directions. Moreover, the model proposed by Newman [4] considered an infinite depth
before the step, which can be a reasonable simplification under certain conditions. In the
same way, Boussinesq-type equations have been used in the step problem, as developed
by Grue [5]. In the case of multimodal methods, the model developed by Massel [6] solves
the problem of propagation of nonlinear waves over a submerged vertical step. The appeal
of this model is the possibility of obtaining the reflection and transmission coefficients
at the first and second order. Similarly, in the weakly nonlinear regime, more general
bathymetries have been studied in Belibassakis and Athanassoulis [7] and Belibassakis
and Athanassoulis [8]. Furthermore, in the linear regime, supplementary modes were
proposed by Athanassoulis and Belibassakis [9], obtaining faster convergence. Moreover,
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oblique incident waves were considered by Rhee [10],who obtained interesting results
for the phase shift of the transmitted and reflected waves. More recently, in the linear
regime, Porter and Porter [11] used a conformal mapping of the fluid domain to transfer
the steep deformations of the bottom topography into smooth functions applied to the
modified free surface boundary conditions. More recently, some models have studied the
propagation of surface wave packets (Li et al. [12]) and solitons (Ducrozet et al. [13]) over
submerged steps.

In the propagation of water waves, depth transitions usually generate nonlinearities at
different levels, going from weakly nonlinear waves up to breaking waves. The behavior of
these nonlinear waves over submerged obstacles can be found in the theory of propagation of
waves in shallow water by Massel [6] or Bryant [14]. These theories predict the evolution of
waves in constant depth for different harmonics, where the second harmonic is of particular
interest because of the presence of waves at different velocities. These waves are separated into
free waves, which follow the dispersion relation in all the harmonics, and bound waves which
are directly created by nonlinearities and are not dispersive. Thus, for a given forcing frequency
ω, at the n-th harmonic, the free wave has a wavenumber given by kn = D(nω), where D
represents the linear dispersion relation of water waves. On the other side, the bound waves at
the n-th harmonic has a wavenumber nk1 = nD(ω), being merely an integer multiple of the
fundamental mode wavenumber. The mechanism of decomposition of monochromatic incident
waves into free and bound waves can be found in the characterization by Huang and Dong [15].
They described the mechanism involved when the primary wave passes over the dike and
generates a secondary small wave that propagates with a lower velocity than the main crest. This
difference in celerity corresponds to the deviation of the dispersion relation curve with respect to
the non-dispersive harmonics (bound waves). Although the presence of free and bound waves
is directly observable in the (ω, k) plane, which can be obtained from a two-dimensional Fourier
transform of a space-time plane, most of the studies in nonlinear waves so far have considered
punctual measurements, as carried out by Chapalain et al. [16], Beji and Battjes [17], Li and
Ting [18], Benoit et al. [19] and Ohyama and Nadaoka [20]. These experimental works were
mostly designed to validate numerical models by comparing temporal signals. Space-time
measurements have been carried out by Brossard and Chagdali [21], Brossard et al. [22]
with moving probes, where the Doppler effect permits the identification of free and bound
waves in the k-spectrum. More recently, experiments performed by Li and Ting [18]
and Ting et al. [23] with a vertical laser sheet measured space-time data along a channel,
achieving an interesting separation of free and bound waves. However, this measurement
is still in 2D, and it does not take into account the transverse effects that are always present
in wave flume experiments.

In this study, we revisit a multimodal model developed by Massel [6] that gives accu-
rate results for weakly nonlinear conditions, as verified experimentally by Ohyama et al. [24].
The numerical calculations are analyzed in terms of the convergence. We give special at-
tention to the second order, whose source term has difficult convergence due to the abrupt
depth discontinuity. Regarding the experimental validation, we report on a complete space-
time-resolved measurement of nonlinear waves using Fourier Transform Profilometry (FTP)
(Takeda et al. [25], Takeda and Mutoh [26]), which was adapted to surface water waves by Co-
belli et al. [27]. A 3D field permits the verification of important experimental aspects such as
wavefront flatness and transverse modes, making the measurements more reliable.

2. Multimodal Model
2.1. Statement of the Problem

Let us consider an infinite domain in the plane (x, z) where we place a depth disconti-
nuity at x = 0. Thus, as is shown in Figure 1, the depth h(x) is the piecewise function

h(x) =
{

h− , x < 0
h+ < h− , x > 0 ,

(1)
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which describes a bathymetry composed of a deep water region in x < 0 and a shallow
water region in x > 0.

h
-

 h+
x

z

 

Figure 1. Scheme of the propagation problem of a nonlinear wave over a submerged rectangular
obstacle. The incident wave comes from the left side.

For simplicity, all the development is presented in the configuration called deep-to-
shallow water, where an incident right-going wave comes from x = −∞. Nevertheless,
the model is perfectly applicable to the shallow-to-deep water case.

In both sides of the step, the velocity potential function φ satisfies the Laplace equation

(
∂2

∂x2 +
∂2

∂z2

)
φ = 0 (2)

and the potential φ and surface displacement η satisfy the free surface kinematic bound-
ary conditions

∂φ

∂z
=

∂η

∂t
+

∂φ

∂x
∂η

∂x
, z = η (3)

and the free surface dynamic boundary condition

∂φ

∂t
+

1
2

[(
∂φ

∂x

)2
+

(
∂φ

∂z

)2
]
+ gη = 0, z = η. (4)

Eventually, on the bottom and on the step wall, we impose impervious boundary conditions

∂φ

∂z
= 0, z = −h(x) (5)

∂φ

∂x
= 0, −h− < z < −h+, x = 0 (6)

We start the solution of the problem via the perturbation method
(Hsu et al. [28], Ohyama et al. [24] and Mei et al. [29]). To do so, let us consider a small
parameter ε, which, in this dimensional form, corresponds to the wave amplitude a. This
parameter is used in the formal expansion of the wave potential φ and the surface displace-
ment η

φ(x, z, t) = εφ1(x, z, t) + ε2φ2(x, z, t) + . . . (7)

η(x, t) = εη1(x, t) + ε2η2(x, t) + . . . (8)

Next, a Taylor series approximated the velocity potential around z = 0 in the form

φ(x, η, t) = φz=0 + η
∂φ

∂z z=0
+

1
2

η2 ∂2φ

∂z2 z=0
+ . . . (9)

The power expansion of Equations (7) and (8) and the Taylor series of Equation (9)
are replaced in the Laplace Equation (2) and in the free surface and bottom boundary
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conditions (Equations (3) to (6)). Then, we truncate the expressions at the order ε to obtain
the first-order system with a Laplace Equation that reads

(
∂2

∂x2 +
∂2

∂z2

)
φ1 = 0 (10)

with the boundary conditions at the free surface

∂2φ1

∂t2 + g
∂φ1

∂z
= 0, z = 0, (11)

and
gη1 +

∂φ1

∂t
= 0, z = 0, (12)

and the impervious bottom boundary conditions

∂φ1

∂z
= 0, z = −h, (13)

and
∂φ1

∂x
= 0, −h− < z < −h+, x = 0. (14)

We state the diffraction problem of water waves by setting at infinity, in x < 0, that
there are one incident wave and one reflected wave from the discontinuity. On the other
hand, at the positive infinity in x > 0, there is only one transmitted wave (outgoing wave).
Eventually, at the depth transition, the potential φ and its spatial derivative are continuous
in the whole domain, that is, [φ] = 0 and [ ∂

∂x φ] = 0, at x = 0 and at −h+ < z < 0.

Solution of First Order

We define the space-time-dependent functions corresponding to the incident and
reflected waves as

I(1)0 (x, t) =
ga
ω

ei(k−0 x−ωt), x < 0, (15)

A(1)
n (x, t) =

ga
ω

e−i(k−n x+ωt), x < 0, (16)

B(1)
m (x, t) =

ga
ω

ei(k+m x−ωt), x > 0, (17)

where k±0 corresponds to the unique real propagating solution and k±n = ik±1 , ik±2 , ik±3 , . . .
to the infinite imaginary evanescent solutions of the dispersion relation of surface grav-
ity waves

ω2 = gk±n tanh(k±n h±). (18)

Here, in Equations (16) and (17) and in what follows, for the sake of clarity, we shall
use the variable n = 0, 1, 2, 3, . . . as the index of the functions in the deep water region
(x < 0, h−) and the variable m = 0, 1, 2, 3, . . . as the index of the functions in the shallow
water region (x > 0, h+). In addition, the orthogonal basis function that satisfies the
boundary conditions (11) to (13) is a z-dependent function in the form

F(1)
n (z) =

cosh k−n (z + h−)
cosh k−n h−

, x < 0, (19)

G(1)
m (z) =

cosh k+m(z + h+)
cosh k+mh+

, x > 0. (20)

Hence, the linear potential for both deep and shallow water regions can be written as

φ−1 = I(1)0 F(1)
0 + ∑

n
R(1)

n A(1)
n F(1)

n , x < 0, (21)
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φ+
1 = ∑

m
T(1)

m B(1)
m G(1)

m , x > 0, (22)

where R(1)
n and T(1)

m are the unknown reflection and transmission coefficients of the first-
order problem. From the continuity conditions at x = 0 for the potential φ and its spatial
derivative, we obtain the following equations

φ−1
∣∣
x=0− = φ+

1

∣∣
x=0+ (23)

∂φ−1
∂x

∣∣∣∣∣
x=0−

=
∂φ+

1
∂x

∣∣∣∣∣
x=0+

. (24)

For faster convergence, we consider a number of modes N− for the deep water region
and N+ ≈ (h+/h−)N− for the shallow water region. By replacing Equations (21) and (22)
in the conditions (23) and (24), we obtain

I(1)0 F(1)
0 + ∑

n
R(1)

n A(1)
n F(1)

n = ∑
m

T(1)
m B(1)

m G(1)
m , (25)

∂x I(1)0 F(1)
0 + ∑

n
R(1)

n ∂x A(1)
n F(1)

n = ∑
m

T(1)
m ∂xB(1)

m G(1)
m . (26)

Next, we project Equation (25) onto the orthogonal basis G(1)
m

I(1)0

∫ 0

−h+
F(1)

0 G(1)
m + ∑

n
R(1)

n A(1)
n

∫ 0

−h+
F(1)

n G(1)
m = T(1)

m B(1)
m

∫ 0

−h+
(G(1)

m )2, (27)

where we have used the orthogonality of the basis G(1)
m to eliminate the sum in m on

the right-hand side, i.e., Equation (27) is written for each m with 0 ≤ m ≤ (N+ − 1).
Before projecting Equation (26), we use the boundary condition from Equation (14) to
impose the following equivalence of the integrals of the derivative

∫ 0

−h−

∂φ1

∂x
F(1)

n dz =
∫ 0

−h+

∂φ1

∂x
F(1)

n dz , x = 0, (28)

which we use to project Equation (26) onto the orthogonal basis F(1)
n , and obtain

∂x I(1)0

∫ 0

−h−
F(1)

0 F(1)
n + R(1)

n ∂x A(1)
n

∫ 0

−h−
(F(1)

n )2 = ∑
m

T(1)
m ∂xB(1)

m

∫ 0

−h+
F(1)

n G(1)
m , (29)

where we have used the orthogonality of the basis F(1)
n to eliminate the sum in n on the

left-hand side, i.e., Equation (29) is written for each n with 0 ≤ n ≤ (N− − 1). Therefore,
we obtain N− + N+ projected equations.

Eventually, the system of Equations (27) and (29) can be solved for R(1)
n , as is de-

tailed in Appendix A.1, and then the transmission coefficients T(1)
m can be easily obtained

from Equation (27).

2.2. Second Order Problem
2.2.1. Statement of the Problem

Now after replacing Equations (7) to (9) in the system of Equation (5) to (2) to (4), we
keep the terms at the order ε2. This leads to the nonlinear wave problem at second order
where the solution φ2 should satisfy the Laplace equation

(
∂2

∂x2 +
∂2

∂z2

)
φ2 = 0 (30)



Fluids 2022, 7, 145 6 of 23

with the following boundary conditions at the free surface

∂2φ2

∂t2 + g
∂φ2

∂z
= − ∂

∂t

[(
∂φ1

∂x

)2
+

(
∂φ1

∂z

)2
]
− η1

∂

∂z

[
∂2φ1

∂t2 + g
∂φ1

∂z

]
, z = 0, (31)

gη2 +
∂φ2

∂t
= −1

2

[(
∂φ1

∂x

)2
+

(
∂φ1

∂z

)2
]
− η1

∂2φ1

∂z∂t
, z = 0, (32)

and impervious boundary conditions at the bottom

∂φ2

∂z
= 0, z = −h(x), (33)

∂φ2

∂x
= 0, −h− < z < −h+, x = 0. (34)

This represents a non-homogeneous surface wave equation. Considering that the
non-homogeneous wave problem has one particular and one homogeneous solution
(φ2 = φb

2 + φ
f
2 ), we can state the boundary conditions separately at x = ±∞. First, the right

side of Equation (31) depends on φ1, which implies that the particular solution (φb
2) has the

same boundary conditions as for φ1. Thus, we have at the negative infinity, in x < 0, there
are one incident wave and one reflected wave, and at the positive infinity, in x > 0, there is
only one transmitted outgoing wave. Moreover, because the homogeneous second-order
problem does not consider a source term with energy coming from the infinity, we have
the Sommerfeld radiation condition (Sommerfeld [30]), which only considers outgoing
waves in both sides of the domain; it is x = ±∞ . Similarly to the first-order problem,
the second-order problem should satisfy the continuity of the potential and its spatial
derivative. Thus, we have jump conditions as [φ2] = 0 and [ ∂

∂x φ2] = 0 at x = 0 and at
−h+ < z < 0.

2.2.2. Second-Order Particular Solution

The kinematic and dynamic boundary conditions expressed in Equations (31) and (32)
have a source term depending on the solution of the linear problem. The solution of this
equation is composed by one particular solution φb

2 (bound wave) and one homogeneous

solution φ
f
2 (free wave). Thus, the complete solution is

φ2 = φb
2 + φ

f
2 . (35)

We start by finding the bound wave terms, which depend on φ1. We can find and write
the incident second-order potential in terms of the following (x, t) and z-dependent functions

I(1,1)
0,0 (x, t) = C(1,1)

0,0 e2ik−0 x−2iωt + c.c. (36)

F(1,1)
0,0 (z) =

cosh 2k−0 (z + h−)
cosh 2k−0 h−

(37)

where C(1,1)
0,0 is the constant of the second-order propagating bound wave (as in Equation (36),

we shall use in what follows the super-index ()(1,1) to indicate the constants and func-
tions resulting from replacing the solution of the first-order φ1 and η1 in the right side
of Equations (31) and (32)). This second-order wave, usually called Stokes harmonic, is the
solution of Equation (31) when there is only one incident wave (Equation (15)). Thus,



Fluids 2022, 7, 145 7 of 23

it always exists in the propagation of a single wave in constant depth. The simplified
expression of the Stokes harmonic is

I(1,1)
0,0 (x, t)F(1,1)

0,0 (z) =
3
8

ωa2 cosh 2k−0 (z + h−)

sinh4(k−0 h−)
e2ik−0 x−2iωt + c.c. (38)

Likewise, the bound reflected waves can be written in terms of the (x, t)-dependent
function

A(1,1)
n,n′ (x, t) = C(1,1)

n,n′ e−i(k−n +k−
n′ )x−2iωt + c.c. (39)

where the constant C(1,1)
n,n′ is the bound waves’ constant depending on the linear reflection

coefficients and is detailed in the Appendix B.1.
For the shallow water region, the bound waves depend on the transmitted linear wave

and are obtained by replacing Equation (22) in the right-hand side of Equation (31). Thus,
the (x, t)-dependent function, in x > 0, can be expressed as

B(1,1)
m,m′(x, t) = C(1,1)

m,m′ e
i(k+m+k+

m′ )x−2iωt + c.c. (40)

where the coefficient C(1,1)
m,m′ has the same form as Equation (A5) but uses wavenumbers

and depth from the shallow water region (k+m, h+). In order to satisfy the source term
of Equations (31) and (32), the z dependency in the bound waves is expressed in the
following form

F(1,1)
n,n′ (z) =

cosh(k−n + k−n′)(z + h−)
cosh(k−n + k−n′)h

− , x < 0, (41)

G(1,1)
m,m′(z) =

cosh(k+m + k+m′)(z + h+)
cosh(k+m + k+m′)h

+
, x > 0. (42)

In addition, the second-order evanescent terms resulting from the multiplication of the
Stokes incident harmonic with the evanescent reflected bound waves can be expressed as

D(1,1)
0,n (x) = C(1,1)

0,n e(ik
−
0 −k−n )x−2iωt + c.c. (43)

where the constant coefficient C(1,1)
0,n is detailed in Appendix B.1. The z-dependent function

corresponds to

H(1,1)
0,n (z) =

cosh(k−0 − k−n )(z + h−)
cosh(k−0 − k−n )h−

, x < 0. (44)

Eventually, the second-order bound wave potential is

φb−
2 = I(1,1)

0,0 F(1,1)
0,0 + ∑

n
∑
n′

R(1)
n R(1)

n′ A(1,1)
n,n′ F(1,1)

n,n′ + ∑
n

R(1)
n D(1,1)

0,n H(1,1)
0,n + c.c. , x < 0, (45)

φb+
2 = ∑

m
∑
m′

T(1)
m T(1)

m′ B(1,1)
m,m′G

(1,1)
m,m′ + c.c. , x > 0. (46)

2.2.3. Second-Order Homogeneous Solution

In order to satisfy the homogeneous solution (without source terms from φ1), the free
waves should follow the dispersion relation at the frequency 2ω. Thus, second-order dis-
persive terms are generated only at depth inhomogeneity due to the absence of dispersive
terms in the incident wave. As a consequence, the Sommerfeld radiation condition is
imposed to the free waves, which implies that the (x, t)-dependent functions have the
following form

A(2)
p (x, t) =

ga
2ω

e−i(κ−p x+2ωt) + c.c. , x < 0 (47)
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B(2)
q (x, t) =

ga
2ω

ei(κ+q x−2ωt) + c.c. , x > 0 (48)

where κ±p = κ±0 , iκ±1 , iκ±2 , iκ±3 , . . . correspond to the unique real solution (p = 0) and to
the infinite imaginary solutions (p = 1, 2, . . . , N−) of the dispersion relation

(2ω)2 = gκ±p tanh(κ±p h±) (49)

For the sake of clarity, we shall use, as in Equations (47) and (48), the sub-index p to identify
the constants and functions of the second-order homogeneous solution in the deep water
region (x < 0, h−) and the sub-index q to identify the constants and functions of the
second-order homogeneous solution in the shallow water region (x > 0, h+).

The orthogonal basis of z-dependent functions that satisfy the boundary conditions (31)
to (34) is expressed in the same way as for the linear problem

F(2)
p (z) =

cosh κ−p (z + h−)

cosh κ−p h−
, x < 0, (50)

G(2)
q (z) =

cosh κ+q (z + h+)

cosh κ+q h+
, x > 0. (51)

Next, the free wave potential at the second order corresponds to the following sum

φ
f−
2 = ∑

p
R(2)

p A(2)
p F(2)

p + c.c. , x < 0 (52)

φ
f+
2 = ∑

q
T(2)

q B(2)
q G(2)

q + c.c. , x > 0 (53)

where the unknowns R(2)
p and T(2)

q are the transmission and reflection coefficients that shall
be obtained in the next calculation.

2.2.4. Construction of the Complete Second-Order Solution

Similarly to the linear problem, we impose the continuity of the second-order potential
and its derivative at the step position. Thus, we have

[φ2] = 0 , x = 0, (54)

[∂xφ2] = 0 , x = 0, (55)

which means that the free and bound wave potential should satisfy

φb−
2 + φ

f−
2 = φb+

2 + φ
f+
2 , (56)

∂xφb−
2 + ∂xφ

f−
2 = ∂xφb+

2 + ∂xφ
f+
2 , (57)

which is the set of equations of the unknowns R(2)
p and T(2)

q .

Next, we project Equation (56) onto the orthogonal basis G(2)
q , which yields

I(1,1)
0,0

∫ 0

−h+
F(1,1)

0,0 G(2)
q + ∑

n
∑
n′

R(1)
n R(1)

n′ A(1,1)
n,n′

∫ 0

−h+
F(1,1)

n,n′ G(2)
q + ∑

n
R(1)

n D(1,1)
0,n

∫ 0

−h+
H(1,1)

0,n G(2)
q +

∑
p

R(2)
p A(2)

p

∫ 0

−h+
F(2)

p G(2)
q + c.c. = ∑

m
∑
m′

T(1)
m T(1)

m′ B(1,1)
m,m′

∫ 0

−h+
G(1,1)

m,m′G
(2)
q + T(2)

q B(2)
q

∫ 0

−h+
(G(2)

q )2 + c.c.
(58)

where we have used the orthogonality of the basis G(2)
q to eliminate the sum in q in the

right-hand side of the equation, i.e., the projected Equation (58) is written for each q-th term.
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Before projecting Equation (57), we use the boundary condition from Equation (34) to
impose the following equivalence of the integrals of the derivative

∫ 0

−h−

∂φ2

∂x
dz =

∫ 0

−h+

∂φ2

∂x
dz , x = 0, (59)

which is used to project Equation (57) onto the orthogonal basis F(2)
p and to obtain

∂x I(1,1)
0,0

∫ 0

−h−
F(1,1)

0,0 F(2)
p + ∑

n
∑
n′

R(1)
n R(1)

n′ ∂x A(1,1)
n,n′

∫ 0

−h−
F(1,1)

n,n′ F(2)
p + ∑

n
R(1)

n ∂xD(1,1)
0,n

∫ 0

−h−
H(1,1)

0,n F(2)
p +

R(2)
p ∂x A(2)

p

∫ 0

−h−
(F(2)

p )2 + c.c. = ∑
m

∑
m′

T(1)
m T(1)

m′ ∂xB(1,1)
m,m′

∫ 0

−h+
G(1,1)

m,m′F
(2)
p + ∑

q
T(2)

q ∂xB(2)
q

∫ 0

−h+
G(2)

q F(2)
p + c.c.,

(60)

Here, we have used the orthogonality of the basis F(2)
p to eliminate the sum in p in the

left-hand side of the equation, i.e., the projected Equation (60) is written for each p-th term.
Finally, the system of Equations (58) and (60) can be solved for R(2)

p , as is detailed

in Appendix B.2, and then the transmission coefficients T(2)
q can be easily obtained from

Equation (58).

3. Numerical Calculation
3.1. Solution of the First-Order Problem

We show in this section a numerical implementation of the first-order system of
Equation (A1). This numerical example has been built with the parameters a = 0.023 m,
h− = 0.3 m, h+ = 0.15 m and ω = 2π s−1. In Figure 2, we present the near field of the
velocity potential φ1 as well as the horizontal velocity ∂xφ1 calculated for N− = 64 modes.
As we observe, the first-order problem, considering it is homogeneous and linear, has a
robust convergence with a smooth solution that is independent of the wave amplitude
and frequency.

a) b)

Figure 2. (a) Velocity potential at the first-order φ1 near the step. (b) Horizontal velocity at the
first-order ∂xφ1 near the step.

In Figure 2b, in the neighborhood of the corner, at (x = 0, z = −0.15) m, we observe
a local divergence of the horizontal velocity, which is the classical behavior of a potential
flow around a tip. In more detail, the profile of the matching of the potential and hori-
zontal velocity is presented in Figure 3. The real part of the functions φ−1 (x = 0, z) and
φ+

1 (x = 0, z) are plotted in Figure 3a, where a very good agreement is observed in the
vertical range 0.15 < z < 0 m. On the other hand, in Figure 3b, we present the vertical
profile of the match of the horizontal velocity, that is, ∂xφ−1 (x = 0, z) and ∂xφ+

1 (x = 0, z).
As expected, the divergence of the velocity around the corner is difficult to match in this
part, showing nevertheless a good match in the rest of the domain. The boundary condition
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of the impervious wall at the step in Equation (14) is also well satisfied by the function
∂xφ−1 (x = 0, z) in the range −0.3 < z < −0.15 m, especially far from the rectangular corner.
This match, as shall be shown further on, is improved as a function of the number of modes
(N−, N+).

a) b)

Figure 3. (a) Vertical profile at x = 0 of the velocity potential at the first-order φ1. (b) Vertical profile
at x = 0 of the horizontal velocity at the first-order ∂xφ1.

3.2. Solution of the Second-Order Problem

In the second-order problem, the presence of a source term in the right-hand side
of Equations (31) and (32) can lead to convergence problems. The first natural trial is
the solution of the second order considering all the terms obtained from the first-order
solution, i.e., making the limits of the double and single sums in Equations (45) and (46)
up to n = N− and m = N+. The first term of these sums correspond to a propagating
wave, whereas the following terms correspond to evanescent bound waves. Therefore, by
injecting the first-order solution shown in Figure 2 in the source term of Equations (31)
and (32) and solving the system of Equation (A7), we obtain a solution φ2 and ∂xφ2, as
shown in Figure 4a,b, that is not smooth and has a clear divergence in the matching zone.
This divergence, observed when the evanescent bound waves are included in the source
term, has been recently reported by Li et al. [12], where, due to convergence problems,
the contribution of bound evanescent waves was not considered.

a) b)

Figure 4. Non-convergent solution of the second-order problem, α = 1 (without truncation of forcing
evanescent waves). (a) Velocity potential at the second-order φ2 near the step. (b) Horizontal velocity
at the second-order ∂xφ2 near the step.

Although the first-order problem has a good convergence, the second order shows
problems when we increase the number of evanescent modes in the total bound wave,
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which is the result of the sum of all the evanescent modes obtained from
Equations (A5) and (A6). The second order solves the problem of finding the proper
free wave that compensates for the bound wave field in order to obtain a smooth solution
(satisfying the matching conditions). To do so, the bound wave field should have a limited
amplitude, i.e., it should not grow as a function of the number of modes.

In this analysis, we focus on n = n′, which is the fastest growth in the double sum of
Equation (45). Thus, we consider the term (R(1)

n )2C(1,1)
n,n . In Figure 5a, we show the decay of

the first-order reflection coefficient and the slope n−2 for comparison. We observe that for
the case of N− = 100, the decay is slower than n−2 for n > 50 approximately. In contrast,
as we observe in Figure 5b, the bound wave coefficient |C(1,1)

n,n | has growth at the power n4.

Therefore, the decay of the first-order coefficients (R(1)
n , T(1)

m ) does not compensate for the
growth of the bound evanescent wave constants, and some modification should be carried
out to ensure the convergence of the second-order problem.

a) b)

Truncation

Figure 5. (a) Reflection coefficient R(1)
n of the first order for N− = 100 modes. (b) Evanescent forcing

coefficients C(1,1)
n,n at the second order for N− = 100 modes.

From the observation of the decay of Figure 5a, we have that the exponent of the decay
decreases close to the end of the series. This suggests that a compensation of the growth of
the coefficients C(1,1)

n,n can be possible if we consider only part of the series R(1)
n , especially

the first part that has faster decay. Therefore, we propose a truncation of the evanescent
waves terms into the bound wave solution. To do so, we rewrite Equations (45) and (46) as

φb−
2 = I(1,1)

0,0 F(1,1)
0,0 +

αN−

∑
n=0

αN−

∑
n′=0

R(1)
n R(1)

n′ A(1,1)
n,n′ F(1,1)

n,n′ +
αN−

∑
n=0

R(1)
n D(1,1)

0,n H(1,1)
0,n + c.c. , x < 0

(61)

φb+
2 =

αN+

∑
m=0

αN+

∑
m′=0

T(1)
m T(1)

m′ B(1,1)
m,m′G

(1,1)
m,m′ + c.c. , x > 0 (62)

where α is an arbitrary truncation coefficient in the range 0 < α ≤ 1.
A systematic exploration of the convergence of the second-order solution as a function

of α is shown in Figure 6a,b. The numerical error of the multimodal matching is calculated
for the potential φ2 as

E(φ2) =
∫ 0

−h+
|φ+

2 (x = 0, z)− φ−2 (x = 0, z)|dz, (63)

and for the horizontal velocity ∂xφ2 as

E(∂xφ2) =
∫ 0

−h+
|∂xφ+

2 (x = 0, z)− ∂xφ−2 (x = 0, z)|dz, (64)
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and is plotted in Figure 6a as a function of α, where we observe an abrupt increase in
E(φ2) and E(∂xφ2) at α > 0.5. For this calculation, we have considered N− = 100 and
N+ = 50 modes and increased the truncation coefficient α progressively. Likewise, we have
verified the evolution of the propagating coefficients at the second order. As we observe
in Figure 6b, the coefficients R(2)

0 and T(2)
0 show a stable behavior up to the limit α = 0.5,

beyond which the coefficients diverge and change rapidly as a function of α. This threshold,
after several numerical calculations, seems to be independent of input parameters, such as
geometry, wave amplitude and frequency. Therefore, we consider in what follows that the
truncation coefficient α = 0.5 ensures the convergence of the second-order solution.
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Figure 6. (a) Numerical error of the multimodal matching for the second-order functions φ2 and ∂xφ2

as a function of the truncation parameter α. (b) Reflection and transmission coefficients of the free
waves at the second order as a function of the truncation parameter α.

A numerical example calculated with N− = 64, N+ = 32 modes and α = 0.5 is
presented in Figure 7a,b, for the near field of φ2 and ∂xφ2, respectively. Both fields, at the
depth discontinuity, show a smooth transition between the deep and shallow water regions,
confirming the convergence of the solution. The agreement of the multimodal matching
can be verified more in detail in the vertical profile shown in Figure 8a,b, where an excellent
match between the potential φ2 and the velocity ∂xφ2 at both sides of the step confirms the
accuracy of the multimodal matching after applying the truncation method.

a) b)

Figure 7. Convergent solution of the second-order problem for α = 0.5 (with truncation of forcing
evanescent waves). (a) Velocity potential φ2 at the second order near the step. (b) Horizontal velocity
∂xφ2 at the second order near the step.
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a) b)

Figure 8. (a) Vertical profile at x = 0 of the velocity potential at the second order φ2(0, z). (b) Vertical
profile at x = 0 of the horizontal velocity at the first-order ∂xφ2(0, z).

Eventually, we show in Figure 9 the numerical error calculated in Equations (63) and (64)
for the case α = 0.5. In Figure 9a, we show the numerical error of the velocity potential
for the first- and second-order problems, which are in both cases decaying. Similarly,
in Figure 9b, the numerical error of the horizontal velocities at the first and second order
also decay monotonically as a function of the number of modes.
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Figure 9. Numerical error of the multimodal matching as a function of the number of modes for the
case α = 0.5. (a) Numerical error of the velocity potentials φ1 and φ2. (b) Numerical error of the
horizontal velocities ∂xφ1 and ∂xφ2.

4. Experimental Measurements
4.1. Experimental Set-Up

In this section, we present experimental space-time-resolved measurements of the
propagation of nonlinear waves passing over a submerged step. The main objective
of this section is provide quantitative measurements in such a way that the complex
coefficients obtained in the multimodal model, especially for the second order, could be
compared and validated with experiments. To do so, we take advantage of the Fourier
transfer profilometry technique (FTP) to measure in space and time the surface deformation.
In Figure 10a, we see a top view and a side view of the experimental setup. Experiments
were carried out in a rectangular tank of 180 × 60 × 15 cm. A flap-type wavemaker is
located 40 cm before the step from which waves propagate through a deep water region
of 65 mm deep before passing over a rectangular step that separate the deep region from
the shallow water region of 20 mm deep. The wave propagates 80 cm in the shallow
region before attaining a 8% slope that avoid spurious reflections. As we see in Figure 10b,
a sinosuidal pattern is projected onto a diffusive surface of water colored with titanuim
dioxide (TiO2), which does not change the water’s physical properties (Przadka et al. [31]).
The post-treatment of the patter deformed by the wave motion allows measuring the surface
height (see Figure 10c) in any point of the image. The measured field has a spatial resolution
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of 1700 × 400 pixels covering a surface of 1 m long and 25 cm large. The amplitude of the
wavemaker was calibrated in such a way that the wave amplitude measured at the step
was constant at a ≈ 3 mm. The wave frequency with a monochromatic forcing varied in
the range ω ∈ [10, 20] s−1. Additionally, spurious capillary waves coming from the lateral
boundaries and affecting the wave front were canceled by the use of a wire-mesh in the
lateral walls, as conducted by Monsalve et al. [32,33]. As we shall observe in the following
experimental results and considering the small scale of the experiments, the influence of the
surface tension is non-negligible at the second order, where the wave number k > 100 m−1.
Despite this, the main results show that the multimodal model of gravity waves, presented
in the theoretical section, fitted the experimental results well in terms of transmitted and
reflected waves at the first and second order. Afterwards, along the spatial propagation,
the second-order free and bound waves enhance the difference due to the surface tension
as an extra restoring force in the dispersion relation.

h
+

h
-

1800

6
5
0

2
5
0

Figure 10. Experimental set-up. (a) Sketch of the top and side views of the experimental tank.
The measurement area is highlighted in green. (b) Experimental tank with the sinusoidal pattern of
the FTP technique projected onto the diffusive surface. (c) Typical experimentally measured field of
a nonlinear-wave.

4.2. Space-Time Spectra

The measured field η̃(x, y, t), considering that is invariant in the transverse direction y,
is averaged in order to obtain a one-dimension measurement η(x, t), which is presented as a
space-time graph in Figure 11. Here, the origin of the abscissa is located at the step position.
In x < 0, the deep water region shows high modulation of the amplitude, indicating a high
reflection from the step. On the other hand, in x > 0, a narrower wave crest and a lager
wave trough indicate nonlinear wave propagation. More interestingly, two different wave
celerities, indicated as V1 and V2 in Figure 11, are clearly observed in the shallow water
region. As we shall see further on, V2 corresponds to the propagation of free waves at the
second order.



Fluids 2022, 7, 145 15 of 23

Figure 11. Space-time representation of the wave propagation at ω = 4π s−1 after transverse average
in the y direction. Dashed and dashed-dotted lines shows two different celerities in the shallow
water region.

From the space-time matrix η(x, t), considering it in a harmonic regime, we can
compute different temporal modes as

ηn(x) =
1
T

∫ T

0
η(x, t)e−inωtdt, (65)

where T is the duration of the signal and is equal to an integer multiple of the wave period.
The amplitude of the harmonics η1(x), η2(x) and η3(x), for the experiment carried out at
ω = 4π s1, is presented in Figure 12. As we observe, |η1| has a large modulation due to
the step reflection in the region x < 0. In the region x > 0, we observe large attenuation
due to experimental conditions, such as bottom friction or surface impurities. The second
harmonic |η2| has a clear beating in the shallow region, suggesting the spatial interference of
waves at different velocities. Eventually, the third-order harmonic |η3| has a non-negligible
amplitude that can be interesting to take into account. However, considering that the
multimodal model only solves the first and second order, we focus on these two problems,
leaving the third order to a future study.

Once the harmonics are calculated, we compute a spatial Fourier transform as

η̂n(k) =
1
L

∫ L

0
ηn(x)e−ikxdx, (66)

from which we can analyze the spatial spectral information at a given harmonic frequency
nω. As an example, regardless of the spatial spectrum of the first harmonic that does not
give any additional information, we show in Figure 13 the spatial spectrum of the second
harmonic η2(k) measured at ω = 4π s−1. Interestingly, we clearly distinguish two maxima
corresponding to the free and the bound wave that propagates at this frequency. As a
reference, two vertical lines have been added. First, on the left side, the wavenumber 2k+0
corresponds to the bound wave, which is twice the wavenumber satisfying the dispersion
relation of Equation (18), and second, on the right side, the wavenumber κ+0 corresponds to
the free wave, which satisfies the dispersion relation of the second order of Equation (49).
The experimental separation of free and bound waves is limited by the spectral resolution
(total length of the spatial domain). Regarding the amplitude of both maxima, the disper-
sion of the waves represented by the relative depth of the experiment k+0 h+ determines the
contribution of the free wave with respect to the bound wave. In the multimodal model,
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free waves are designed to ensure the matching of φ and ∂xφ once the bound wave field
is calculated. We observe that the higher the relative depth k+0 h+ is, the smoother the
transition between both sides of the bound wave field φb

2 is (particular solutions of the

second order) and the smaller the contribution of the free waves field φ
f
2 required to satisfy

the matching conditions is. This trend shall be confirmed experimentally further on.

-0.2 0 0.2 0.4 0.6 0.8

0

1

2

3

4

Figure 12. Amplitude of the temporal harmonics |ηn(x) with n = 1, 2, 3 measured with Fourier
transform profilometry at a frequency ω = 4π s−1.

Figure 13. Amplitude of the second harmonic η2(k) as a function of wave number. Non-dimensional
wavenumber of the linear mode is k+0 h+ = 0.73. Vertical lines indicate the wavenumber expected
from the dispersion relation of water waves in Equation (49).

In order to give a general overview of the wave propagation, we show in Figure 14a,b
the experimental dispersion relation at the first and second order, respectively. Here, we
present the power spectrum PS(ω, k) (in colored contours) normalized by its maximum
value corresponding to the forcing wave—PS(ω, k)/max[PS(ω, k)]—which means that all
maxima are equal to 1 in Figure 14a. In this graph, we have gathered an experimental
series keeping only one experiment per frequency (when the number of experiments was
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more than one). Every spectrum in the plane (ω, k) was normalized by its maximum value,
which corresponds to the fundamental mode. More interestingly, at the second order, the
dispersion relation of the bound and free waves follows different curves. Whereas bound
waves have the same phase velocity as the fundamental mode vb

φ = 2ω/(2k0), free waves

propagate at a slower phase velocity v f
φ = 2ω/κ0. Additionally, from Figure 14b, we can

observe the decay of the amplitude of the free wave as a function of the wave frequency.
This decay shall be analyzed in comparison with the theoretical multimodal model.
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Figure 14. Experimental dispersion relation in the plane (ω, k). (a) Dispersion relation of the linear
mode η(ω). (b) Dispersion relation of the second-order η(2ω).

4.3. Amplitude and Phase of Free and Bound Waves

We start by reconstructing the surface displacement of free and bound waves from
the solution of the second-order potential φ

f
2 and φb

2. These complex valued coefficients
shall be compared further on with experiments. Therefore, from the dynamic boundary
condition of Equation (32), we can compute the free wave as

η
f
2 = − 1

g
∂φ

f
2

∂t
(67)

and the bound wave as

ηb
2 = − 1

g

[
∂φb

2
∂t

+
1
2

((
∂φ1

∂x

)2
+

(
∂φ1

∂z

)2
)
− 1

g
∂φ1

∂t
∂2φ1

∂t∂z

]
(68)

where φb
2 and φ

f
2 are the propagating terms of the total second-order solution (see Equation (35)).

The free surface wave displacement is easily obtained from Equation (67); thus, we only
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give an explicit solution of ηb
2 . Considering an incident wave I(1,1)

0,0 (x, t) (as in Equation (36)),
the velocity potential of the incident bound wave is

φb
2 =

3
8

ωa2 cosh 2k0(z + h)
sinh4(k0h)

sin 2(k0x−ωt), (69)

which can be replaced, together with the incident term of φ1 = I(1)0 F(1)
0 , in Equation (68) to

obtain the surface displacement of the incident bound wave

ηb
2 =

1
4

a2k0(2 + cosh 2k0h)
cosh k0h
sinh3 k0h

cos 2(k0x−ωt)− 1
2

a2k0

sinh 2k0h
(70)

where the last term, which is constant, corresponds to the shift in the mean water level due
to the wave non-linearity (Stokes [34]).

Next, we pass to the experimental validation of the theoretical waves η
f
2 and ηb

2 .
From the space-time Fourier transform, we can extract at the frequency of the second
order (2ω), the complex values of the free and bound waves corresponding to the local
maxima shown in Figure 13. The ratio between the amplitudes of free and bound waves
(|η f

2 |/|ηb
2 |) is plotted in Figure 15a as a function of the non-dimensional wavenumber k+0 h+.

The theoretical curve was calculated with the same experimental parameters: h− = 0.065 m,
h+ = 0.02 m, a = 0.003 m and ω ∈ [10, 20] s−1. We observe the decay of the theoretical
curve that is well verified by the experimental points that are, however, mostly below the
theoretical curve. This overestimation of the theoretical ratio with respect to the experiments
may be explained by the actual attenuation due to the experimental conditions. The fact
that the theory only solves the second order may also overestimate the contribution of this
order to the total solution. To complement, the phase difference (θ(η f

2 /ηb
2)) measured at

the step position between the free and bound waves is plotted in Figure 15b. This phase
difference, according to the multimodal model, should be close to π, i.e., waves have
opposite phases evolving slightly with the wavenumber. However, experimentally, the fact
that the relative amplitude of the free wave decays as a function of the wavenumber means
the signal-to-noise ratio is not sufficiently high enough to detect the free wave phase; thus,
the experimental points are only accurately measured in the range k+0 h+ < 0.8.
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The scale of the experimental set-up, in particular the shallow water depth h+ = 2
cm, makes the second order wavenumber to be in the order of k ≈ 100 m−1. At this
scale, the influence of the surface tension in the dynamics of wave propagation starts to be
non-negligible, as recently reported by Alippi et al. [35]. This is the case especially at the
second order, where the high wavenumbers enhances the effect of the surface tension on
the wave propagation. Actually, the wavenumber at the second order free waves follows
the dispersion relation of gravity-capillary waves

ω2 =
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where σ is the surface tension and ρ the density. As we observe in Figure 16 one of the
clearest dimensions to be measured is the beating length of the second harmonic. This

Figure 15. Experimental measurement and theoretical model of the second-order free and bound
waves. (a) Amplitude ratio between free and bound waves |η f

2 |/|ηb
2 |. (b) Phase different between

free and bound waves measured at the step position θ(η
f
2 |/|ηb

2).

4.4. Beating Length and the Influence of the Surface Tension

The scale of the experimental set-up, in particular the shallow water depth h+ = 2 cm,
makes the second-order wavenumber be in the order of k ≈ 100 m−1. At this scale,
the influence of the surface tension in the dynamics of wave propagation starts to be
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non-negligible, as recently reported by Alippi et al. [35]. This is especially the case at the
second order, where the high wavenumbers enhance the effect of the surface tension on the
wave propagation. Actually, the wavenumber at the second-order free waves follows the
dispersion relation of gravity-capillary waves

ω2 =

(
gk±0 +

σ

ρ
(k±0 )

3
)

tanh(k±0 h±), (71)

where σ is the surface tension and ρ the density. As we observe in Figure 16, one of the
clearest dimensions to be measured is the beating length of the second harmonic. This
distance produced by the spatial interference between the free and bound waves is equal to
the inverse of the wavenumber difference and reads

L2 =
2π

κ+0 − 2k+0
. (72)

In Figure 16, the experimental measured η2 has a beating longer than the theoretical
one. This mismatch is then corrected when the wavenumber of the propagating free and
bound waves takes into account the surface tension, as in Equation (71). This addition of the
surface tension has been included arbitrarily in the propagating wave after the multimodal
calculation, which has been computed considering only a pure gravity regime.
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Figure 16. Comparison of the experimentally measured amplitude of the first (blue solid line) and
second (red solid line) harmonics (|η1|, |η2|) with the propagating wave amplitudes computed in the
multimodal model. At the second order, the theoretical beating is computed with (black dashed line)
and without (magenta dash-dotted line) surface tension. Wave frequency ω = 4π s−1.

Eventually, in Figure 17, we gather the measurement of the beating length of the
second-order L2 for all the experiments. We plot the beating length from Equation (72) as a
reference when k+0 and κ+0 are calculated from the dispersion relation of gravity waves in
Equation (49) and when they are calculated from the dispersion relation of gravity capillary
waves in Equation (71). As we see, the beating length follows different curves depending on
the wavenumber. Whereas for small waveumbers the beating length seems to be dominated
by the gravity regime, for large wavenumbers, the influence of the surface tension in the
beating length is clear.
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Figure 17. Beating length of the second harmonic η2 as a function of the non-dimensional wavenum-
ber k+0 h+. Two theoretical curves of L2 are calculated from Equation (72): First, the blue dash-dotted
line shows L2 calculated with wavenumbers from Equation (71), and second, the red dashed line
shows L2 with wavenumbers from Equation (18).

5. Conclusions

In this article, we have revisited the multimodal model of the propagation of nonlinear
waves over a submerged rectangular step proposed by Massel [6]. In this work, we
focused on the problem of convergence that the model shows at the second order, where
the bound evanescent waves, when calculated in the source term (right hand) of the
kinematic and dynamic surface boundary conditions, produce a growth of the source term
at a power n4 that is higher than the decay exponent of the reflection and transmission
coefficients of the first order, which are supposed to compensate for the divergence in the
source term. This problem of convergence, although directly detectable when the model is
correctly implemented, was not reported by Massel [6], apparently because the calculation
was performed with only 20 modes. Nowadays, the computational power means the
numerical computation can use a large number of modes at a low cost, which needs a
robust implementation to ensures a convergent model independently of the number of
modes. Therefore, by analyzing in detail the terms with the fastest growth in the source
term that dominate the divergence of the second-order solution, we found that a truncation
of the source term at a number of modes smaller than the first order produces convergence
of the second-order problem, resulting in a smooth field in both potential φ2 and horizontal
velocity ∂xφ2. We found that the threshold of the number of modes in the source term αN±,
with α ≤ 0.5, ensures the convergence of the second-order solution. We have verified that
this truncation works independently of the input parameters of the problem (geometry
and wave characteristics) and has an error in the multimodal matching that decreases as a
function of N±. This convergence analysis can be useful to researchers interested in solving
rectangular submerged obstacles in nonlinear wave problems.

The second part of the article shows the space-time-resolved measurement of the
nonlinear wave propagation. This kind of measurement allows computing the complex
coefficient (amplitude and phase) of the propagating waves at the first and second order.
In particular, we were interested in the propagation of free and bound waves at the second
order, where we have experimentally verified that the relative contribution of free waves
decreases as a function of the non-dimensional wavenumber k+0 h+ (the system becomes
more linear), and the phase between free and bound waves is the opposite at the step.
Additionally, due to the scale of the experimental set-up, surface tension effects are non-
negligible at the second order, where the wavenumber is in the order of k ≈ 100 m−1.
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A systematic measurement of the beating length of the second harmonic reveals that at
high wavenumbers (k+0 h+ > 0.7), the surface tension should be considered. An interesting
continuation of this work may consider the development of the multimodal model with
surface tension, which would make the solution more suitable to small-scale phenomena.
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Appendix A. First Order

Appendix A.1. Solution of the System

The system of Equations (27) and (29) can be solved for R(1)
n

∑
n

R(1)
n

(
∂x A(1)

n N(1)
n δn,γ −∑

m

A(1)
n ∂xB(1)

m L(1)
n,mL(1)

γ,m

M(1)
m B(1)

m

)
= −∂x I(1)0 N(1)

0 δ0,γ + ∑
m

I(1)0 ∂xB(1)
m L(1)

0,mL(1)
γ,m

M(1)
m B(1)

m

(A1)

where δk,γ is the Kronecker delta, and the following notations were used to express
the integrals:

L(1)
n,m =

∫ 0

−h+
F(1)

n G(1)
m (A2)

M(1)
m =

∫ 0

−h+
(G(1)

m )2 (A3)

N(1)
n =

∫ 0

−h−
(F(1)

n )2 (A4)

The transmission coefficients T(1)
m can be easily obtained from Equation (27).

Appendix B. Second Order

Appendix B.1. Constants

The bound wave constant C(1,1)
n,n′ obtained from the source term by replacing

Equation (21) in the right-hand side of Equation (31) and performing lengthy
algebraic manipulations

C(1,1)
n,n′ =

ig2a2

2ω

[
(k−n )

2 + 4k−n k−n′ + (k−n′)
2 − (k−n )

2 tanh2 k−n h−

− (k−n′)
2 tanh2 k−n′h

− − 4k−n k−n′ tanh k−n h− tanh k−n′h
−

]

4ω2 − g(k−n + k−n′) tanh(k−n + k−n′)h
− . (A5)

The constant C(1,1)
0,n of the second-order evanescent terms resulting from the multipli-

cation of the Stokes incident harmonic with the evanescent reflected bound waves takes
the following form

C(1,1)
0,n =

ig2a2

2ω

[
(k−n )

2 − 4k−0 k−n + (k−n )
2 − (k−0 )

2 tanh2 k−0 h−

− (k−n )
2 tanh2 k−n h− − 4k−0 k−n tanh k−0 h− tanh k−n h−

]

4ω2 − g(k−0 − k−n ) tanh(k−0 − k−n )h−
. (A6)
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Appendix B.2. Solution of the System

The system of Equations (58) and (60) can be solved for R(2)
p :

∑
p

R(2)
p


∂x A(2)

p N(2)
p δp,γ −∑

q

A(2)
p ∂xB(2)

q L(2)
p,q L(2)

γ,q

M(2)
q B(2)

q


+ c.c. = ∑

m
∑
m′

T(1)
m T(1)

m′ ∂xB(1,1)
m,m′

∫ 0

−h+
G(1,1)

m,m′F
(2)
γ

− ∂x I(1,1)
0,0

∫ 0

−h−
F(1,1)

0,0 F(2)
γ −∑

n
∑
n′

R(1)
n R(1)

n′ ∂x A(1,1)
n,n′

∫ 0

−h−
F(1,1)

n,n′ F(2)
γ −∑

n
R(1)

n ∂xD(1,1)
0,n

∫ 0

−h−
H(1,1)

0,n F(2)
γ

+ ∑
q

∂xB(2)
q L(2)

γ,q

M(2)
q B(2)

q

(
I(1,1)
0,0

∫ 0

−h+
F(1,1)

0,0 G(2)
q + ∑

n
∑
n′

R(1)
n R(1)

n′ A(1,1)
n,n′

∫ 0

−h+
F(1,1)

n,n′ G(2)
q + ∑

n
R(1)

n D(1,1)
0,n

∫ 0

−h+
H(1,1)

0,n G(2)
q

−∑
m

∑
m′

T(1)
m T(1)

m′ B(1,1)
m,m′

∫ 0

−h+
G(1,1)

m,m′G
(2)
q

)
+ c.c.

(A7)

Here, we have expressed some known integrals with the following notation

L(2)
p,q =

∫ 0

−h+
F(2)

p G(2)
q , (A8)

M(2)
q =

∫ 0

−h+
(G(2)

q )2, (A9)

N(2)
p =

∫ 0

−h−
(F(2)

p )2. (A10)

The transmission coefficients T(2)
q can be easily obtained from Equation (58).
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