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In the context of water waves, we consider a resonator with deep subwavelength
resonance, analogue to the Helmholtz resonator in acoustics. In the shallow water regime,
using asymptotic analysis, a one-dimensional model is derived in which the effect of
the resonator is reduced to effective transmission conditions. These conditions clearly
highlight two contributions. The first is associated with the dock on its own and it is
responsible for a jump of the potential at the free surface. The second is due to the resonant
cavity and it is responsible for a jump in the horizontal velocity. It involves as well the
uniform amplitude within the resonant cavity with a transient dynamics explicitly given
by the equation of a damped oscillator forced by the incident waves. The one-dimensional
model is validated in the harmonic regime by comparison to direct two-dimensional
numerics. It is shown to reproduce accurately the scattering coefficients and the amplitude
within the resonator; interestingly, this remains broadly true for finite water depths. We
further inspect the spatio-temporal behaviour of different types of wave packets interacting
with the resonating and radiating cavity.

Key words: surface gravity waves, wave scattering

1. Introduction

The modern design of devices able to control the energy flow of water waves has begun
to benefit from the development of metamaterials. For instance, the propagation can
be made anisotropic using varying bathymetry, see e.g. Maurel et al. (2017), Maurel,
Pham & Marigo (2019) and Porter (2019), or it can be guided due to valley-locked
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transport (Makwana et al. 2020). In addition, a plethora of interesting phenomena has been
proposed, such as the cancellation of the scattering by rigid obstacles and their cloaking
(Newman 2014; Dupont et al. 2016; Porter 2018; Bobinski et al. 2018; Iida & Kashiwagi
2018; Farhat et al. 2020), the perfect absorption of the wave energy in the nonlinear regime
(Monsalve et al. 2019) and the trapping for energy harvesting using graded arrays of
resonators (Bennetts, Peter & Craster 2018, 2019).

Apart from Bragg type resonances due to a periodic bathymetry (Mei, Stiassnie & Yue
1989; Porter & Porter 2003) or due to the interaction of several rigid obstacles within
an array (Linton 2011; Archer et al. 2020), strategies using local resonances of a single
resonator have been developed. In most of the cases, vertically invariant resonators have
been envisioned (Dupont et al. 2017; Monsalve et al. 2019; Bennetts et al. 2018, 2019).
This means that the wave dynamics modelling can use separation of variables between
vertical and horizontal coordinates resulting in a Helmholtz equation at the free surface
identical to the two-dimensional acoustic case. In the present study we consider a different
type of local resonance inspired by acoustic Helmholtz resonators (HRs). These resonators
are cavities or bottles connected to the surrounding air by a thin neck which are used to
produce sound waves of specific tones with resonance wavelengths much smaller than
the dimensions of the bottle (Ingard 1953; Helmholtz & Ellis 1954). Such subwavelength
resonances are made possible as the cavity is almost closed, allowing for an almost
zero-frequency mode as the radiative damping is weak. We envisage that such a resonator
for water waves would be made possible using an underwater cavity. The main difference
between an acoustic HR and the water-wave resonator that we propose is that the former is
governed by the Helmholtz equation while the latter is governed by the Laplace equation.
Next, the compressibility in the acoustic cavity is replaced by the restoring force at the free
surface of the water-wave cavity, allowing for the resonance to take place. Interestingly the
water-wave HRs exist for both two- and three-dimensional water waves while the acoustic
HR previously mentioned exists only for three-dimensional water waves with vertically
invariant obstacles, see e.g. Monsalve et al. (2019). In the present study, we shall consider
the water-wave HRs in two dimensions.

The geometry, sketched in figure 1, consists of a cavity fixed on the free surface and
coupled to the sea thanks to a thin neck on its bottom. In the absence of the neck (Lo → �),
this geometry degenerates to the famous oscillating water column (OWC). OWC devices
have received attention since the pioneering work of Isaacs & Wiegel (1949) who were
interested in using open-end pipes with float-type recorders for measuring wave heights.
In the 1970s, it was identified as the first resonator able to produce zero transmission
resonances in the context of water waves (Evans & Morris 1972; Newman 1974; Evans
1975, 1978). We can notice that compressed air breakwaters related to OWC have been also
envisioned (Linton & Evans 1990). More recently, studies have been conducted on vertical
openings through ship hulls, called moonpools (Molin 2001; Ravinthrakumar et al. 2019),
and gaps in between two ships side by side in offloading operations (Molin et al. 2018;
Zhao et al. 2020). In these configurations, the lowest resonance corresponds to a piston
mode associated with a velocity potential varying linearly along the vertical direction in
the device, be it the gap or the moonpool. As such, the resonance frequency is governed by
the immersion depth of the cavity resulting in a resonance of the quarter-wavelength type
modified by the dynamical condition at the free surface. In contrast, our HR resonance
is associated with a constant potential within the cavity whose resonance frequency, for
given dimensions of the cavity, can be reduced to arbitrarily low value in the lossless case.
Consequently, and importantly, the resonator we present here opens possibilities to tend to
a very subwavelength regime.
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Time domain modelling of HR for water waves
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Figure 1. (a) A HR for acoustic waves composed of a resonant cavity of dimension Lo, h+ and a long thin
neck of dimensions e, �. (b) The analogue resonator for water waves, with the dynamic boundary condition at
the free surface playing the role of the acoustic compressibility.

To get a basic understanding of the resonance mechanism, and before going into
more sophisticated analysis, let us first inspect heuristically the analogy between the
acoustic HR and water-wave HR sketched in figure 1. Although we shall derive later
a model in the shallow water regime, we stress that the analogy between acoustic and
water-wave HRs applies more generally since the dynamic boundary condition at the
free surface for the water waves plays the role of the compressibility in acoustics. In the
context of acoustic waves, the acoustic pressure p and velocity u are governed by the
linearized Euler equations, ρ∂tu = −∇p, β∂tp + div u = 0, with ρ the mass density and
β the non-vanishing compressibility of the fluid. The resonance frequency is obtained by
integrating the equation of mass conservation over the domain Ω of the cavity where the
pressure pR is uniform. Assuming in addition that the vertical velocity v|N in the neck is
constant (hence ρ∂tv|N = −1/e( pR − p|N)) we obtain the sequence of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
Ω

(div u + β∂tp) dx = 0, −→ β(Loh+)∂tpR − � v|N = 0,

∂ttpR + ω2
0pR = ω2

0p|N, ω0 = c

√
�

eLoh+ ,
(1.1)

with c = √
1/(ρβ) the speed of sound. At this stage the pressure p|N at the bottom end

of the neck is unknown but the resonance frequency ω0 has been determined. In the
context of water waves, the fluid is incompressible but the dynamic boundary condition
at the free surface v = −(1/g) ∂ttϕ provides a spring contribution analogue to that of the
compressibility in acoustic (v denotes the vertical velocity, ϕ the potential and g the gravity
constant). Assuming as previously that the potential ϕR is uniform in the cavity and that
the velocity is constant in the neck (hence v|N = 1/e(ϕR − ϕ|N)), we integrate div u = 0
over the domain of the cavity to get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
Ω

div u dx = 0, −→ −Lo

g
∂ttϕR − � v|N = 0,

∂ttϕR + ω2
0ϕR = ω2

0ϕ|N, ω0 =
√

g�
eLo

.

(1.2)

As in the acoustic case, the potential ϕ|N at the bottom end of the neck is unknown but the
resonance frequency has been determined. The resonance in (1.2) is the analogue of that
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in (1.1) and the analogy is perfect in the shallow water regime with c = √
gh+ within the

cavity.
In the following , we use asymptotic analysis to go beyond the previous heuristic analysis

and we derive a time domain model coupling the resonator with the surrounding water
dynamics. This is done using asymptotic analysis thanks to a small parameter measuring
the dimension of the cavity normalized to the typical wavelength. In the shallow water
regime, with a water depth to cavity immersion of the order of unity, the problem is
reduced to the classical shallow water equation outside the resonator. Besides, since the
resonator has subwavelength dimensions, its effect is asymptotically encoded in effective
transmission conditions. These conditions tell us that the potential and the horizontal
velocity are discontinuous across the resonator. The discontinuity of the potential is
related to the dock problem (� = 0) while that of the horizontal velocity is related to
the resonance. The latter involves the uniform potential ϕR(t) in the cavity governed
by the equation of a forced damped oscillator, see forthcoming equation (2.11). The
damping is radiative and due to the coupling of the cavity with the surrounding water;
without surprise, the forcing term is the incident wave. The model is presented in § 2
and its solution is obtained in the transient regime; to highlight the obtained results,
the technicalities of the asymptotic expansions are collected in Appendix B. In § 3, the
asymptotic model is validated in the harmonic regime by comparison to direct numerics
based on modal method, and its validity for finite water depths is inspected. It is stressed
that the asymptotic solution provides a comprehensive picture of the resonant dynamics
although it introduces errors in the resonant frequency. In § 4 different types of incident
wave packets are considered, revealing the capacity of the resonator to radiate waves over
long times, being weakly coupled to the surrounding water.

2. The actual problem and the reduced problem – summary of the main result

2.1. The actual problem
Using the assumptions of an inviscid, incompressible fluid, and an irrotational motion, the
linearized equation for the velocity potential φ(r, t) reads⎧⎨

⎩

φ = 0,

∂zφ|z=0 = −1
g
∂ttφ|z=0, ∇φ · n|Γ = 0, (2.1)

where t is the time, r = (x, z) with x the horizontal coordinate and z the vertical one (Mei,
Stiassnie & Yue 2005). Next, z = 0 is the undisturbed free surface, z = −H the sea bottom
and Γ denotes the boundaries of the rigid parts of the resonator and of the sea bottom.
Eventually, the free surface elevation η(x, t) and velocity u = (u, v) are defined by

u(x, t) = ∇φ(x, t), η(x, t) = −1
g
∂tϕ(x, t), (2.2a,b)

where ϕ(x, t) = φ(x, 0, t) is the potential at the free surface.

2.2. The reduced problem
In the time domain, the shallow water regime requires that the maximum frequency ω
imposed by the source satisfies ω2H/g � 1, and with the exception of § 3.2, we restrict
our study to this case. Assuming in addition that L is of the same order of magnitude as H
and that the neck opening � is much smaller than all the other dimensions of the resonator,
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Time domain modelling of HR for water waves

x

ϕ(x, t) = φ(x,0, t)

φ(x, z, t)(a)

(b)

xz

L0
ϕR(t)

1.5

–1.5

x = −55 m x = 60 m

2
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0

Figure 2. Meaning of the reduction of model. (a) The solution of the actual problem is computed numerically
on the velocity potential φ(x, z, t) solution of (2.1). (b) The solution of the reduced problem is computed for
ϕ(x, t) = φ(x, 0, t) for x /∈ (0,L) solution of (2.3) and ϕR(t) = φ(x, 0, t) for x ∈ (0,L) solution of (2.11) for an
incident wave ϕinc(x, t).

the actual problem can be reduced to a one-dimensional problem along x which applies
for the velocity potential at the free surface ϕ(x, t) (figure 2). Specifically, the reduced
problem whose derivation is detailed in Appendix B reads

⎧⎨
⎩

gH ∂xxϕ(x, t)− ∂ttϕ(x, t) = 0, x ∈ (−∞, 0) ∪ (L,+∞),

[[ϕ]](t) = HB ∂xϕ(t), [[∂xϕ]](t) = Lo

gH
ϕ̈R(t), ϕ̈R(t)+ ω2

0ϕR(t) = ω2
0 ϕ̄(t),

(2.3)

where [[ϕ]](t) = ϕ(L, t)− ϕ(0, t) is the jump of ϕ across the resonator and ϕ = (ϕ(0, t)+
ϕ(L, t))/2 the mean value (the same for [[∂xϕ]] and ∂xϕ), ϕR(t) is the uniform potential
in the cavity (dot stands for the time derivative). At it should be, the surrounding fluid
satisfies the shallow water equation for a constant water depth H.

The effect of the resonator has been encapsulated in effective transmission conditions
which constitute the main results of the present analysis. The first condition on the jump
of the potential [[ϕ]] across the resonator (between x = 0 and x = L) involves the mean
value of the horizontal velocity. It is the condition obtained for a dock on its own. In this
context, B is the blockage coefficient appearing in the problem of a perfect fluid flowing
in a rigid duct containing a constriction having the form of the dock (Bartholomeusz 1958;
Tuck 1975, see also Appendix A). The second condition links the jump of the horizontal
velocity [[∂xϕ]] across the resonator to the second time derivative ϕ̈R(t) of ϕR(t) which
is the uniform velocity potential within the resonant cavity. Eventually, apart from the
geometrical parameters, the model (2.3)–(2.11) involves a blockage coefficient B and a
so-called effective length eeff . The former has an explicit expression and the latter can be
evaluated (see Appendix A); they read

⎧⎪⎪⎨
⎪⎪⎩
B = L

h− + 2Bμ, μ = h−

H
,

eeff = e + �

2

(Bμ + Bμ0

)
, μ = �

L
, μ0 = �

Lo
,

(2.4)

where Bμ is a function of μ only, defined by

Bμ = 1
π

(μ2 + 1)
μ

log
1 + μ

1 − μ
− 2

π
log

4μ
1 − μ2 . (2.5)
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2.3. D’Alembert formulation of the solutions
In the presence of a right-going incident wave ϕinc, the reduced problem (2.3) can be
solved explicitly using d’Alembert solutions (d’Alembert 1747). Specifically, we use that
the solution can be written, denoting c = √

gH, as

ϕ(x, t) =
{
ϕinc(t − x/c)+ ϕ−(t + x/c), x ∈ (−∞, 0),

ϕ+(t − (x − L)/c), x ∈ (L,+∞),
(2.6)

where ϕ+ is the transmitted right-going wave and ϕ− is the reflected left-going wave. From
(2.6) we have [[ϕ]] = ϕ+(t)− ϕ−(t)− ϕinc(t), ∂xϕ = −1/2c(ϕ̇+(t)− ϕ̇−(t)+ ϕ̇inc(t)) and
[[∂xϕ]] = −1/c(ϕ̇+(t)+ ϕ̇−(t)− ϕ̇inc(t)). Reporting these expressions in the transmission
conditions (2.3) we obtain that ϕdock = (ϕ+ − ϕ− − ϕinc)/2 and ϕres = (ϕ+ + ϕ− − ϕinc)/2
satisfy

ϕ̇res(t) = − 2
ω2

0τ
ϕ̈R(t), ϕ̇dock(t)+ 1

τdock
ϕdock(t) = −ϕ̇inc(t), (2.7a,b)

where

τdock = B
2

√
H
g
, (2.8)

and where we have used that cLo/gH = 4/ω2
0τ . Eventually, the waves emitted by the

resonator are given by

ϕ−(t) = ϕres(t)− ϕdock(t), (ϕ+(t)− ϕinc(t)) = ϕres(t)+ ϕdock(t), (2.9a,b)

from which we deduce that

ϕ̄(t) = ϕinc(t)− 2
ω2

0τ
ϕ̇R(t). (2.10)

Hence, the harmonic oscillator equation in (2.3) that governs the potential ϕR inside the
cavity takes the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕ̈R(t)+ 2

τ
ϕ̇R(t)+ ω2

0ϕR(t) = ω2
0 ϕinc(t),

where ω0 =
√

g�
eeff Lo

, τ = 4eeff

�

√
H
g
,

(2.11)

which corresponds to the equation of a damped resonator, with ω0 the resonance
frequency and τ the characteristic time of the radiative damping due to the coupling
of the resonator with the surrounding fluid. Eventually, ϕinc(t − x/c) = φinc(x, 0, t) is the
potential associated with the incident wave at the free surface.

The above general solution confirms the kind of contributions of the resonator and of
the dock that were already visible from the transmission conditions in (2.3): the resonator
acts as a monopole radiating ϕres(t) symmetrically toward x < 0 and x > L; the dock on
its own acts as a dipole radiating ±ϕdock(t) toward x < 0 and x > L. Incidentally, we also
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Time domain modelling of HR for water waves

obtain that ϕ̄(t) = ϕinc(t)+ ϕres(t), which provides (2.10) using (2.7a,b). Eventually, with
� much smaller than the other dimensions of the problem, we have

ω0τ = 4

√
eH
Lo�

� 1, ω0τdock = B
2

√
H�
eLo

� 1. (2.12a,b)

The first relation tells us that, because of its thin neck, the resonator is weakly coupled to
the surrounding water. In contrast, the response of the dock up to the resonance frequency
(at least) is dictated by the incident wave, as ϕdock(t) ∼ −τdockϕ̇inc(t).

3. Validation of the reduced problem in the harmonic regime

We start by analysing the reduced problem in the harmonic regime, in order to easily
validate the reduced model by comparison to direct numerics. The numerics uses a
classical multimodal method to compute the solution of the actual problem (2.1); the
method is detailed in Appendix C.

The results presented in this section are obtained for the following geometry: H = 6 m,
L = 5 m, Lo = 4.8 m, e = 1 m, � = 0.1 m, h− = 2 m (h+ = 3 m) and we consider the
frequency range ω ∈ (0, 1) rad s−1. The resulting parameters are: τdock = 1.35 s, ω0 =
0.40 rad s−1 and τ = 38.3 s. (with B = 3.45 and eeff = 1.22 m).

3.1. Solution in the harmonic regime
In the harmonic regime at frequency ω, we denote ϕ(x, t) = Re(ϕ̃(x, ω)e−iωt) and we
consider an incident wave with unitary amplitude ϕ̃inc(x, ω) = eikx, where k = ω/

√
gH is

the wavenumber in x ∈ (−∞, 0) ∪ (L,+∞). The complex uniform potential ϕ̃R(ω) in the
cavity solution to (2.11) and the potentials ϕ̃dock(ω) and ϕ̃res(ω) solutions to (2.7a,b), read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃R(ω) = ω2
0(

ω2
0 − ω2 − 2iω

τ

) ,

ϕ̃dock(ω) = iωτdock

(1 − iωτdock)
, ϕ̃res(ω) =

2iω
τ(

ω2
0 − ω2 − 2iω

τ

) .
(3.1)

Introducing the scattering coefficients (R, T) for the potential ϕ̃ in the form

ϕ̃(x < 0, ω) =
(

eikx + R(ω)e−ikx
)
, ϕ̃(x > L, ω) = T(ω)eik(x−L), (3.2a,b)

and identifying with (2.6)–(2.9a,b) we obtain ϕ̃−(ω) = R(ω) and ϕ̃+(ω) = T(ω), hence⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = 1
2

(
ω2

0 − ω2 + 2iω
τ

)
(
ω2

0 − ω2 − 2iω
τ

) − 1
2
(1 + iωτdock)

(1 − iωτdock)
,

T = 1
2

(
ω2

0 − ω2 + 2iω
τ

)
(
ω2

0 − ω2 − 2iω
τ

) + 1
2
(1 + iωτdock)

(1 − iωτdock)
,

(3.3)
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1

0 0

10(a) (b)

0

ω (rad s−1)

1 0

ω (rad s−1)

1

|R|

|Rdock|

|ϕ̂R|

Phase(ϕ̂R)

Figure 3. Validation of the reduced model solution (dashed lines) by comparison to direct numerical
calculations (plain lines). (a) Reflection coefficient |R(ω)| against ω ∈ (0, 1) rad s−1; for comparison, |Rdock|
for a dock on its own (� = 0) is reported. In the reduced model, we use (3.3)–(3.4a,b). (b) Velocity potential
ϕ̃R(ω) (magnitude and phase) within the resonator. In the reduced model we use (3.1).

which satisfy |R|2 + |T|2 = 1. For the dock on its own, ϕR = 0, resulting in

Rdock = 1
2

− 1
2
(1 + iωτdock)

(1 − iωτdock)
, Tdock = 1 − Rdock. (3.4a,b)

Eventually, the amplitude within the cavity given by (3.1) reaches a maximum at the
resonance with

ϕ̃R(ω0) = iω0τ

2
= 2i

√
eeff H
�Lo

. (3.5)

We have calculated numerically the solution of the actual problem (2.1) for ω ∈
(0, 1) rad s−1. We report in figure 3 the variations of |R(ω)| and ϕ̃R(ω). In panel (a), we see
that the resonance curve |R(ω)| has a highly asymmetric profile characteristic of a Fano
resonance, with sharp variations producing perfect and zero reflection. We also report the
underlying smooth curve corresponding to the background scattering of the dock on its
own. In the context of water waves, similar variations have been reported in Parsons &
Martin (1994) due to Mie resonances occurring when a submerged obstacle rises to the
free surface. Panel (b) shows the corresponding amplitude within the cavity with rapid
variations in magnitude and phase (from 0 to π). It is worth noticing that the resonance is
deeply subwavelength with an incident wavelength λ = 2π

√
gH/ω0 30 times larger than

the dimensions, L and h+, of the resonator. The predictions of the reduced model, R in
(3.3), Rdock in (3.4a,b) and ϕ̃R in (3.1), are in good agreement with the direct numerics with
two distinct sources of discrepancy. On the one hand, in the vicinity of the resonance, we
observe a systematic shift of around 0.02 rad s−1 between the resonance curve calculated
numerically and the theoretical one. Specifically, the model predicts a resonance frequency
ω0 = 0.41 rad s−1 from (2.11) and a succession of a perfect reflection at ω1 and a perfect
transmission at ω2 given, from (3.3), by

ω1 =
√
ω2

0 − 2(ττdock)−1, ω2 = ω0√
1 − 2τdockτ−1

, (3.6a,b)

(in the present case, ω1 = 0.36 rad s−1 and ω2 = 0.42 rad s−1) while the actual, numerical
values are lower; this is attributable to the approximate added length which could be
refined by conducting the analysis at higher order. On the other hand, the scattering
strength of the dock on its own, measured here by |Rdock|, is underestimated by the model
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x

xz

L0

1

–4

4

–1

Perfect reflection at ω2

x

xz

L0

Perfect transmission at ω1

1.5

–1.5

1.5

–1.5

x = −55 m x = 60 m

ϕ
~
(x, ω)

φ
~
(x, z, ω)

ϕ
~
R

(a)

(b)

Figure 4. Two-dimensional fields φ̃(x, z, ω) and corresponding profiles ϕ̃(x, ω) at the free surface at ω = ω1
(perfect transmission) and ω2 (perfect reflection). The profiles show ϕ̃(x, ω) outside the resonator (blue lines)
and ϕ̃R(ω) inside the cavity (red lines). The plain lines show the numerical results and the dashed lines the
results of the model (3.2a,b)–(3.3).

above 0.4 rad s−1 (kH 
 0.3) as the assumption of the shallow water regime becomes less
valid. As expected, the shift in the resonance frequency is recovered in the resonant curve
ϕ̃R(ω). However, the model reproduces correctly that the amplitude within the cavity is the
same as outside for long waves (ω → 0) while it tends to zero for shorter waves. Indeed
for these latter, the cavity behaves as a closed cavity.

The two-dimensional fields φ̃(x, z, ω) computed numerically at the frequencies ω1 and
ω2 are shown in figure 4. In both cases, the large amplitude within the cavity is constant
although a zoom reveals strong contributions of the evanescent field excited at the ends of
the neck (not shown) that are taken into account by added lengths. With ω1 < ω0 < ω2,
and according to the phase variations in figure 3, the perfect transmission corresponds
to an oscillation within the cavity in phase with the incident wave at x = 0. Conversely,
the perfect reflection corresponds to an oscillation within the cavity oscillating in phase
quadrature with the incident wave at x = 0. This is also visible from (3.1), along with
(2.12a,b) and (3.6a,b). Accounting for the small shift in the reflection curves between the
numerics and the model, we also report the profiles of the potential at the free surface
outside and inside the cavity. Again, the agreement is good, in particular the constant
shape of ϕ̃R in the cavity is confirmed.

3.2. From the shallow to the deep water-wave regime
Our analysis has been conducted in the shallow water regime which allows us to obtain
a one-dimensional reduced model. However, most of the asymptotic analysis is done in
the vicinity of the resonator independently of the water depth (see Appendix B). Thus, it
makes sense to inspect whether or not the model remains predictive when we move from
the shallow water regime to the finite depth regime. We have computed numerically the
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ϕ~ R
(ω

0
)

Phase(ϕ̂R)

Figure 5. From shallow (SW) to deep water (DW). (a) Variations of ϕ̃R(ω0) against H, calculated numerically
(plain line) and from (3.5) (dashed lines). The inset shows ϕ̃R in colour scale against ω and H calculated
numerically; the dashed white line shows ω = ω0 from (2.3). (b,c) Show |R(ω)| and ϕ̃R(ω) for H = 50 m,
same representation as in figure 3. The inset in panel (c) shows λ(ω) moving from the SW to the DW regime.

potential ϕ̃R(ω) for various H ∈ (4, 100) m. The result is shown in the inset of figure 5(a).
We observe that the frequency ω0 realizing the maximum is independent of H and it agrees
with (2.3). This confirms that the resonance frequency is characteristic of the resonator on
its own. Next, the resonant amplitude |ϕ̃R(ω0)| increases with H for small H in agreement
with (3.5), afterwards, it saturates (above H 
 40 m in the main plot in (a)). In the shallow
water regime, the increase of the resonant amplitude with H tells us that the presence of the
sea bottom below the cavity weakens the resonance; a similar confinement effect has been
reported for acoustic HRs (Maurel et al. 2019). However, as the water depth increases, this
effect vanishes and the amplitude tends to a value corresponding to the resonance in the
deep water regime (hence, independent of H).

Panels (b,c) show |R(ω)| and ϕ̃R(ω) for the intermediate water depth H = 50 m. The
shape of the resonance curve differs significantly from that reported in the shallow water
regime in figure 3. The main reason is that the scattering strength of the dock on its own is
weak around the resonance. As in figure 3, we report for comparison the predictions for ϕ̃R
from (3.1), R from (3.3) and Rdock from (3.4a,b). The most noticeable error in the reduced
model is already visible on Rdock which is underestimated for ω > 0.2 rad s−1. The same
occurs for R as R tends to Rdock outside the resonance. The shallow water approximation
used in the model overestimates the wavelength, hence it erroneously predicts that the
wave can pass easily through the dock. In the reported case, the reflection is significant,
up to 4 times the value predicted by the shallow water approximation (at ω = 1 rad s−1).
In contrast, the overall variations of the amplitude ϕ̃R in the cavity are well reproduced
by the reduced model (we know from (a) that the maximum is overestimated). Below the
resonance, the cavity behaves as an open cavity, |ϕ̃R| = 1 is dictated by the incident wave
of amplitude unity. Above the resonance it behaves as a close cavity with |ϕ̃R| = 0. These
trends are robust whatever the water depth. Additional refinements would be necessary to
restore the effect of wave dispersion which affects the amplitude within the resonator and
the effect of the dock on its own.

4. Dynamics of the resonator in the transient regime

4.1. Solutions for an incident wave packet in the transient signal
We now move on to the dynamics of the resonator in the transient regime. As previously
said, the solution of the reduced problem is still explicit. Given an incident wave packet
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0 0

0.4(a) (b)
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ϕinc(0, t) ϕdock(t)
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t (s) t (s)

1.5

–1.5 –0.4
200200

Figure 6. (a) Time variation of the amplitude ϕR(t) within the resonator for an incident short pulse ϕinc(0, t).
(b) Resulting ϕres(t) and ϕdock(t) from (4.1a,b).

ϕinc(x, t), the solution ϕR(t) is known as it simply requires us to solve the equation of a
damped oscillator forced with ϕinc(0, t) in (2.11). We consider ϕR(0, t = 0) = ϕ̇R(0, t =
0) = 0 as initial conditions corresponding to a source switched on at t = 0. Next, we have
from (2.7a,b) that

ϕres(t) = − 2
ω2

0τ
ϕ̇R(t), ϕdock(t) = −

∫ t

0
ϕ̇ inc(t

′)e−(t−t′)/τdock dt′, (4.1a,b)

as ϕdock(t = 0) = 0. Eventually, the above solutions are used in (2.9a,b) to get the whole
solution (2.6), with ϕ±(t) in (2.9a,b) the wave packets radiated by the resonator.

To begin with, we consider an incident short pulse of the form

ϕinc(0, t) = e−τ−2
f (t−ti)2, (4.2)

with τf = 3 s (and ti = 15 s) whose significant spectral content is within the interval ω ∈
(0, 2) rad s−1. The pulse is much shorter than the damping time τ = 38 s, which provides
a rough idea of the impulse response of the system. Figure 6(a) shows the incident pulse
ϕinc(0, t) and the resulting uniform potential within the cavity whose dynamics is that of an
underdamped harmonic oscillator driven by ϕinc(0, t). Panel (b) shows the corresponding
variations of the radiated signals ϕres(t) and ϕdock(t), from (4.1a,b). Expectedly, we observe
that ϕdock(t) 
 −τdockϕ̇ inc(t) and thus it is as short as the initial pulse. In contrast, ϕres(t)
has a long regime of free oscillations, being weakly radiatively damped. To complete
this representation, we report in figure 7 snapshots of the potential ϕ(x, t) at the free
surface and a profile for t = 120 s. It is visible that the transmitted and reflected pulses
resulting from the direct interaction with the incident pulse are followed by long right- and
left-going wave trains radiated by the resonator (the segment (0, L) is almost reduced to
the origin in this representation).

We now inspect the ability of the HR to realize perfect transmission and perfect
reflection in the transient regime. To do so, we use an incident wave packet able to excite
more specifically a given frequency, namely we use

ϕinc(0, t) = a exp(−τ−2
f (t − ti)2) sin(ωf (t − ti)), (4.3)

with ωf the forcing frequency, τf the width of the Gaussian envelope and a such that
Max(ϕinc(0, t)) = 1. We choose ωf = ω1 and ωf = ω2, the frequencies realizing perfect
transmission and perfect reflection in the harmonic regime, from (3.6a,b); for comparison,
we also consider ωf = ω0. For these 3 frequencies we set the incident pulse duration to
τf = 140 s (approximately 40 oscillation periods). Results are shown in figure 8, where
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0
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–0.4

0.8

–200c 200c–100c 100c

100

ϕ–(0, t) ϕ+(L, t)

Figure 7. (a) Snapshots of the potential ϕ(x, t) at the free surface, x /∈ (0,L), with c = √
gH 
 5.3 m s−1.

(b) Profile of ϕ(x, 120 s); the oscillator emits ϕ+(0, t) and ϕ−(0, t).

0 600

8

–8

0 6000 600

(a) ω1 ω0 ω2
(b) (c)

ϕR(t)

ϕinc(0, t)

t (s) t (s) t (s)

Figure 8. Incident pulse ϕinc(0, t) from (4.3) (blue lines) and corresponding ϕR(t) (red lines) (a) ωf = ω1
producing perfect transmission in the harmonic regime, (b) ωf = ω0 the resonance frequency and (c) ω2
producing a perfect reflection in the harmonic regime (see (3.6a,b)).

we report ϕinc(0, t) and the resulting ϕR(t), and figure 9, where we report the snapshots of
ϕ(x, t) and a zoom on ϕR(x, 600 s). With a time scale variation of the incident pulse greater
than the free oscillation period, the regime of oscillations driven by the forcing incident
signal dominates and the free oscillation regime is almost negligible. Hence, both ϕres and
ϕdock have almost the same duration as the incident wave packet and this is required in
order to produce perfect transmission and perfect reflection. Indeed, perfect transmission
results from destructive interference between the two radiated waves ϕres and ϕdock (hence
ϕ− = 0). Perfect reflection is in some sense more demanding as it results from destructive
interference between ϕres, ϕdock and ϕinc as we want ϕ+ = 0. As these conditions cannot be
perfectly met, imperfect complete transmission and reflection are observed. Nevertheless,
the enhancement in reflection for ωf = ω1 and in transmission for ωf = ω2 is visible when
compared with the reference case at ω = ω0.

5. Concluding remarks

We have studied an analogue of the acoustic HR in the context of water waves. As for
its acoustic analogue, the lowest resonance is deeply subwavelength thanks to a thin neck
connecting the cavity to the surrounding water. Obviously, this subwavelength property is
of importance to the design of objects with the objective to control water waves of very
long wavelength. The small dimensions of the whole device compared with the wavelength
makes possible the use of asymptotic analysis and the derivation of a one-dimensional
reduced model in the shallow water regime. The model has been validated in the harmonic
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Figure 9. Same representation as in figure 7 for the three incident pulses of figure 8.

regime by comparison to direct numerics; afterwards, solutions in the transient regime
have been sought.

The present analysis has been done in the idealized case of linear waves in an inviscid
fluid; the resulting one-dimensional model corresponds to the dominant non-trivial
asymptotic order. Within these assumptions, pursuing the calculations to the second order
would allow us to capture more subtle effects such as the position of the neck connected
to the cavity (here located on the bottom horizontal wall of the cavity but which can
be positioned on a vertical wall, the two vertical walls playing a non-symmetric role
for the incoming wave). Other extensions consist in including the effect of the losses
due to the viscosity that we expect to be significant in the neck or due to nonlinearities
within the cavity as the velocity reaches large values. Although this can be done by adding
heuristically a damping term in the equation of the resonator (2.11), as in Monsalve et al.
(2019), these ingredients can by explicitly accounted for in the analysis, see Caflisch et al.
(1985) for viscous effects and Pham et al. (2020) for nonlinear effects. We have in mind
the perfect absorption obtained with acoustic HRs (Romero-García et al. 2020) and for
water waves in reflection (Monsalve et al. 2019). Another interesting extension would be
to use a series of different resonators to obtain broadband behaviours (Jiménez et al. 2017;
Bennetts et al. 2018).

Funding. V.P., P.P. and A.M. thank the supports of the start-up Bluerium. K.P. thanks the supports of the
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Appendix A. Remark on the blockage coefficients and added lengths

Simple expressions for the effective length eeff and blockage coefficient B are given here.
What we need is the result of Tuck (1977), which provides the blockage coefficient of a
step reducing the water depth from H+ to H− < H+ (figure 10a). With μ = H−/H+ it
reads

Bμ = 1
π

(μ2 + 1)
μ

log
1 + μ

1 − μ
− 2

π
log

4μ
1 − μ2 . (A1)

This coefficient appears in the jump of the potential which reads as (ϕ+ − ϕ−) = BμD
at the section discontinuity while the flow rate is continuous D = H+∂xϕ

+ = H−∂xϕ
−.

Owing to this result, it is possible to extrapolate the blockage coefficient B in problem (b)
and the effective length eeff in problem (c) of figure 10.

We begin with problem (b). As the effect of the evanescent fields at x = 0 and x = L is
encapsulated in Bμ, the solution can be written

ϕ(x < 0) = x
H
, ϕ(0 < x < L) = x

h− + α, ϕ(x > L) = (x − L)
H

+ B, (A2a–c)

which already satisfies the continuity of the flow rate D = 1. Applying further ϕ(0+)−
ϕ(0−) = Bμ and ϕ(L+)− ϕ(L−) = Bμ, we obtain α = Bμ and

B = L
h− + 2Bμ, μ = h−

H
. (A3a,b)

We now move on to problem (c), which is the problem involving the added length in the
neck of the resonator (we used mirror symmetry). We do the same as previously with

ϕ(x < 0) = 2x
L
, ϕ(0 < x < e) = 2x

�
+ β, ϕ(x > e) = (x − e)

Lo
+ BN, (A4a–c)

which satisfies D = 1. Applying further ϕ(0+)− ϕ(0−) = Bμ (with μ = �/L) and
ϕ(e+)− ϕ(e−) = Bμ0 (with μ0 = �/Lo), we obtain β = Bμ and

BN = 2e
�

+ Bμ + Bμ0, μ = �

L
, μ0 = �

Lo
. (A5a–c)

Next, the effective length eeff is by definition the length such that the constant velocity in
(0, e) satisfies

v|N = 2
�

= ϕ(e+)− ϕ(0−)
eeff

, (A6)

which implies

eeff = �

2
BN = e + �

2

(Bμ + Bμ0

)
. (A7)
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H+

H −

H
h−

L(a) (b) e(c)

2

Lo
2

L
�

2

Figure 10. (a) The problem of a perfect fluid flowing in a rigid duct with a sudden change in height (H+ →
H−) involving the blockage coefficient Bμ, μ = H−/H+. (b) The problem of a perfect fluid flowing in a rigid
duct with two sudden changes in height H → h− → H involves a blockage coefficient B. (c) The problem of
a perfect fluid flowing through a duct with three sudden changes in height (L → � → Lo) involves a blockage
coefficient Bn.

The above result is consistent with the analysis of Mercier, Marigo & Maurel (2017)
(owing to Bμ 
 −(2/π) log(sin((π/2)μ))). It is worth noting that the blockage coefficient
in (A3a,b) appears explicitly in the asymptotic analysis, see (B26a–b). In contrast, the
effective length (A7) is introduced heuristically as the analysis provides only the actual
length of the neck, see (B46a,b) (an effective length would appear at the following
asymptotic order).

Appendix B. Asymptotic analysis

In this section, we shall derive the reduced model (2.3) thanks to asymptotic analysis.
This will be done by defining a small parameter ε and by choosing scalings for all the
dimensions of the problem.

B.1. The choice of the scalings
The heuristic calculation leading to (1.2) is used to set the scalings. This calculation is
done assuming that the cavity has dimensions much smaller than the incident wavelength,
and that the cavity is disconnected from the surrounding fluid, resulting in a zero velocity
and a constant potential at the dominant order. What we want to obtain with the scalings
is that the non-dimensional frequency remains of the order of the resonance frequency
asymptotically. In the most general case, defining ε = kD with D, a measure of the cavity
extent, this means

ω0

c
D = D

c

√
g�
eLo

= O(ε), (B1)

with c the velocity of the water waves. The above relation holds for a wave in shallow to
deep water. In our study, we focus on the shallow water regime where c = √

gH and we
assume that H and the dimensions of the cavity (L, Lo, h+) tend to 0 as fast as H when ε
vanishes. Defining ε = kH, we obtain that the geometry of the neck must satisfy√

�

e
= O(ε). (B2)

This means that � has to decrease faster than e when ε → 0 and the simplest scaling to
guarantee this is given by ke = O(ε) and k� = O(ε3). We thus expect that the fields have
variations associated with three scales, the macroscopic wavelength scale, the mesoscopic
scales being the typical scale of the dock and the microscopic scale associated with the
neck opening.

920 A22-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

45
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

SP
CI

 E
co

le
 s

up
ér

ie
ur

e 
de

 p
hy

si
qu

e 
et

 d
e 

ch
im

ie
 in

du
st

ri
el

le
s,

 o
n 

11
 Ja

n 
20

22
 a

t 1
2:

20
:4

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.450
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L.-P. Euvé and others

B.2. Non-dimensional formulation
We use a non-dimensional problem by setting t → ωt, x → kx, u → u/U0 and φ →
kφ/U0, with k = ω/

√
gH and U0 a characteristic velocity. The result consists in finding

the potential φ and the velocity field u = (u, v) such that (2.1)–(2.2a,b) read{
div u = 0, u = ∇φ,
v|z=0 = −ε∂ttφ, u · n|Γ = 0,

(B3)

where ε = ω
√

H/g � 1 is a small parameter.

B.3. The different regions and their matchings

B.3.1. The regions far from and near the resonator
(i) The macroscopic region far from the resonator

The macroscopic region corresponds to the region far from the resonator where the
evanescent field is negligible and the fields vary at the scale of the incident wavelength.
There, we rescale the vertical coordinate due to the shallowness hypothesis introducing
zm = z/ε and we expand the potential and the velocity as

φ = φ0(x, zm, t)+ εφ1(x, zm, t)+ · · · , u = u0(x, zm, t)+ εu1(x, zm, t)+ · · · ,
(B4a,b)

with ui = (ui, vi). In this region, the differential operators read

∇f = ∂xf ex + ε−1∂zm f ez, div f = ∂xfx + ε−1∂zm fz. (B5a,b)

(ii) The mesoscopic regions, near the resonator but far from its neck
The resonator has a characteristic size, apart of the neck, satisfying kh+ ∼ ε and kL ∼ ε.

Accordingly, we introduce the mesoscopic space variable (xm, zm) = (x/ε, z/ε). Near the
resonator and far from the neck, we distinguish two different mesoscopic regions. One is
an unbounded domain Ω̂m outside the resonator and the other is the bounded domain Ω̌m

of the resonator cavity (figure 11). Accordingly we consider the two asymptotic expansions{
φ = φ̂0

m(xm, zm, t)+ εφ̂1
m(xm, zm, t)+ · · · , u = û0

m(xm, zm, t)+ εû1
m(xm, zm, t)+ · · · ,

φ = φ̌0
m(xm, zm, t)+ εφ̌1

m(xm, zm, t)+ · · · , u = ǔ0
m(xm, zm, t)+ εǔ1

m(xm, zm, t)+ · · · ,
(B6)

with ûi
m = (ûi

m, v̂
i
m) and ǔi

m = (ǔi
m, v̌

i
m), and the connection between them will be obtained

through an asymptotic analysis in the vicinity of the neck. In these regions, the differential
operators read

∇f = ε−1∇m f , div f = ε−1divm f . (B7a,b)

(iii) Along the neck and at its ends
The neck is thin and long and this is accounted for by setting ke ∼ ε and k� ∼ ε3.

By zooming on the neck, we have thus to distinguish three different regions: inside the
neck i.e. far from its ends, near the top end and near the bottom end. We introduce
the microscopic space variables (xμ, zμ) = (x/ε3, z/ε3). Inside the neck, we define the
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Time domain modelling of HR for water waves

xm
zm

1

Lm

hm
+

hm
–

Lo,m

N̂

Ň

em

Ω̌m

Ω̂m

Figure 11. The two mesoscopic regions: Ω̂m being the unbounded region outside the cavity and Ω̌m the
bounded region within the cavity. The ends of the neck are reduced to the points N̂ and Ň at this scale. The
lengths are rescaled with H, hence dm = d/H = O(1), for d = L,Lo, h+, h−, e.

(a) (b) (c)

�μ

�μ

xμ
zμ

�μ

rμ

rμ

Figure 12. The three microscopic regions: (a) in the vicinity of the top of the neck, (b) in the vicinity of the
bottom of the neck and (c) within the neck far from its ends. The rescaled coordinates are Cartesian coordinates
(xμ, zμ) and polar coordinates rμ, and �μ = �/(ε2H). The velocity is radial and singular at both ends in (a,b).

expansions

φ = φ0
μ
(xμ, zm, t)+ εφ1

μ
(xμ, zm, t)+ · · · , u = ε−1u−1

μ
(xμ, zm, t)+ u0

μ
(xμ, zm, t)+ · · · ,

(B8a,b)

with ui
μ

= (ui
μ
, vi

μ
) and

∇f = ε−3∂xμ f ex + ε−1∂zm f ez, div f = ε−3∂xμ fx + ε−1∂zm fz. (B9a,b)

Near the top end and bottom end of the neck, we use{
φ = φ̂0

μ
(xμ, zμ, t)+ εφ̂1

μ
(xμ, zμ, t)+ · · · , u = ε−1û−1

μ
(xμ, zμ, t)+ û0

μ
(xμ, zμ, t)+ · · · ,

φ = φ̌0
μ
(xμ, zμ, t)+ εφ̌1

μ
(xμ, zμ, t)+ · · · , u = ε−1ǔ−1

μ
(xμ, zμ, t)+ ǔ0

μ
(xμ, zμ, t)+ · · · ,

(B10)

with ûi
μ

= (ûi
μ
, v̂i

μ
) and ǔi

μ
= (ǔi

μ
, v̌i

μ
) (figure 12), and

∇f = ε−3∇μf , div f = ε−3divμ f . (B11a,b)

Note that we start the expansions for the velocity at the order ε−1 to match the resonant
behaviour of the cavity (other choices would lead to inconsistencies).
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B.3.2. Matching conditions
(i) Macro-meso matching conditions

The matching conditions are obtained by matching the expansions (B4a,b) and (B6) in
an intermediate region where x = εxm → 0± and xm → ±∞, namely

φ0(x, zm, t)+ εφ1(x, zm, t)+ · · · ∼
x→0±,xm→±∞

φ̂0
m(xm, zm, t)+ εφ̂1

m(xm, zm, t)+ · · · .
(B12)

Using Taylor expansions of φ0(εxm, zm) for εxm → 0± provides the matching conditions at
the first two orders

lim
xm→±∞ φ̂

0
m = φ0|x=0±, lim

xm→±∞

(
φ̂1

m − xm∂xφ
0|x=0±

)
= φ1|x=0± . (B13a,b)

The same applies for the velocity, namely

lim
xm→±∞ û0

m = u0
x=0±, lim

xm→±∞

(
û1

m − xm∂xu0
x=0±

)
= u1

x=0± . (B14a,b)

(ii) Meso-micro matching conditions
Due to the possible singular behaviour of the fields at the ends of the neck, explicit

matching conditions cannot be derived a priori as simply as in the macro-meso case. This
has to be done on a case-by-case basis but the procedure stays the same. It consists in
matching the expansions (B6) and (B10) in intermediate regions near the points N̂ and Ň.
Introducing the mesoscopic polar coordinate (rm, t) and the microscopic polar coordinate
(rμ, t) with rμ = rm/ε

2, it consists of enforcing for the potentials

∀θ ∈ (0,π), φ̌0
m + εφ̌1

m + · · · ∼
rm→0

rμ→+∞
φ̌0
μ

+ εφ̌1
μ

+ · · · ,

∀θ ∈ (π, 2π), φ̂0
m + εφ̂1

m + · · · ∼
rm→0

rμ→+∞
φ̂0
μ

+ εφ̂1
μ

+ · · · ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B15)

as well as for the velocities

∀θ ∈ (0,π), ǔ0
m + εǔ1

m + · · · ∼
rm→0

rμ→+∞
ε−1ǔ−1

μ
+ ǔ0

μ
+ · · · ,

∀θ ∈ (π, 2π), û0
m + εû1

m + · · · ∼
rm→0

rμ→+∞
ε−1û−1

μ
+ û0

μ
+ · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B16)

(iii) Micro-matching conditions between the neck and its ends
Inside the neck, the expansions (B8a,b) have to match the expansions (B10) at its ends.

By using Taylor expansions near the ends of the neck with zm = ε2zμ − h+
m near Ň and

zm = ε2zμ − (h+
m + em) near N̂, we get for xμ ∈ (0, �μ)

i = 0, 1, lim
zμ→−∞ φ̌

i
μ

= φi
μ
|zm=−h+

m
, lim

zμ→+∞ φ̂
i
μ

= φi
μ
|zm=−(h+

m+em)
,

i = −1, 0, lim
zμ→−∞ ǔi

μ
= ui

μ
|zm=−h+

m
, lim

zμ→+∞ ûi
μ

= ui
μ
|zm=−(h+

m+em)
.

⎫⎬
⎭ (B17)
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Time domain modelling of HR for water waves

B.4. Effective equations far from the resonator
Far from the resonator, we derive asymptotically the shallow water equations at orders 0
and 1 which read

i = 0, 1, ∂xui(x, t)− ∂ttφ
i(x, t) = 0, ui = ∂xφ

i, (B18a–c)

where ui and φi do not depend on zm. To do so, we shall use (B4a,b) in (B3) along with
(B5a,b). At the dominant order ε−1 we get that ∂zmv

0 = 0, ∂zmφ
0 = 0. Hence, φ0 and v0

do not depend on zm and v0 = 0, as v0(x, 0) = 0. At the order ε0, we have

∂xu0 + ∂zmv
1 = 0, u0 = ∂xφ

0, (B19a,b)

which we integrate along zm using v1(x,−1, t) = 0 and v1(x, 0, t) = −∂ttφ
0(x, t) which

provides (B18a–c) for i = 0. At this order, we also have that φ1 does not depend on
zm as v0 = ∂zmφ

1 = 0. It follows that we have the same sequence of equations, with
∂xu1 + ∂zmv

2 = 0, u1 = ∂xφ
1, resulting in (B18a–c) for i = 1. At this stage, the missing

information is the transmission conditions near the origin where the resonator is located.

B.5. Effective transmission conditions through the resonator
We shall now derive the effective transmission conditions across the resonator at the first
two orders to complete the wave equation obtained in the previous part.

B.5.1. Continuity conditions at order 0
In the mesoscopic region Ω̂m outside the resonator, we use (B6) in (B3) along with
(B7a,b). We obtain at the order ε−1 that ∇mφ̂

0
m = 0, hence φ̂0

m is spatially homogeneous
in Ω̂m. Using the matching conditions (B13a,b), we deduce that the potential φ0(x, t) is
continuous at x = 0 with

φ̂0
m(t) = φ0(0±, t), or [[φ0]]0 ≡ φ0(0+, t)− φ0(0−, t) = 0. (B20a,b)

With D̂m = {xm ∈ (−∞, 0) ∪ (Lm,+∞), zm = 0}, we also have at this order

divm û0
m = 0, v̂0

m| D̂m
= 0, û0

m|
Γ̂

· n = 0, (B21a–c)

that we integrate over Ω̂m ∩ {(−x∗
m, x∗

m)× (−1, 0)} with x∗
m > Lm. As û0

m is regular at the
point N̂ = (0,−(h+

m + em)), we get

∫ 0

−1
û0

m(x
∗
m, zm, t) dzm −

∫ 0

−1
û0

m(−x∗
m, zm, t) dzm = 0. (B22)

Now passing to the limit when x∗
m → +∞ and using the matching conditions (B13a,b),

we get the continuity of the horizontal velocity

[[u0]]0 = 0. (B23)

Thus, from (B20a,b)–(B23), the resonator is not seen at the dominant order and we have
to go to the next order to capture its effect.
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B.5.2. Jump condition on the potential at order 1
At the next order, to get the transmission conditions on φ1, we have to solve the mesoscopic
problem on (φ̂1

m, û0
m) given by

divm û0
m = 0, û0

m = ∇mφ̂
1
m, v̂0

m|D̂m
= 0, û0

m|
Γ̂

· n = 0, lim
xm→±∞ û0

m → u0(0, t)ex.

(B24a–e)

The limits of û0
m for xm → ±∞ correspond to (B14a,b) using from § B.4 that u0(0, t) =

u0(0, t)ex. The solution of this problem is linear with respect to u0(0, t) hence we set

φ̂1
m(xm, t) = u0(0, t)P(xm)+ φ̄1(t), (B25)

with the elementary static field P(xm) given by


mP = 0, ∂zmP|D̂m
= 0, ∇mP|

Γ̂
· n = 0, lim

xm→±∞ ∇mP → ex, (B26a–d)

and φ̄1(t) is introduced as φ̂1
m is known up to a function of the time. The behaviours at

infinity of P(xm) read

P(xm) ∼
xm→−∞ xm, P(xm) ∼

xm→+∞ (xm − Lm)+ B, (B27a,b)

where B is a blockage coefficient independent of the macroscopic loading and depending
only on the external geometry of the resonator; it is the contribution of the dock
problem only. Now, recalling the macroscopic relation (B18a–c) and passing to the
limit in (B25), we get limxm→−∞(φ̂1

m − ∂xφ
0(0, t)xm) = φ̄1(t) and limxm→+∞(φ̂1

m −
∂xφ

0(0, t)xm) = φ̄1(t)+ (B − Lm)u0(0, t). In virtue of the matching conditions (B13a,b),
we deduce that

[[φ1]]0 = (B − Lm)u0(0, t). (B28)

B.5.3. Jump condition on the velocity at order 1
(i) Preliminaries

Contrary to û0
m which was assumed to be regular in the vicinity of N̂, û1

m is singular near
N̂ due to the neck, hence a specific treatment is required. Integrating as previously the
incompressibility equation divm û1

m = 0, over Ω̂m ∩ {(−x∗
m, x∗

m)× (−1, 0)} and taking into
account the boundary conditions û1

m · n = 0 on the rigid boundaries (excluding a vanishing
region near N̂) and v̂1

m(xm, zm = 0, t) = −∂ttφ̂
0
m(t) at the free surface for xm ∈ (−x∗

m, 0) and
for xm ∈ (Lm, x∗

m), we obtain

∫ 0

−1
û1

m|x∗
m dzm −

∫ 0

−1
û1

m|−x∗
m dzm − (2x∗

m − Lm)∂ttφ̂
0
m(t)−

∫ 2π

π

rmû1
m · er dt = 0. (B29)

Note that despite the singular behaviour of û1
m, the contour integral near N̂, has to be

finite. Knowing from (B18a–c) and (B20a,b) that ∂ttφ̂
0
m(t) = ∂ttφ

0(0, t) = ∂xu0(0, t), we
can apply the matching conditions on the velocities at order 1 in (B14a,b). Passing to the
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Time domain modelling of HR for water waves

limit when x∗
m → +∞ and when rm → 0 finally gives

[[u1]]0 = −Lm∂xu0(0, t)+ lim
rm→0

∫ 2π

π

rmû1
m(rm, t, t) · er dt. (B30)

While in the absence of a neck, û1
m is regular and the last term in (B30) vanishes; in the

present case, the finiteness of the contour integral in (B30) imposes that

û1
m ∼

rm→0

Â(t)
rm

er, −→ [[u1]]0 = −Lm∂xu0(0, t)+ πÂ(t). (B31)

The determination of Â(t) will be obtained from the matching with the neck region, see
forthcoming (B48).

(ii) Inside the resonant cavity Inside the cavity at the mesoscopic scale, we have at the
dominant order that

∇mφ̌
0
m = 0, −→ φ̌0

m(t) (B32)

is homogeneous inside the cavity. At the next order, the problem in φ̌1
m is given by

divm ǔ0
m = 0, ǔ0

m = ∇mφ̌
1
m, ǔ0

m|
Γ̂

· n = 0, v̌0
m(xm, 0, t) = 0, (B33a–d)

where ǔ0
m is assumed to be regular near Ň. Multiplying divm ǔ0

m = 0 by φ̌1
m, integrating by

parts over Ω̌m and using the Neumann boundary conditions on the whole contour of Ω̌m

gives
∫
Ω̌m

ǔ0
m · ǔ0

m dxm = 0. Therefore, we have that

ǔ0
m = 0, hence φ̌1

m(t) (B34)

is uniform inside the cavity. Going to the next order, we have

divm ǔ1
m = 0, ǔ1

m|
Γ̌

· n = 0, v̌1
m(xm, 0, t) = −∂ttφ̌

0
m(t), (B35a–c)

which we integrate over Ω̌m, excluding as previously a vanishing region near Ň. We obtain

−
∫ π

0
rmǔ1

m(rm, θ, t) · er dθ − Lo,m∂ttφ̌
0
m(t) = 0. (B36)

To accommodate the above equation, ǔ1
m must be singular near Ň with

ǔ1
m ∼

rm→0

Ǎ(t)
rm

er, Ǎ(t) = −Lo,m

π
∂ttφ̌

0
m(t). (B37a,b)

(iii) Matching conditions at the tips of the neck
We now analyse the behaviour in the microscopic regions at the top end and the bottom

ends of the neck. To do so, we use (B10) in (B3) along with (B11a,b). In both regions,
since the velocities start at the order −1, we have at the dominant orders that

i = 0, 1 ∇μφ̌
i
μ

= ∇μφ̂
i
μ

= 0, hence φ̌i
μ
(t), φ̂i

μ
(t) (B38)

are homogeneous in their respective microscopic regions. In virtue of the matching
conditions (B13a,b) and using (B20a,b), we deduce that

φ̂0
μ
(t) = φ̂0

m(t) = φ0(0, t). (B39)

Next, the incompressibility equations at the dominant order read

divμ ǔ−1
μ

= 0, divμ û−1
μ

= 0. (B40a,b)

The velocities at these microscopic scales have to match the velocities at the mesoscopic
scales as stated in (B16). With û1

m given by (B31) and ǔ1
m given by (B37a,b) and owing to
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rm = ε2rμ in (B16) we obtain

∀θ ∈ (0,π), ǔ−1
μ

∼
rμ→+∞

Ǎ(t)
rμ

er, ∀θ ∈ (π, 2π), û−1
μ

∼
rμ→+∞

Â(t)
rμ

er.

(B41a–d)
We can now integrate the incompressibility equations (B40a,b) over Ω̂μ and Ω̌μ. By
applying Neumann boundary conditions on the walls, using the asymptotic behaviours
(B41a–d) at infinity as well as the matching conditions (B10) with the neck, we get

lim
zμ→−∞

∫ �μ

0
v̌−1
μ
(xμ, zμ, t) dxμ = lim

rμ→+∞

∫ π

0
ǔ−1
μ

· er = πǍ(t),

lim
zμ→+∞

∫ �μ

0
v̂−1
μ
(xμ, zμ) dxμ = − lim

rμ→+∞

∫ 2π

π

û−1
μ

· er = −πÂ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B42)

(iv) Velocity profile inside the neck
To link the behaviours inside and outside the cavity, we have to analyse the behaviour in

the neck. To do so, we use (B8a,b) in (B3) along with (B9a,b). At the dominant orders we
have

∂xμφ
0
μ

= ∂xμφ
1
μ

= 0, hence φ0
μ
(zm, t), φ1

μ
(zm, t). (B43)

We also have that

∂xμu−1
μ

= ∂xμu0
μ

= 0, hence u−1
μ

= u0
μ

= 0, (B44)

because of the Neumann boundary conditions at xμ = 0, �μ. At the next order, we have
v−1
μ

= ∂xμφ
0
μ

from which we deduce that v−1
μ

does not depend on xμ. We also have
∂zmv

−1
μ

+ ∂xμu1
μ

= 0, that we integrate to get that ∂zmv
−1
μ

= ∂zmzmφ
0
μ

= 0 (the velocity is
constant and the potential is linear in the neck). Making use of the matching conditions
(B17) results in

φ0
μ
(−h+

m , t) = φ̌0
μ
(t) = φ̌0

m(t), φ0
μ
(−(h+

m + em), t) = φ̂0
μ
(t) = φ̂0

m(t) = φ0(0, t).
(B45a,b)

Since φ0
μ

is a linear function of zm, we deduce that

φ0
μ
(zm, t) = φ̌0

m(t)− φ0(0, t)
em

(zm + h+
m )+ φ̌0

m(t), v−1
μ
(t) = φ̌0

m(t)− φ0(0, t)
em

. (B46a,b)

Now, in virtue of (B42) and the matching condition (B17) between the velocities in the
neck and at its top end, we find that

∫ �μ
0 v−1

μ
(t) dxμ = πǍ, which simplifies given (B37a,b)

and (B46a,b) to

∂ttφ̌
0
m(t)+ �μ

emLo,m
φ̌0

m(t) = �μ

emLo,m
φ0(0, t). (B47)

Similarly, using (B42) and the matching condition (B17) between the velocities in the neck
and its bottom end, we get that

∫ �μ
0 v−1

μ
(t) dxμ = −πÂ, which given (B46a,b) simplifies to

πÂ = �μ

em
(φ0(0)− φ̌0

m) = Lo,m∂ttφ̌
0
m(t). (B48)

Coming back to (B31) we finally obtain the jump conditions on the velocity at order 1

[[u1]]0 = −Lm∂xu0(0, t)+ Lo,m∂ttφ̌
0
m(t). (B49)
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B.6. Final non-dimensional effective problem
The final effective problem is obtained by reconstructing a unique problem from the jump
conditions (B20a,b)–(B23) at order 0 and (B28)–(B49) at order 1 as well as the shallow
water equation (B18a–c). This unique problem is formulated across an enlarged interface
which accounts for the finite thickness of the resonator (and which has vanished in the
asymptotic analysis). We introduce the following potential and velocity fields

φ(x, t) = φ0(x, t)+ εφ1(x, t), u(x, t) = u0(x, t)+ εu1(x, t). (B50a,b)

Outside the region of the resonant dock delimited by x ∈ (0, kL), we have

∂xu − ∂ttφ = 0, u = ∂xφ, (B51a,b)

which is the non-dimensional form of the shallow water equation in (2.3). The region of
the resonant obstacle is replaced by jump conditions on the potential and velocity fields
written between x = 0 and x = kL. For that sake, we introduce [[f ]] = f (kL)− f (0) and
f̄ = (f (kL)+ f (0))/2 with kL = O(ε). The Taylor expansions of φ0 and u0 at x = kL read

φ0(kL, t) = φ0(0+, t)+ kL
∂φ0

∂x
(kL, t), u0(kL, t) = u0(0+)+ kL

∂u0

∂x
(kL, t), (B52a,b)

up to O(ε2). Gathering the jump conditions (B20a,b) and (B28) on the potential and (B23)
and (B49) for the velocity, we finally obtain

[[φ]] = kHB ∂xφ, [[u]] = kLo∂ttφ̌(t), (B53a,b)

which is the non-dimensional form of the transmission conditions in (2.3). The
time-dependent function φ̌ is the uniform potential inside the cavity which satisfies an
oscillator equation driven by the average value of the potential outside the cavity. From
(B47), with �μ = g�/ω2H2 and (em, Lo,m) = (e/H, Lo/H), it takes the form (equivalent up
to O(ε))

ω2∂ttφ̌(t)+ g�
eLo

φ̌(t) = g�
eLo

φ̄(t), (B54)

which is the non-dimensional form of (2.11) along with (2.10).

Appendix C. Multimodal method

The multimodal method uses matchings of the solution written in the seven domains
shown in figure 13. The procedure is classic and we give here the main steps that we
have used. In each domain, the solution is expanded on a basis of transverse functions
(along z) which satisfy exactly two boundary conditions, the dynamical condition at the
free surface at z = 0 (regions 1, 3, 4, 6 and 7) and Neumann boundary condition on rigid
parts at z = −h+ (regions 3 and 6), z = −H + h− (regions 2 and 5), z = −H (regions 1,
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2, 4, 5 and 7). Specifically we consider the following expansions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(1)(x, z) = eiK1xφ1(z)+
N∑

n=1

Rne−iKnxφn(z),

ϕ(2)(x, z) =
N−∑
n=1

(
A+

n e−anx + A−
n ean(x−x2)

)
ψn(z)+ A0x + a0,

ϕ(3)(x, z) =
N+∑
n=1

Bn
cos kn(x − x1)

cos kn(x2 − x1)
ϕn(z),

ϕ(4)(x, z) =
N∑

n=1

(
C+

n eiKn(x−x2) + C−
n e−iKn(x−x3)

)
φn(z),

ϕ(5)(x, z) =
N−∑
n=1

(
D+

n e−an(x−x3) + D−
n ean(x−x4)

)
ψn(z)+ D0(x − x3)+ d0,

ϕ(6)(x, z) =
N+∑
n=1

En
cos kn(x − x4)

cos kn(x4 − x3)
ϕn(z),

ϕ(7)(x, z) =
N∑

n=1

TneiKn(x−L) φn(z).

(C1)

In the above expansions, the series are truncated as is done in the numerics. The (kn,Kn)

are the roots of the dispersion relation ω2 = gk tanh kh for (h+,H) (with (k1,K1) the
real roots and (kn,Kn)n>1 the imaginary roots) and an = nπ/h−. The set of transverse
eigenfunctions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn(z) = Nn cosh(Kn(z + H)), Nn =
√

sinh(2KnH)
4Kn

+ H
2
,

ϕn(z) = nn cosh(kn(z + h+)), nn =
√

sinh(2knh+)
4kn

+ h+

2
,

ψn(z) =
√

2
h− cos(an(z + H − h−)),

(C2)

which are orthogonal and normalized considering the scalar products

( f , g) =
∫ 0

−H
f (z)g(z) dz, ( f , g)+ =

∫ 0

−h+
f (z)g(z) dz,

( f , g)− =
∫ −H+h−

−H
f (z)g(z) dz, (C3a–c)

namely, we have (φn, φm) = δmn, (ϕn, ϕm)
+ = δmn and (ψn, ψm)

− = δmn. The solution is
obtained by matching the potentials and their derivatives u = ∂xϕ at the junction between
two regions. These matchings read:
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h−

H

x

h+

z
0

1

2

3

4

5

6

7

Lx1 x2 x3 x4

ϕinc

Figure 13. The seven domains used in the multimodal method.

Matchings at x = 0

m = 1, . . .N−, (ϕ
(1)
|x=0, ψm)

− = (ϕ
(2)
|x=0, ψm)

−, (ϕ
(1)
|x=0, 1)− = (ϕ

(2)
|x=0, 1)−,

m = 1, . . .N, (u(1)|x=0, φm) = (u(2)|x=0, φm)
−.

⎫⎬
⎭ (C4)

Matchings at x = x2

m = 1, . . .N−, (ϕ
(2)
|x2
, ψm)

− = (ϕ
(4)
|x2
, ψm)

−, (ϕ
(2)
|x2
, 1)− = (ϕ

(4)
|x2
, 1)−,

m = 1, . . .N+, (ϕ
(3)
|x2
, ϕm)

+ = (ϕ
(4)
|x2
, ϕm)

+,

m = 1, . . .N, (u(2)|x2
, φm)

− + (u(3)|x2
, φm)

+ = (u(4)|x2
, φm).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C5)

Matchings at x = x3

m = 1, . . .N−, (ϕ
(4)
|x3
, ψm)

− = (ϕ
(5)
|x3
, ψm)

−, (ϕ
(4)
|x3
, 1)− = (ϕ

(5)
|x3
, 1)−,

m = 1, . . .N+, (ϕ
(4)
|x3
, ϕm)

+ = (ϕ
(6)
|x3
, ϕm)

+,

m = 1, . . .N, (u(4)|x3
, φm) = (u(5)|x3

, φm)
− + (u(6)|x3

, φm)
+.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C6)
Matchings at x = L

m = 1, . . .N−, (ϕ
(5)
|L , ψm)

− = (ϕ
(7)
|x=0, ψm)

−, (ϕ
(5)
|L , 1)− = (ϕ

(7)
|L , 1)−,

m = 1, . . .N, (u(5)|L , φm)
− = (u(7)|L , φm).

⎫⎬
⎭ (C7)

These matchings provide (4N + 2N+ + 4N− + 4) relations needed to solve the system
which is set on the (4N + 2N+ + 4N− + 4) unknown coefficients: R, C±, T (4N), A±, A0,
a0, D±, D0, d0 (4N− + 4) and B, E (2N+), where R is the column vector with (Rn)n=1,...,N
components (the same for the other vectors). They imply two matrices M± and a column
vector V whose components are

M−
mn = (ψm, φn)

−, M+
mn = (ϕm, φn)

+, Vm = (φm, 1)−. (C8a–c)
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The matchings can be written in a matrix form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M−R − (
A+ + eaA−) = s1,

tV R − h−a0 = s0,

iKR − a tM− (
A+ − eaA−) + V A0 = s3,(

eaA+ + A−) − M− (
C+ + eKC−) = 0, h− (x2A0 + a0)− tV

(
C+ + eKC−) = 0,

−B + M+ (
C+ + eKC−) = 0,

a tM− (
eaA+ − A−) − V A0 + T k

tM+B + iK
(
C+ − eKC−) = 0,

M− (
eKC+ + C−) − (

D+ + eaD−) = 0, t(eKV )C+ + tV C− − h−d0 = 0,
M+ (

eKC+ + C−) − E = 0,
iK

(
eKC+ − C−) + a tM− (

D+ − eaD−) − V D0 − T k
tM+E = 0,

eaD+ + D− − M−T = 0, tV T − h−x2D0 − d0 = 0,
a tM− (

eaD+ − D−) − V D0 + iKT = 0,
(C9)

where a = diag(an), ea = diag(e−anx2), K = diag(Kn), eK = diag(eiKn(x3−x2)) and T k =
diag(kn tan(kn(x2 − x1))) are diagonal matrices and where the source terms read s1,m =
−Mm1, s0 = −V1 and s3,m = −iK1δm1. The above system can be then inverted which
provide the solution in each domain, and the scattering coefficients.
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