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ABSTRACT

We report on experiments of perfect absorption for surface gravity waves impinging a wall structured by a subwavelength
resonator. By tuning the geometry of the resonator, a balance is achieved between the radiation damping and the intrinsic
viscous damping, resulting in perfect absorption by critical coupling. Besides, it is shown that the resistance of the resonator,
hence the intrinsic damping, can be controlled by the wave amplitude, which provides a way for perfect absorption tuned by
nonlinear mechanisms. The perfect absorber that we propose, without moving parts or added material, is simple and robust and
presents a deeply subwavelength ratio wavelength/thickness of ’ 18.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5075541

Waves are generically absorbed when they interact with a
resonator close to the resonance frequency. To increase the
absorption for scattering problems, a balance attained between
radiation damping and intrinsic damping by critical coupling is a
useful idea. Indeed, a resonator coupled to an infinite domain
undergoes radiation damping1,2 even in the absence of intrinsic
losses that would be present for a closed isolated resonator
(e.g., viscous losses). When the balance is realized, perfect
absorption is obtained: the incident wave does not generate any
scattered wave. This concept has been already applied in the
field of absorption in electromagnetism3–9 and in acoustics10–16

for instance.

In the context of water waves, devices able to absorb or to
extract the energy from sea waves have been foreseen for a long
time.2 Primary wave-energy devices consisted in oscillating
floating17,18 or submerged bodies;19,20 for a review, see Refs. 21
and 22. The need of the reduction of reflection of waves in har-
bours and basins has also attracted interest.23,24 More recently,
modern devices have been sought considering the opportunity
to combine them with existing breakwaters on the coast (see,
e.g., Ref. 25). In most of the cases, the mechanism of energy
absorption relies on resonances.

In this work, total absorption is obtained by choosing a sim-
ple resonator with a tunable geometry which allows us to cover
a large range of radiation damping. In order to obtain critical
coupling, the geometry of the resonator is tuned until the right
balance between the radiation damping and the inherent vis-
cous losses is achieved. Besides, we show that we can take
advantage of the wave nonlinearities, which is the rule rather
than the exception for sea waves, to tune the absorption toward
the critical coupling.

The resonator that we consider is composed of a small
open cavity of depth d at the extremity of a channel of width L
(Fig. 1). A gate of width e delimits the open cavity connected to
the channel through a thin guide corresponding to the resona-
tor neck with an opening length s. The mechanism of the reso-
nator is hybrid between a quarter-wavelength and a Helmholtz
resonator. By varying the opening s, the radiation damping of
the resonator will change a lot: for s¼L, it is totally open to leak-
age, and for s! 0, it will go to a closed resonator without leak-
age. Since the bathymetry is flat, with a finite depth H, the
surface elevation g satisfies the Helmholtz equation

Dgþ k2g ¼ 0; (1)
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in which for a given frequency x (harmonic regime e–ixt), the
wavenumber is given by the dispersion relation of water waves

x2 ¼ g k tanh kH; (2)

with g the gravity and H the water depth. In the following, we
will be working in the low frequency regime, with kL < p, where
only the planar mode can propagate in the channel. An incident
wave impinges on the resonator which is at x¼0 such that the
total wave in the channel can bewritten in the form

gðxÞ ¼ aðeikx þ Re�ikxÞ; x < 0; (3)

with a the complex amplitude of the incident wave at x¼0 and
where R is the reflection coefficient.

We first consider the lossless case, and then, close to the
resonance frequency, R can be expressed as

R ¼ k� kR � iar
k� kR þ iar

; (4)

where kR� iar corresponds to the complex resonance frequency
of the resonator26 and kR and ar encapsulate the real resonance
frequency and the radiative damping, respectively. This complex

resonance frequency has been computed numerically [solving
Eq. (1) with the outgoing boundary condition with the pdetool
Finite Element Method toolbox of Matlab] as a function of the
resonator opening s/L; the results are shown in Fig. 2. We can
observe that ar spans a broad range of values, and it is thus con-
firmed that the chosen simple resonator offers a wide range of
radiation damping. It is an important aspect because it means
that it is a factor that we will be able to tune easily.

Then, a good approximation to take into account the intrin-
sic loss in the cavity can be obtained by simply shifting the
numerator and the denominator by a positive viscous damping
factor av (as if k! kþ iav)

R ¼ k� kR � iðar � avÞ
k� kR þ iðar þ avÞ

: (5)

We shall see that the above expressions (2) and (5) contain all the
necessary terms to describe the critical coupling in our experi-
ments. In every case, the point will be to try to obtain ar¼ av
to get R(k ¼ kR) ¼ 0, the total absorption at the resonance
frequency.

The water depth is set to H¼ 5cm, and the channel is
L¼6.2cm large and 1 m long. The dimensions of the resonator

FIG. 1. Experimental setup of the subwavelength resonator absorber for water
waves in a channel. (a) 3-dimensional scheme. (b) Top view of the end part of the
channel with the resonator. (c) Typical surface elevation wave field measured
experimentally in the channel with the FTP technique.

FIG. 2. Numerically computed complex resonances: dimensionless real part kRd
(filled blue) and imaginary part ard (empty red) of the complex resonance frequency
as a function of the opening of the resonator s/L. The inset shows the shape of the
absolute value of the elevation jgj at resonance frequency for s/L¼ 0.11.
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are d¼ e¼ 1 cm, and variable opening s is from 0.3 to 3cm.
Waves are generated by a piston-type wavemaker driven by a
linear motor in the range f 2 (1, 3.5) Hz with a step of 0.01Hz, and
their amplitudes a are controlled precisely from 0.2mm to 5mm
with a step of 0.1mm. In this frequency range, only the plane
wave propagates [k 2 (10, 45) m�1, whence kL < p]. The fields of
surface elevation gT (x, y, t) are measured using the optical
Fourier Transform Profilometry (FTP).27–29 Sinusoidal fringes are
projected by a digital projector over an area of 72� 5.7 cm2. The
images of the free surface are collected by a camera, allowing
for a spatial resolution given by the size of the projected pixel of
0.7mm in both directions and a temporal resolution of 50 fps
given by the acquisition frequency of the camera. The record
duration of 16 s covers at least 20 periods for the lowest forcing
frequency. From these space-time resolved measurements of
the surface elevation gT, we extract the linear mode from a tem-
poral Fourier decomposition

gðx; yÞ ¼ 1
tf

ðtf
0

gTðx; y; tÞeixtdt; (6)

wherex is the forcing frequency and tf¼ 2np/x with n the inte-
ger. This allows us to quantify the nonlinearity of the waves and
to calculate the reflection coefficient R, far enough from the
resonator (about 4cm in practice) by using a fit of Eq. (3).
Eventually, the signal-to-noise ratio is reduced by averaging
g(x, y) over the transverse direction y after the fit is performed
to get (a, R, k). Note that the typical measured field reported in
Fig. 1 shows that g is indeed independent of y.

To begin with, we consider the linear regime for water
waves and play with the opening s of the resonator to modify
the critical coupling, trying to push ar towards av in (5). In our
experiments, the linear regime corresponds to wave amplitude
a � 0.5mm, where we found the nonlinearities to be weak and
where our measurement technique is accurate. Figure 3 reports
the measured reflectivity jRj2 for 4 values of s/L from 0.06 to
0.22. In each case, the reflectivity is smaller than unity because
of the viscous losses, and it has a minimum at the resonance fre-
quency, in rough agreement with (5). As can be seen, this reso-
nance frequency is controlled by the neck opening s, resulting
in the shift to higher frequencies when increasing s, in agree-
ment with the numerical results in Fig. 2.

More interestingly, the minimum in the reflectivity jRminj2 is
impacted by the value of the opening s: this is what we use to
achieve the critical coupling with zero reflectivity. To reach the
total absorption, we perform a series of experiments varying s
with a spacing of 1mm and collect Rmin. The result is reported
in Fig. 4. The critical coupling is obtained at the minimum for
s=L ’ 0:11 for kd ’ 0:17, corresponding to a subwavelength ratio
k=ðdþ eÞ ’ 18. The low reflection is further illustrated in the
insets where we report the measured patterns of jgðx; yÞj for
jRminj ’ 0:5 at s/L¼0.48 and for jRminj ’ 2:10�2 at s/L¼0.11.

To interpret the findings of Fig. 4, it is sufficient to come
back to (5). Adopting a representation of R in the complex map
of k, a zero R appears at some distance of the real axis. In Fig. 5,
the plot reports a typical case for the highest s/L value (high

leakage); in this case, the radiative damping is higher than the
viscous damping. Next, decreasing s/L makes the radiative
damping decrease until it becomes balanced with the viscous
damping (yellow point realizing the critical damping). Eventually,
decreasing further the radiative damping moves the zero jRj in
the lower half plane.

It has been shown that water waves interacting with
obstacles in the nonlinear regime experience an effective

FIG. 3. Experimentally measured reflection jRj2 against kd in the linear regime for
different radiative damping dictated by the neck opening s/L of the resonator. The
corresponding resonance frequencies kRd computed numerically for the lossless
case and displayed in Fig. 2 are kRd ¼ 0.15, 0.18, 0.20, and 0.22 for s/L¼ 0.6,
0.11, 0.15, and 0.22.

FIG. 4. Critical coupling in the linear regime—minimum reflection jRminj2 against
normalized opening s/L, with critical coupling realized at s/L¼ 0.11. The insets
show the measured pattern of jgðx; yÞj in a case of low absorption (revealing inter-
ferences between the incident and reflected waves) and in a case of high absorp-
tion (with almost constant modulus demonstrating no reflection).
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damping higher than that predicted in the linear regime (see,
e.g., Ref. 31). This is attributable to the energy taken by struc-
tures generated in the fluid, and the stronger the nonlinearities,
the higher the effective damping within31 a linear dependence.32

Hence, it is possible to increase the internal damping and to bal-
ance it with the radiative damping by increasing the amplitude
of the waves. In other words, for the family of resonators which
are strongly coupled to the exterior, it is possible to realize per-
fect absorption tuned by the nonlinearities. This critical coupling
by nonlinear losses has been demonstrated recently for acoustic
waves.33

We consider resonators with relative openings s/L¼0.06,
s/L¼0.22, and s/L¼0.48.We measure the reflectivity curves in
the linear regime (a¼0.5mm) and in the non-linear regime
(with a¼ 2mm for s/L¼0.22 and a¼ 4mm for s/L¼0.06 and
0.48); the results are reported in Fig. 6. For s/L¼0.06, the
reflectivity increases from the linear to the non-linear regime.
This is expected since we already know from the study in the
linear regime that for such a weakly coupled resonator, the

radiative damping was already weaker than the viscous damping
in the linear regime (see Fig. 5); hence, increasing the latter
makes things worse. Reversely, for s/L¼0.22 and 0.48, the
reflectivity reduces,which is also shown in Fig. 5.

To go further, we modify with the constant step the wave
amplitude in the nonlinear regime up to a¼ 4.5mm (the wave-
maker is controlled precisely with an amplitude step of 0.1mm).
We report jRj2 as a function of the wave amplitude a in Fig. 7.
This representation complements that of Fig. 6 at Rmin (kd ¼
0.14, 0.21, and 0.3, respectively). Expectedly, for the resonator
weakly coupled with the exterior (s/L¼0.06), the reflectivity
increases with the nonlinearities since the system gets away
from the critical coupling. Next, both resonators s/L¼0.22 and
0.48 are sufficiently coupled to the exterior, and hence, increas-
ing the non-linearities makes these systems approach the criti-
cal coupling. However, the critical coupling is reached only for
the resonator at s/L¼0.22. For s/L¼0.48, we see that we
should increase further the nonlinearities to reach the critical
coupling for that large opening. Eventually, the scenario
described above is illustrated further in Fig. 8 where the trajec-
tory of the zero jRj in the complex k-plane is illustrated in 3
cases when the amplitude of the wave increases. In the case of
critical coupling assisted by nonlinearity (s/L¼0.22), the zero
jRj is able to cross the real axis of frequency.

In this work, we have demonstrated experimentally that we
can obtain perfect wave absorption by tuning the geometry of a
resonator and consequently the radiation damping generated
by this device. In addition, we demonstrated that the perfect
absorption can be reached by tuning the incident wave ampli-
tude (non-linearity), which varies proportionally the intrinsic
damping of the system. In this situation, when there is an excess
of radiation damping (wide entrance to the resonator), by
increasing the incident wave amplitude, we obtain broadband
absorption due to the smaller quality factor of the resonance in

FIG. 5. Colormap of jRj (log-scale) in the complex k-plane for s/L¼ 0.2. The white
plain line shows the trajectory of the zero reflection varying s/L for a fixed viscous
damping av (that of the linear regime) (see Ref. 30 for details). The critical coupling
is achieved when the trajectory crosses the real axis (yellow point at s/L � 0.1).
The black dashed line corresponds to the real frequencies of the experiments.

FIG. 6. Reflection coefficient jRj2 as a function of the nondimensional wavenumber
kd for different entrance widths s/L and incident wave amplitude. Dashed line: linear
regime and circles: nonlinear regime.

FIG. 7. Reflection coefficient as a function of the incident wave amplitude for differ-
ent entrance widths s/L.
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this geometry. Note that, by using mirror symmetry, our design
can be seen as a periodic array of resonators which may be used
as an absorbing wall. A natural continuation of this work would
be to apply it to an energy conversion system. In this case, in
order to maximize the energy conversion, we have to minimize
the intrinsic losses of the system (water viscous losses), keeping
most of the mechanical resistance coming from the conversion
device.
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