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12.1 Introduction

Time reversal (TR) of acoustic, elastic, and electromagnetic waves
has been extensively studied in recent years [1, 2]. In a standard
TR experiment, waves generated by a source are first measured
by an array of antennas positioned around the source and then
time-reversed and simultaneously rebroadcasted by the same
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antenna array. Due to the time invariance of the wave process, the
reemitted energy will focus back on the original source, whatever
the complexity of the propagation medium [3, 4]. The present
paper concentrates on the application of TR to the focusing and
manipulation of water waves both in linear and nonlinear regimes.
The problem is not as trivial as that with acoustic waves. Let us cite
Richard Feynman [5], “Water waves that are easily seen by everyone
and which are usually used as an example of waves in elementary
courses are the worst possible example, because they are in no
respects like sound and light; they have all the complications that
waves can have.” Water waves are scalar waves; that refers to the
evolution of small perturbation of the height of fluid under the
action of gravity and surface tension. They are dispersive by nature,
nonlinear when generated with standard wave makers, and they
experience strong damping at the scale of laboratory experiments.
The effect of dispersion on the TR process has already been studied
in TR experiments for guided elastic waves [6, 7]; these waves are
dispersionless in free space, and the dispersion is due only to the
reflection on the boundaries of the waveguide. In the case of water
waves, the dispersion is intrinsic but preserves the TR invariance
(obviously, not taking the damping into account). The effect of
the nonlinearities has been experimentally studied in Ref. [8] for
acoustic waves where it has been shown that the TR invariance is
preserved as long as nonlinearities do not create dissipation, that
is, as long as the propagation distance is smaller than the shock
distance. In the case of water waves, the effect of nonlinearities
has to be treated. The evolution dynamics in time and space of
nonlinear wave trains in deep water can be modeled using the
focusing nonlinear Schrödinger equation (NLSE). We will show
the implication of the TR invariance on the NLSE and we will
demonstrate a way to experimentally focus, both in time and space,
rogue waves using the principles of TR mirrors.

12.2 Surface Gravity Water Waves

In this chapter the mathematical and physical preliminaries on
water waves are introduced. It relies on the many excellent
monographs that exist on the subject, see for instance [9–14].
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Figure 12.1 Water waves with elevation perturbation η around z = 0 and
bottom at z = −h(x , y).

We consider the propagation of water waves with local depth
h(x , y) for a fluid at rest (Fig. 12.1). We start with the incompressible
flow assumption. There are two criteria to be satisfied to assume
incompressibility: low Mach number and a timescale associated
to the flow much smaller than the sound timescale. The first is
obviously highly justified in the context of water waves, since the
velocity of the fluid is much smaller than the speed of sound in
water csound ≃ 1500 m/s. The timescale associated to water wave
propagation scales as the inverse of the wave speed cw, so that the
second condition reads cw/csound ≪ 1; as we will see later cw ≤

√
gh

with g the gravity constant, which tell us that it is sufficient to have
h < 200 km to assume incompressibility, which is evidently always
verified [9].

For incompressible flows, Navier–Stokes equations take the form

⎧
⎨

⎩

∂u
∂t

+ u∇u = − 1
ρ

∇ P + g + ν%u,

∇u = 0,
(12.1)

where ν = µ/ρ is the kinematic viscosity. Here, we also assume a
small effect of the viscosity. This means that we neglect the condition
of no slip at the bottom z = −h and that we neglect the shear stress
at the free surface z = η. These boundary layer effects would be a
correction responsible of the wave damping [9, 10].
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Next, introducing the vorticity ω = ∇ × u, we get the Euler
equation

⎧
⎪⎨

⎪⎩

∂u
∂t

+ ∇
(

u2

2

)
− u × ω = − 1

ρ
∇ P + g + ν%u,

∇u = 0,
(12.2)

If we assume that the flow is initially irrotational ω(t = 0) = 0,
Kelvin’s theorem ensures that the flow remains irrotational for
subsequent time. This allows to define a velocity potential φ(x, t)
such that

u = ∇φ . (12.3)

Euler equations simplify into
⎧
⎪⎨

⎪⎩
∇

(
∂φ

∂t
+ u2

2
+ P

ρ
+ gz

)
= 0,

∇u = %φ = 0.

(12.4)

The first equation in Eq. 12.4 leads to the Bernoulli equation

∂φ

∂t
+ u2

2
+ P

ρ
+ gz = F (t) (12.5)

Next, because only the gradient of φ has a physical meaning, it can
be shifted by any function of time. Thus, applying Eq. 12.5 at the free
surface and the shift φ → φ + P0 t/ρ −

∫
dt F (t), with P0 the

ambient atmospheric pressure, we get

∂φ

∂t
+ u2

2
+ gη = 0, at z = η. (12.6)

Two other boundary conditions have to be accounted for. The first is
at the free surface z = η and it links the motion of the free surface
to the velocity of the fluid. To do this, we use the principle that
“what happens at the free surface stays at the free surface.” More
precisely, the free surface F (x, t) = z − η(x , y, t) = 0 is assumed
to be a material surface, yielding (∂t + (u∇)) F = 0. Then, using
(∂t + (u∇)) z = vz = ∂zφ, we obtain

∂zφ = ∂tη + ∂xφ ∂xη + ∂yφ ∂yη, at z = η. (12.7)

The boundary condition at the bottom is the most straightforward to
obtain. Since we neglect the viscous boundary layer, it simply states
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that there is no normal velocity (nonpenetrable condition)

n × ∇φ = 0, at z = −h, (12.8)

with n the vector normal to the bottom z = −h.
Eventually, the problem to be solved is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

%φ = 0, in the bulk,

∂tφ + u2

2
+ gη = 0, at z = η,

∂zφ = ∂tη + ∂xφ ∂xη + ∂yφ ∂yη, at z = η,

n × ∇φ = 0, at z = −h(x , y).

(12.9)

12.2.1 Linear Approximation
Here, we denote k = 2π/λ with λ the typical wavelength of the
water waves, a the typical wave amplitude and H the typical depth
scale. Linear approximation is submitted to the condition of small
generalized Ursell number [11]

Ur = ka
tanh(kh)3 ≪ 1. (12.10)

In the shallow water approximation, kh ≪ 1, it becomes the Ursell
number, and in the deep water approximation, kh ≫ 1, it becomes
simply the sea slope or steepness ka. Below, we present the water
wave equations for transient behaviors (time domain) and for forced
behaviors (harmonic regime in the frequency domain).

12.2.1.1 Equations in the time domain

For transient behaviors we keep the time differentiation. Due to
linear approximation, the system (12.9) is simplified into

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

%φ = 0, in the bulk,

∂tφ + gη = 0, at z = 0,

∂zφ = ∂tη, at z = 0,

n × ∇φ = 0, at z = −h(x , y),

(12.11)
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where the explicit nonlinear terms have been suppressed and where
the boundary condition at z = η has been linearized to z = 0. This
system can be arranged in terms of φ only

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

%φ = 0, in the bulk,

∂ttφ + g∂zφ = 0, at z = 0,

n × ∇φ = 0, at z = −h(x , y).

(12.12)

12.2.1.2 Harmonic regime and flat bottom

In the harmonic regime, the time dependence is written exp (− i ωt)
and it will be omitted in the following equation. For a flat bottom, the
depth is a constant h(x , y) = h, and the boundary condition at the
bottom become ∂zφ = 0, so that the system (12.13) becomes⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

%φ = 0, in the bulk,

∂zφ = ω2

g
φ , at z = 0,

∂zφ = 0, at z = −h.

(12.13)

In this simple case, we can look for a modal solution in the form
φ(x , y, z) = exp (i kx) f (z), where x denotes now the horizontal
position vector x = (x , y). In what follows, we consider a 1D
propagation, and the function f is found to satisfy

f ′′ − k2 f = 0, with f ′(−h) = 0, and f ′(0) = ω2

g
f (0). (12.14)

The dispersion relation than comes from this eigenvalue problem is

ω2 = gk tanh kh. (12.15)

The associated eigenfunctions are of the form f (z) = cosh k(z + h).
For a given frequency, the dispersion relation has one real solution
associated to propagating surface waves and an infinity of imaginary
solutions associated to evanescent waves.

Deep-water waves are characterized by having small wave-
lengths compared to the water depth, that is, kh ≫ 1. Since for
this case tanh kh ≈ 1, the linear dispersion relation for deep-water
waves is

ω =
√

gk. (12.16)
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Hence, the phase velocity of the waves is

cpd = ω

k
=

√
g
k

, (12.17)

while the regular surface elevation of amplitude a, a wave frequency
of ω, and a wave number of k is determined by

η (x , t) = a cos (kx − ωt) . (12.18)

Moreover, slowly modulated deep-water periodic-wave train en-
velopes propagate with the group velocity

cg = d ω

d k
= 1

2

√
g
k

= ω

2k
= 1

2
cpd. (12.19)

For the deep-water case, it is possible to approximate the
evolution of linear wave packets within the framework of envelope
evolution equation. The latter can be derived heuristically by
expanding the dispersion relation (Eq. 12.16) about k = k0 [15, 16]

ω (k) = ω(k0)+
(

∂ω

∂k

)
(k − k0)+ 1

2
(k − k0)2

(
∂2ω

∂k2

) ∣∣∣
k=k0

. (12.20)

Now, we define the slowly varying wave number and wave frequency
to be K := k − k0 and ) = ω − ω0, respectively. Thus, Eq. 12.20
becomes

) −
(

∂ω

∂k

)
K − 1

2
K 2

(
∂2ω

∂k2

) ∣∣∣
k=k0

= 0. (12.21)

Applying the Fourier transform gives

E (K , )) = F [E (x , t)] =
∫ +∞

−∞
E [x , t] exp [i ()t − K x)] d x d t,

(12.22)
while the inverse Fourier transform provides

E (x , t) = F−1 [E (K , ))]

= 1
(2π)2

∫ +∞

−∞
E [K , )] exp [− i ()t − K x)] d K d ),

(12.23)

It is straightforward to verify from Eqs. 12.22 and 12.23 that

E x = i KF−1 [E (K , ))] ; Et = − i )F−1 [E (K , ))] ; (12.24)
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Applying the operator (Eq. 12.21) on the envelope function E and
using the derivative expression (Eq. 12.24), we obtain its linear
evolution dynamics in space and time

− i
(

Et + ω

2k
E x

)
+ ω

8k2 E xx = 0. (12.25)

Equation 12.25 is also referred to as the linear Schödinger equation.
For a given linear solution of Eq. 12.25, the corresponding surface
elevation to first order of approximation is determined by

η(x , t) = Re (E (x , t) · exp [i (kx − ωt)]) . (12.26)

For shallow-water waves, the wavelength is large compared with
the water depth. Therefore, kh ≪ 1. Hence, tanh kh ≈ kh, which
means that the dispersion relation for shallow-water waves is

ω =
√

gk2h. (12.27)

Then, the phase velocity is

cps = ω

k
=

√
gh. (12.28)

Since shallow-water waves are nondispersive, the group velocity is
equal to the phase velocity.

Whatever the depth (deep water, shallow water, or intermediate
depth) the phase velocity is

cps = ω

k
=

√
gh

√
tanh kh

kh
. (12.29)

Then, since tanh a ≤ a, it shows that the shallow-water expression
of the phase velocity is a maximum, in the sense that we always have

cps ≤
√

gh. (12.30)

12.2.1.3 2D equation in the harmonic regime for a flat bottom

The vertical mode that we have defined previously is useful to
obtain a 2D equation for water waves, analogous to the Helmholtz
2D equation for acoustic waves. We know from (12.13) that the
equation for the potential in the bulk is

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (12.31)

D
ow

nl
oa

de
d 

by
 [R

ye
rs

on
 U

ni
ve

rs
ity

] a
t 2

1:
47

 0
1 

D
ec

em
be

r 2
01

6 



August 1, 2016 15:7 PSP Book - 9in x 6in 12-Mohamed-Farhat-c12

Surface Gravity Water Waves 409

Thus, for a geometry that is separable in (x , y) and z, it is possible to
decompose the potential φ with the vertical mode f (z) by writing

φ(x , y, z) = f (z)*(x , y).
Then, from the previous equation, we obtain

∂2*

∂x2 + ∂2*

∂y2 + k2* = 0. (12.32)

This is the 2D Helmholtz equation and it is exact—in the linear
regime—for separable geometries, that is, with a flat bottom and
lateral vertical walls. The boundary conditions at these vertical walls
correspond to vanishing normal velocity and thus to

∂n* = 0. (12.33)
Besides, the relation between the potential at the surface and the
elevation perturbation, ∂zφ(x , y, 0) = − i ωη(x , y), allows us to
express the 2D problem for η:

∂2η

∂x2 + ∂2η

∂y2 + k2η = 0 (12.34)

with Neumann boundary conditions on the vertical walls
∂η

∂n
= 0. (12.35)

Eventually, it appears that, in the harmonic regime for separable
geometries, there is a perfect analogy between water waves and
acoustic waves (as well as with transverse electromagnetic waves).

12.2.1.4 Time reversal invariance in the linear regime

From the previous considerations that have shown the analogy with
2D acoustics we can conclude immediately that water waves possess
the TR invariance when the geometry is separable.

However, there is simpler and more general argument. We
remind the linear equations in the time domain⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

%φ = 0, in the bulk,

∂ttφ + g∂zφ = 0, at z = 0,

n · ∇φ = 0, at z = −h(x , y).

(12.36)

It is valid in any geometry, with any shape of the bottom, and it is
obviously invariant with respect to the symmetry t → −t. It means
that linear water waves are TR invariant in any geometry (as long as
the damping is neglected).
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12.2.2 Nonlinear Regime
The propagation of nonlinear waves in one spatial dimension and
in deep-water condition can be described within the framework of
weakly nonlinear Stokes waves [17]. These waves have the property
to have flatter troughs and sharper peaks. Another fundamental
property is their instability to side-band perturbation [18]. The
dynamics of these waves in both, stationary and unstable regime can
be accurately described by nonlinear Schrödinger-type evolution
equations [19, 20]. Being an integrable evolution equation, exact
envelope model solutions of the NLSE can be used to model exact
localized structures on the water surface [21].

12.2.2.1 Stokes waves and modulation instability

Using the perturbation Ansatz in the small steepness parameter
ε := ka, Stokes found weakly nonlinear periodic solutions, which
satisfy the nonlinear governing equations of an ideal fluid [17]. The
weakly nonlinear surface elevation to second order in steepness is
determined by

η (x , t) = a cos (kx − ωt) + 1
2

ka2 cos [2 (kx − ωt)] + . . . (12.37)

The dispersion relation is then corrected to

ω =
√

gk

(
1 + a2k2

2

)
. (12.38)

Considering the corrected dispersion relation (Eq. 12.38), we can
notice the dependency of the wave velocity with respect to the
amplitude. This amplitude dependency may engender a nonlinear
focusing of Stokes waves under certain conditions. This instability of
periodic deep-water wave trains is also referred to as the Benjamin–
Feir instability [18], the side-band instability or the Bespalov–
Talanov instability [22]. This instability has been discovered at the
same time by various researcher [12]. A geometric condition for
the instability was already provided by Lighthill [9]. Benjamin and
Feir [18] investigated the stability of Stokes waves theoretically and
experimentally, while Zakharov [19] derived the same result using
a Hamiltonian approach. In the same work he derived an equation,
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which describes the evolution in time and space of slowly modulated
weakly nonlinear wave trains in deep water, the NLSE, which will
be discussed in the next section. Benjamin and Feir examined the
second-order Stokes solution to side-band disturbances [18, 23, 28],
where the disturbed surface elevation has the form

η̃(x , t) = η(x , t) + ϵ(x , t), (12.39)

while the side-band disturbance is given by

ϵ(x , t) = ϵ+ exp (γ t) cos [k (1 + κ) x − ω (1 + δ) t] +
ϵ− exp (γ t) cos [k (1 − κ) x − ω (1 − δ) t] . (12.40)

Here, ϵ± denote small amplitudes of the perturbation, whereas δ =
)/ω and κ = K/k are small perturbations fractions of the wave
frequency and wave number, respectively. After substitution of the
perturbed wave equation η̃ (x , t) in the governing equations (11)
and performing a linear stability analysis of the obtained dynamical
system provides to the instability growth rate

γ = 1
2

δ
√

2k2a2 − δ2ω (12.41)

Therefore, the disturbances grow exponentially with time for real
values of γ . That is, whenever γ is real, the instability exists in a
limited range of modulation frequencies:

0 < δ <
√

2ka. (12.42)

Therefore, for a given wave steepness ε of a regular deep-water wave
train, there exists an unstable frequency range, centered around the
main frequency ω, for which the growth rate γ is real and positive. In
this case, disturbances grow exponentially with time. The side-band
instability was also experimentally observed in a large wave facility
shortly after its theoretical discovery [24, 25].

12.2.2.2 Nonlinear Schrödinger equation and doubly localized
breather-type solutions

An alternative to describe the exact dynamics of Stokes waves
is provided by the theory of nonlinear wave packet evolution
equations. The simplest equation for nonlinear wave packets of this
type is known as the NLSE and can be derived heuristically by
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extending the results Taylor expansion, presented for the linear case,
by including the dependency of the dispersion relation with respect
to the amplitude, as described in Eq. 12.38. That is,

ω (k) = ω(k0) +
(

∂ω

∂k

)
(k − k0) + 1

2
(k − k0)2

(
∂2ω

∂k2

) ∣∣∣
k=k0

+
(

∂ω

∂ |a|2

) ∣∣∣
|a|2=0

|a|2 .

(12.43)

Therefore, Eq. 12.25 is corrected to

− i
(

Et + ω

2k
E x

)
+ ω

8k2 E xx + ωk2

2
|E |2 E = 0, (12.44)

which the NLSE. Now, weakly nonlinear surface elevation to first
order of approximation is determined by

η(x , t) = Re (E (x , t) · exp [i (kx − ωt)]) . (12.45)

The latter equation can be derived more rigorously from the
governing equations, using the multiple scales technique, see [10,
26]. The interesting fact about the NLSE, is that its stationary

solution E S (x , t) = a exp
(

− i
a2k2

2
ωt

)
describes a second-order

Stokes waves and same instability condition (Eq. 12.42) can be
derived, by perturbing the stationary Stokes envelope E S (x , t) by
a modulation frequency ) and a modulation wave number K .
Therefore, the considered perturbed envelope function becomes

Ẽ S (x , t) = E S (x , t)
[

1 + ε− exp
(
− i K

(
x − ω

2k
t
)

− i )t
)

+

ε+ exp
(

i K
(

x − ω

2k
t
)

+ i )t
)]

. (12.46)

The criterion (Eq. 12.42) is then obtained after inserting the
perturbed Stokes envelope in the NLSE, linearizing and following the
modulation dispersion relation

)2 = ω2

8k2

(
K

8k2 − k2a2
)

K 2, (12.47)

see [10, 11, 27] for details. An exponential growth takes place, when
the modulation frequency is imaginary. This is the case, when

0 <
K
k

< 2
√

2ka. (12.48)
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Since for deep water cg = )

K
= ω

2k
, thus, δ = )

ω
= 1

2
K
k

=
1
2

κ , Eq. 12.48 is clearly equivalent to Eq. 12.42. The modulation
instability can be discussed within the framework of exact solutions
of the NLSE. Besides stationary wave envelope soliton solutions,
the NLSE admits a family of breather solution on a constant Stokes
background, known to model strong localizations of Stokes waves
[29–33]. For simplicity, we scale the NLSE to a dimensional form
[12]

i ψT + ψX X + 2 |ψ |2 ψ = 0. (12.49)

The solution, which describes the modulation instability dynamics
in space and time is the family of space-periodic Akhmediev
solutions [29], expressed as

ψA (X , T ) = cosh ()T − 2 i ϕ) − cos (ϕ) cos ( pX )
cosh ()T ) − cos(ϕ) cos ( pX )

exp (2 i T ) ,

(12.50)
where ) = 2 sin (2ϕ), p = 2 sin (ϕ) and ϕ ∈ R. In the limiting
case of infinite modulation period, which occurs when the breather
parameter ϕ → 0, is known as the Peregrine solution [33]

ψ1 (X , T ) =
(

−1 + 4 + 16 i T
1 + 4X 2 + 16T 2

)
exp (2 i T ) , (12.51)

Here, the modulation wavelength K ≈ 0 and the growth rate
becomes algebraic and is not of exponential nature anymore. This
latter solution is very particular, since it is localized in both space
and time and it amplifies the amplitude of the carrier theoretically
by an exact factor of three. A higher-order solution of this kind is
referred to as the Akhmediev–Peregrine solution [29, 34, 35]. This
doubly localized solution is characterized by a maximal amplitude
amplification of five (see Fig. 12.2 for an illustration) and is defined
by

ψ2 (X , T ) =
(

1 + G + i H
D

)
exp (2 i T ) , (12.52)
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414 Time Reversal of Linear and Nonlinear Water Waves

Figure 12.2 (a) First-order doubly localized rational solution (Peregrine
breather), which at X = T = 0 amplifies the amplitude of the carrier by a
factor of 3. (b) Second-order doubly localized rational solution (Akhmediev–
Peregrine breather), which at X = T = 0 amplifies the amplitude of the
carrier by a factor of 5.

while

G = −
(

X 2 + 4T 2 + 3
4

) (
X 2 + 20T 2 + 3

4

)
+ 3

4
(12.53)

H = 2T
(

3X 2 − 4T 2 − 2
(

X 2 + 4T 2)2 + 15
8

)
(12.54)

D = 1
3

(
X 2 + 4T 2)3 + 1

4
(

X 2 − 12T 2)2

+ 3
64

(
12X 2 + 176T 2 + 1

)
. (12.55)

All these basic breather solutions, which describe the strong
focusing of a regular background have been only recently observed
in Kerr media, water waves and plasma [36–42]. Breathers attracted
the significant scientific interest, since they describe the backbone
dynamics of the modulation instability and therefore, of rogue wave
as well.
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12.2.2.3 Time reversal invariance in the nonlinear regime

The TR invariance of Stokes waves can be discussed within
the framework of the NLSE. In fact, considering the weakly
nonlinear evolution equation (Eq. 12.44), we can notice that the
time-dependent part of the NLSE equation, contains a term in
i ∂ E

∂t . Therefore, it is straightforward to see that if E (x , t) is a
solution, then its complex conjugate E ∗ (x , −t) is also a solution.
Consequently, both surface elevations η (x , t) and η (x , −t) describe
two possible evolutions for the weakly nonlinear water wave
problem. Consequently, a TR mirror can be used to create the time-
reversed wave field η (x , −t) in the whole propagating medium. For
this 1D problem it is sufficient to measure the wave field η (x , t) at
one unique point xM and to rebroadcast the time-reversed signal
η (xM , −t) from this mirror point in order to observe the solution
η (x , −t) in the whole medium. If this approach is valid for breather
dynamics, it would be a confirmation of the TR invariance of strongly
localized waves and therefore for nonlinear waves as well.

12.3 Experiments of Time Reversal

In this section we describe recent experiments, confirming the TR
invariance of linear [43] and nonlinear surface gravity waves [44].

12.3.1 Time Reversal of Linear Water Waves
In this section we will start reporting the results of the TR of
water waves in the linear regime. The experiment is conducted in
a water tank cavity to take advantage of multiple reflections on
the boundaries. The influence of the number of channels in the TR
mirror is studied and it allows us to show that a small number
of channels is sufficient to obtain the TR refocusing owing to the
reverberating effect of the cavity.

The reverberating tank is filled with water with depth at rest
H = 10 cm. The dimension of the rectangular tank is 53 × 38 cm2

with obstacles placed in order to break the spatial symmetries
(see Fig. 12.3). The waves are generated by using a vertical conical
vibrator and recorded by using an optical method (note that
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416 Time Reversal of Linear and Nonlinear Water Waves

Figure 12.3 Water tank used in the experiment. Point A is at the
initial source position. Note the fringes used for the Fourier transform
profilometry technique. Points R1 to R6 correspond to the positions of the
different channels of the TR mirror. At each of these channel positions the
wave is measured and can be reemitted after the TR operation. Reprinted
(figure) with permission from Ref. [43]. Copyright (2012) by the American
Physical Society.

this differs from TR experiments in acoustics that use the same
transducer to record and to regenerate the wave). We perform a
typical one channel TR experiments in two steps. In the first step of
emission, a wave packet is generated from a conical vibrator that can
be considered as a point source. In a second step, the signal recorded
at a receiver point is time-reversed and reemitted.

The time-reversed wave is expected to refocus spatially at the
source point and refocus temporally at the recompression time. The
key point to ensure TR refocusing is the number of cavity modes that
the wave packet has been able to excite in the first step of the TR.

After a few experimental trials, the authors found the central
frequency f0 = 5 Hz the best to obtain good refocusing in time
and space. This is a compromise between the bulk dissipation
that grows with a frequency increase and the bottom friction that
becomes significant while decreasing frequency (note: no significant

Rl R2

WAVEMAKER
R3

R6

INITIAL SOURCE POINT A

R4.R5
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Figure 12.4 (a) Experimental measurement of the temporal evolution
of the surface elevation, η(r1, t) during the forward propagation after
emission from point A. The inset shows the signal emitted from point A.
(b) Corresponding spectrum. The inset shows the spectrum of the signal
emitted from point A. (c, d) The same representation from numerical
simulations of the wave equation. Reprinted (figure) with permission from
Ref. [43]. Copyright (2012) by the American Physical Society.

peaks in the low-frequency region in Fig. 12.4b). Figure 12.4a shows
the signal recorded at one point (point R1 in Fig. 12.3) when a
one-period sinusoidal pulse centered at f0 Hz is generated at the
initial source position. The duration of the signal is typically 20 s,
corresponding both to reverberating effects and linear dispersion
effects. This latter is given by the linear dispersion relation for water
wave propagation (taking into account the effects of finite depth H
and surface tension γ ):

ω2 =
(

gk + γ

ρ
k3

)
tanh kH , (12.56)

where k denotes the complex wave number, g the gravity accel-
eration and ρ the water density. The wavelength at the central
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frequency f0 is λ = 6 cm. The magnitude of nonlinearity of
the waves based on the maximum measured gradient of surface
elevation was found to be ϵ = 0.13. The attenuation is such that
the wave can propagate over roughly 100 wavelengths, that is, about
10 to 20 times the length scale of the cavity. This is consistent with
the 20 s duration of the time signal recorded at one point in
the cavity (Fig. 12.4a) since the phase velocity at the central
frequency is 0.33 m/s corresponding to 12–17 reflections from the
boundaries. The spectrum of the signal recorded during the direct
propagation is shown in Fig. 12.4b. It presents several peaks (one
can count roughly 20 peaks) corresponding to the eigenmodes of
the cavity that have been excited. Although the initial pulse covers a
broadband frequency range [0 15] Hz, the signal recorded is limited
to frequencies smaller than about 10 Hz. We have checked that this is
an effect of the attenuation: direct numerical simulations of the 2D
wave equation in the same geometry but omitting the attenuation
give a spectrum with around 100 cavity modes excited in the whole
range 0 15 Hz (Fig 12.4c,d).

We now investigate the refocusing. The perturbation of the
surface elevation η(r, t) is measured in time and in space during
the wave propagation using an optical method (FTP for Fourier
transform profilometry) that has been adapted recently to water
wave measurements [45–48]. FTP is used to measure the whole
pattern of surface elevation η(r, t) at each time of the reverse
propagation. This has been done in one-channel experiments (N =
1). Although the spatial refocusing and temporal recompression are
visible (Fig. 12.5), it is not possible to distinguish the converging
wave fronts before the recompression and the diverging wave fronts
after recompression in this one channel experiments (for a movie,
see the supplementary material).

To improve the refocusing, it is possible to increase the number
of channels. In a TR experiments with multiple channels, the signal
emitted from the source point is recorded at N receiver points. The
TR signal are then reemitted simultaneously from the N receiver
points. If the N receiver points are uncorrelated, it is meant to
improve the refocusing since the wave experiences many different
trajectories in the cavity. In our experiment, rather than using N
wave generators to reemit the signal, the N channel TR have been
done with just one wave generator. This is possible by exploiting the
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Figure 12.5 Measured amplitude, η(r, t = 0), and intensity, η(r, t = 0)2 of
the time-reversed wave around the initial source position (point A) where
the wave is refocused at the recompression time (t = 0) in a one-channel
TR experiment (N = 1). The spatial range around the refocusing point A is
34 × 26 cm2. Reprinted (figure) with permission from Ref. [43]. Copyright
(2012) by the American Physical Society.

linearity of the problem which implies that the wave field excited
by N generators is equal to the sum of the N wave fields excited by
each generator alone. We have checked this linearity by comparing
the time signal recorded at the refocalization point when using 2
channels and when summing the two signals obtained in two single
channel experiments (see supplementary material). The temporal
signals in both cases coincide, with less than 10% discrepancy in a
10/ f0 time window centered at the recompression time. Six different
positions of the receiver point have been used (points R1 to R6 in Fig.
12.3). Figure 12.6 shows a time sequence of the reverse propagation
for the 6 channel TR. As expected, the peak at the recompression
time is much higher than in the one channel TR, confirming that
the channels are uncorrelated. Besides, the converging and diverging
wave fronts, before and after the recompression time are visible.

To gain insights into the study of the quality of the refocusing,
we want to inspect both the effect of the number of channels
and the effect of the damping. To characterize the quality of the
spatial refocusing, we define a peak-to-noise ratio (PNR) at the re-
compression time as the ratio of the maximum intensity at the
focal spot to the mean side-lobe intensity. Experimental results
are shown in Fig. 12.7 (black points). With a single channel, the
PNR is typically 20, a value that is related to the number of cavity
modes that can be resolved from the spectrum at the receiver
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Figure 12.6 Space–time-resolved experimental measurements of the sur-
face elevation η(r, t) during the refocusing of the time-reversed wave. In
this case, N = 6 channels (points R1 to R6) reemit the time-reversed
signals. The recompression time is at t = 0 s. Converging and diverging
wave fronts appear respectively for negative and positive times. The spatial
range around the refocusing point A is 34 × 26 cm2. Reprinted (figure)
with permission from Ref. [43]. Copyright (2012) by the American Physical
Society.

point in Fig. 12.4. With several channels, the PNR increases linearly
with the number N of channels [49]. Although this behavior is
expected without damping, it was not obvious to be verified with the
typical range of damping of our experiment. The insets of Fig. 12.7
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Figure 12.7 Experimentally measured peak-to-noise ratio as a function
of the number N of channels (black points). For comparison, the blue
squares show numerical results with negligible damping. Note the standard
deviation accounting for the sensitivity of the refocusing to the position
of the reemission point. The insets present the experimental temporal
refocalization while using one and six channels. Reprinted (figure) with
permission from Ref. [43]. Copyright (2012) by the American Physical
Society.

show the temporal recompression for N = 1 and N = 6 at the
refocusing point A. The refocusing is clearly visible in the one-
channel TR experiment but with higher temporal side lobes than
with 6 channels. Note that these temporal signals allow also to
define a PNR and we observed that PNR either defined in space
or in time have roughly the same values. Varying the damping is
more difficult. To perform experiments where the damping effect is
negligible would necessitate much larger size of the cavity (e.g., the
size of a swimming pool) because the attenuation per wavelength
decreases with the frequency [9]. Therefore, numerical simulations
have been used to model the case with negligible damping. The
results are shown in Fig. 12.7 (blue square) where computations
have been done by taking the same protocol as in the experiment.
The same trends as in the experiment are observed: i) for N = 1,
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the PNR is equal to 100 and is given by the number of excited
cavity modes that can be resolved in the spectrum in Fig. 12.4, ii)
the PNR increases linearly with N . With about 20 excited modes in
our laboratory experiments, versus the 100 modes obtained in the
numerics, it appears that the refocusing can be significantly reduced
because of the attenuation occurring at that laboratory scale.

Our experiments illustrate the feasibility of a few channel TR
refocusing for gravity capillary waves. This has been performed
in a well-controlled laboratory context that allows quantitative
measurements simultaneously in time and space. At this laboratory
scale, with centimetric wavelengths, the quality of the refocusing
is limited by the damping due to viscous effects but it is not
suppressed. At larger scales, viscous damping highly decreases and
numerical simulations show that the refocusing is greatly improved.
Thus, this paves the way to applications in the context of water
waves in the sea, with very small damping, where very high quality
of refocusing is expected.

12.3.2 Time Reversal of Nonlinear Water Waves
Next, an experimental demonstration of TR of nonlinear waves is
presented. Due to the strong nonlinear focusing of NLSE breathers,
the doubly localized Peregrine and the higher-order Akhmediev–
Peregrine breathers solutions will be used for the demonstration in
one spatial direction of wave propagation. Following the 1D NLSE
(Eq. 12.44), the experiments, performed in a unidirectional wave
basin, are first started by generating the maximal amplitude of
hydrodynamic and doubly localized breather by the wave maker,
which is considered to be the source of the propagation. Its position
is labeled by xS . The attenuated breather-type wave field is then
measured at the mirror position, labeled by xM , after a specific
propagation distance. The collected signal is then reversed in time,
providing new initial conditions to a wave generator. As for the
linear experiment, if the TR symmetry is valid, one should expect
the refocusing and the perfect reconstruction of the initial maximal
breather compression, after reemitting the time-reversed signal.
Due to the experimental limitations with respect to the generation
of the time-reversed signal at the mirror position, we will use
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the spatial reciprocity of the NLSE in order to reemit the time-
reversed surface elevation signal of the attenuated breather from the
source and observe the refocusing at the mirror position xM , instead
of rebroadcasting the reversed wave field from xM and expecting
refocusing at the source position xS .

The experiments are performed in a unidirectional and 15 m long
wave flume facility with a constant depth of h = 1 m. A computer-
controlled and hydraulic single flap generates surface gravity Stokes
waves at one end of the flume at a position we refer to be the
source of pulse generation xS . A capacitance wave gauge measures
the surface elevation along the flume at a position of interest with a
sampling frequency of 500 Hz. The wave gauge is placed and fixed
9 m from the wave generator, keeping enough distance from the
absorbing beach, which is installed at the other end of the facility in
order to avoid wave reflections, which would obviously distort the
dynamics of the generated waves. The position of the wave gauge is
considered to be the mirror position xM . The experimental setup is
depicted in Fig. 12.8.

In order to provide ideal experimental conditions, the walls of the
flume were therefore properly cleaned and the water was filtered
accordingly before performing the experiments in order to minimize
the dissipation effects, which have a significant influence on NLSE
localized structures, propagating in a water wave flume.

First, the dimensional doubly localized wave profiles of the
breathers, satisfying Eq. 12.44, at their maximal amplitude am-
plification are generated. These initial wave profile amplitudes
are amplified by a factor of three for the Peregrine and of five
for the Akhmediev–Peregrine solution. The parameters of the
corresponding carrier wave have to be carefully chosen in order to

Figure 12.8 Schematic upper view of the unidirectional wave basin. The
single flap, driven by a hydraulic cylinder, is installed at the right end of the
wave flume at xS . The wave gauge is located at xM , 9 m from the wave maker.
The absorbing beach is displayed at the left end of the wave facility.
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avoid initial wave breaking of obviously strongly nonlinear focused
waves at xS and in order to reach satisfactory attenuation after
9 m of propagation. Consequently, the carrier wave parameters,
determined by the steepness ε and the amplitude a, have to be
chosen accordingly. Both parameters are set to be ε = 0.09 and
a = 3 mm for the Peregrine as well as ε = 0.03 and a = 1 mm for the
Akhmediev–Peregrine solution. These chosen steepness values are
far from the experimentally determined wave breaking thresholds
[50]. The steepness ε and the amplitude a of the Stokes background
are sufficient to determine the carrier parameters. Trivially, the
wave number is k = ε

a . The linear dispersion relation of deep
water determine the wave frequency to be ω =

√
gk, while denotes

the gravitational acceleration and is g = 9.81 m · s−2. The initial
conditions are then trivially determined by

η(x∗, t) = Re (E (x∗, t) · exp [i (kx∗ − ωt)]) , (12.57)

evaluated at x∗ = 0, in order to satisfy the maximal breather
compression. Figure 12.9 shows the initial conditions applied to the
flap at the Position xS .

After generating the Peregrine and the Akhmediev–Peregrine
breather at their maximal wave amplitude of 0.9 cm and 0.5 cm,
respectively, we collect the wave profiles after having being declined
in amplitude, as expected and predicted by theory, by use of the wave
gauge at xM , that is, 9 m from the flap Position xS . Here, we notice
already a deviation from theoretical weakly nonlinear wave profiles,
due to the strongly nonlinear nature of the initially generated wave
forms. These discrepancies can be explained by higher-order NLSE,
known as the modified NLSE [20]. The corresponding data are
shown in Fig. 12.10a,b.

In the third step these recorded breather signals are revised
in time. These time-reversed signals provide now new initial
conditions to the flap in order to initiate the fourth and penultimate
stage of the TR experiment. The latter are depicted in Fig.
12.10c,d. If the considered breather dynamics is indeed TR invariant,
it is expected to observe the refocusing of the maximal wave
compressions after reemitting the latter time-reversed and slightly
modulated signals to the wave maker. Here, we take advantage of
the spatial reciprocity of the NLSE equation, thus, we can reemit the
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Figure 12.9 Initial conditions provided by theory (Eq. 12.45) at the position
of maximal amplification, that is, at X = 0, applied to the wave flap at
Position xS . (a) The carrier parameters for the Peregrine breather-type
water wave profile are a0 = 0.3 cm and ε = 0.09. (b) The carrier parameters
for the Akhmediev–Peregrine breather-type water wave profile are a0 =
0.1 cm and ε = 0.03.

time-reversed signal from the point xS and observe the refocusing at
point xM , rather than rebroadcasting the reversed wave field from xM

and expecting refocusing at the position xS . At the fifth and last step
of the experiments, we measure the surface elevations related to the
time-reversed initial conditions, again 9 m from the flap at position
xM , that is, keeping the wave gauge at the same position. These
refocused measurements are compared to the theoretical surface
elevations. The corresponding wave profiles are shown in Fig. 12.11.

These results are a clear demonstration of the TR invariance of
the hydrodynamic breathers. Clearly, Fig. 12.11 provides an accurate
refocusing and reconstruction of the breather surface elevation
of the corresponding NLSE solution at its maximal compression,
as already presented in Fig. 12.9. The results are in a very good
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Figure 12.10 (a) Surface elevation of water wave profile of the attenuated
Peregrine breather, recorded at xM , located 9 m form the flap. (b) Surface
elevation of water wave profile of the attenuated Akhmediev–Peregrine
breather, recorded at xM , located 9 m form the flap. (c) Time-reversed signal
of the measurements shown in (a), providing new initial conditions to the
flap and reemitted at xS . (d) Time-reversed signal of the measurements
shown in (b), providing new initial conditions to the flap and reemitted at
xS .

agreement with the theoretical predictions, expected at this position
within the framework of NLSE. In fact, the maximal water surface
amplitude is of 9 mm and of 5 mm for the Peregrine breather and
the Akhmediev–Peregrine breather, respectively, which correspond
to theoretical values of amplitude amplifications, related to these
NLSE solutions at the maximal stage of breather compression and
as generated in the first step of the experiment. These observations
prove the TR invariance of strongly nonlinear water waves. In ad-
dition, these experimental results confirm the accuracy of the NLSE
in describing the unidirectional and complex evolution dynamics of
rogue waves, taking into account the complex phase-shift dynamics,
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Figure 12.11 (a) Comparison of the Peregrine surface profile measured
9 m from the paddle at xM , while starting its propagation from time-
reversed initial conditions (blue upper line) with the expected theoretical
NLSE prediction at the same position (red bottom line). (b) Comparison of
the Akhmediev–Peregrine surface profile measured 9 m from the paddle
at Position xM , while starting its propagation from time-reversed initial
conditions (blue upper line) with the expected theoretical NLSE prediction
at the same position (red bottom line).

related to the modulation instability process. Nevertheless, some
discrepancies between theory and experiment can be also noted
in terms of asymmetric wave profile shape of the experimental
observations, as can be noticed in Fig. 12.11. The latter are due
to higher-order nonlinearities (Stokes drift) and to higher-order
dispersion effects, not taken into account in the NLSE approach,
as well as to occurring experimental imperfections, including dis-
sipation and wave reflection and most importantly noise, naturally
and always existing while performing experiments in wave basins.
Nevertheless, the experimental observations confirm the possibility
to reconstruct strongly localized, thus, strongly nonlinear waves
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through TR. Therefore, we emphasize that this technique may be
used in order to construct new TR invariant localized structures,
described by nonlinear evolution equations, which considerably
amplify the amplitude of a wave field, thus, again also in the case
of strong nonlinearity.

12.4 Discussion and Outlook

Experiments on water wave pulse field reconstruction in the linear
and nonlinear regime using TR, provide not only a confirmation
of the TR invariance of the hydrodynamic wave motion, but also
open new field of possible applications in several dispersive media.
This includes, for example, superfluidity [51, 52] and optical fibers
[15, 53]. The experiments, involving the doubly localized breather
solutions of the NLSE show also limitations, which should be
addressed. First, discrepancies with respect to the theoretical
NLSE predictions can be noticed. These can be easily explained in
view of the natural limitation of the NLSE. A successive analysis
could be performed in order to verify the TR invariance, also
for higher-order NLSE-type evolution equation [20, 56] as well as
within the framework of fully nonlinear equations [55]. This is
to accurately characterize possible applications and limitations of
the TR method for nonlinear, very steep, and nonbreaking water
waves. Another interesting point, which should be addressed from
a chaotic dynamics point view is the influence of random noise
on the TR reconstruction of NLSE breathers. Next, we inspect the
numerical instability of the TR scheme, by perturbing the initial
conditions of the same nonlinear experiments within the framework
of the NLSE. We used the split-step Fourier method [57, 58] to
illustrate the influence of the random noise on the decaying and
TR reconstruction dynamics of both, Peregrine and Akhmediev–
Peregrine dynamics for the same wave parameters as used in the
laboratory experiments. The initial conditions have been multiplied
by [1 + N2(t)] [59]. Here, 2 is a normally distributed random
function, whereas N denotes the noise level, which is chosen to
be 10−1 and 10−2, respectively. The numerical results involving
the Peregrine breather for the same laboratory parameters over a
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Figure 12.12 Numerical TR experiment of the Peregrine breather dynamics
for ε = 0.09 and a = 3 mm for two different noise levels using the split-
step Fourier method. (a) Decay of the Peregrine pulse from its maximal
compression during its evolution over 9 m for a noise level of 10%. (b)
Growth of the Peregrine pulse, starting from the time-reversed signal of the
experiment (a) at 9 m. (c) Decay of the Peregrine pulse from its maximal
compression during its evolution over 9 m for a noise level of 20%. (d)
Growth of the Peregrine pulse, starting from the time-reversed signal of the
experiment (c) at 9 m.

distance of 9 m are shown in Fig. 12.12a,b for a noise level of N =
10% and Fig. 12.12c,d for a considerable noise level of N = 20%.

It is noticeable that TR techniques work very well in recon-
structing both doubly localized Peregrine-type extreme waves, since
the maximal compression of the envelope could be recovered, even
in the presence of significant noise. Remarkably, this is also the
case for the Akhmediev–Peregrine solution that has a much larger
amplitude amplification value and therefore, a more significant
nonlinear Stokes wave nature, as shown in Fig. 12.13 (same noise
level N as in the previous figure).
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Figure 12.13 Numerical TR experiment of the Akhmediev–Peregrine
breather dynamics for ε = 0.03 and a = 1 mm for two different noise levels
using the split-step Fourier method. (a) Decay of the Akhmediev–Peregrine
pulse from its maximal compression during its evolution over 9 m for a
noise level of 10%. (b) Growth of the Peregrine pulse, starting from the time-
reversed signal of the experiment (a) at 9 m. (c) Decay of the Akhmediev–
Peregrine pulse from its maximal compression during its evolution over
9 m for a noise level of 20%. (d) Growth of the Akhmediev–Peregrine pulse,
starting from the time-reversed signal of the experiment (c) at 9 m.

Another possible application is the validation of TR recon-
struction of nonlinear waves, propagating in two spatial directions
[60, 61]. Deep-water evolutions equations, such as the Davey–
Stewartson equation [62] or the shallow water KP-I [63] could be
used for this investigation. Obviously, experiments for such type of
equations are much more difficult to perform. Furthermore, new
possible solutions may be derived numerically in the limit of TR
convergence.
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12.5 Conclusion

To summarize, we have discussed the TR invariance of surface
gravity water waves in the linear and nonlinear regime. After
introducing the governing equations of an ideal fluid and empha-
sizing the conditions for the TR invariance, we have presented
recent experiments, validating the TR approach in reconstructing
linear and 2D water pulses, whereas two examples of nonlinear
breather-type pulses have been refocused in a 1D water wave flume.
The experimental results provide a clear confirmation of the TR
invariance of water waves and emphasize novel applications in
other dispersive media, such as fiber optics, plasma and Bose–
Einstein condensates as well as in remote sensing to name only
few. The effect of dynamical noise on the nonlinear breather wave
propagation has been discussed numerically as well. The reported
simulations, based on the split-step Fourier method are promising
and motivate further analytical, numerical and experimental work in
analyzing the hydrodynamics and complex propagation properties
of linear and nonlinear waves, using the TR technique.
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