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We present the empirical mode decomposition profilometry (EMDP) for the analysis of fringe projection pro-
filometry (FPP) images. It is based on an iterative filter, using empirical mode decomposition, which is free of
spatial filtering and adapted for surfaces characterized by a broadband spectrum of deformation. Its performances
are compared to Fourier transform profilometry, the benchmark of FPP. We show both numerically and exper-
imentally that using EMDP improves strongly the profilometry small-scale capabilities. Moreover, the height
reconstruction distortion is much lower: the reconstructed height field is now both spectrally and statistically
accurate. EMDP is thus particularly suited to quantitative experiments. © 2015 Optical Society of America

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (100.2650) Fringe analysis; (100.5070) Phase retrieval.
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1. INTRODUCTION

Fringe projection profilometry (FPP) is an instrument of choice
for the measurement of fast dynamic events [1]: it avoids the
use of moving parts and, with an adapted algorithm, needs no
more than one image to recover the height field. Recently, it has
been greatly developed and enhanced. In particular, an adap-
tation of this technique opened a new experimental field by
allowing the instantaneous measurement of the full height
map of a free surface [2].

The standard FPP setting is the following: a sinusoidal fringe
pattern of wavenumber k0 is projected onto the surface under
study. The projection is observed and registered from a differ-
ent viewpoint by a camera (different geometrical configurations
are possible as summarized in [3]). In the viewpoint of the cam-
era, a surface deformation corresponds to a distortion, i.e., the
local phase changes, of the fringe pattern. The challenge created
by the use of a single image is that it contains only an intensity
field I!x; y" from which a phase retrieval has to be achieved.
Following Takeda’s formulation [4,5], the light intensity regis-
tered by the camera can be described as

I!x; y" # A!x; y" cos$k0x % ϕ!x; y"& % B!x; y"; (1)

the local mean B!x; y" and amplitude A!x; y" of the fringe pat-
tern have to be estimated for recovering the phase ϕ!x; y".
Using a frequency space algorithm such as Fourier transform
profilometry (FTP), this step acts as a low-pass filter for the
height reconstruction as we show later in this paper.

Due to its practical applications and its single-shot capa-
bilities, FTP has had a great success. However, its intrinsic
properties naturally imply a major limitation. As the filtering
is performed in the Fourier space, the width of the filtering
window determines the spectral content that is recovered from
a measurement. Namely, the fundamental spectrum must be
separated from zeroth- and higher-order spectra [6,7]. A lot of
effort has been put into enhancing and improving the techni-
que in the sense of overcoming these limitations (the reader is
referred to the exhaustive reviews by [8,9] and references therein).
However, the issue of narrow-bandedness still remains as it orig-
inates from the bandpass filtering process which is inherent to the
technique. A different approach for single-shot FPP is needed in
the case of spatially broadband signals. Huang and co-workers
[10,11] introduced a filtering method called empirical mode de-
composition (EMD), which was further explored by Flandrin
et al. [12,13], for decomposing a nonstationary and nonlinear
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signal into amplitude and frequency modulations. Due to its
properties, it is well suited for separating the amplitude modu-
lation from the carrier component in fringe profilometric im-
ages. The possibility of implementing such a decomposition has
been studied before and strategies have been proposed [14–18],
however, none of these are designed for broadband signals.

In this paper we propose a novel fringe processing technique
based on the EMD principle that allows for the separation of
the envelope, the mean value, and the carrier preserving the
broadband information on the original signal. Determining lo-
cal maxima and minima presents inherent difficulties (namely,
mode mixing). The algorithm proposed in the present work
solves this problem for profilometric purposes.

The paper is organized as follows. In the first part, the
EMDP is presented. In the following sections, two examples of
reconstruction by EMDP for both synthetic and experimental
2D signals illustrate its performances that are compared to
FTP, being the benchmark of FPP.

2. EMDP ALGORITHM

The EMD decomposes a signal into a sum of modes called in-
trinsic mode functions (IMFs) and a residual, using an iterative
algorithm [10]. Each IMF is an alternating signal of zero local
mean, with all its maxima positive and all its minima negative,
and is thus well-suited for local phase measurement.

Note that if A and B in Eq. (1) are not space dependent, the
signal is perfectly equivalent to an IMF. Consequently, per-
forming the EMD decomposition on that hypothetical signal
would result in the first IMF containing only the modulated
carrier signal and a residual being the constant B, making phase
extraction a straightforward process. However, realistic fringe
profilometric images are characterized by contrast and the mean
illumination which depend on space, as well as by the presence
of noise. With such a signal, the EMD decomposition spreads
the modulated carrier over several IMFs, a phenomenon called
“mode mixing” [10,11,19,20] in which an IMF contains local
oscillations with disparate frequencies or scales. In order to re-
cover the carrier, one approach is to sum the IMFs on which it
is spread [14]. However, this raises two difficulties. First, the
determination of the relevant IMFs is ambiguous. Second, a
sum of IMFs is a priori not an IMF, and thus it forces one to
use the FTP algorithm before recovering the phase [14].

We present here an algorithm that resolves these issues by
recovering the carrier unambiguously and without resorting to
the Fourier transform. As this novel fringe processing technique
replaces the Fourier transform filtering in FTP by a decompo-
sition in direct space based upon the EMD algorithm, we
named it empirical mode decomposition profilometry (EMDP).
The EMDP technique effectively filters the signal so that the
first intrinsic mode function provided by the EMD contains
the carrier. In other words, the first IMF has to be that of largest
amplitude at each point. For this, we take advantage of the
EMD which allows one to locally filter the amplitudes inde-
pendently of the frequencies.

Our algorithm is based on the comparison of the amplitudes
of the first IMF with the others upon disjoint segments sepa-
rated by the first IMF’s zero-crossings. Wherever the first IMF is
not the one of maximal amplitude, the corresponding segment is

filtered out from the first IMF. It is worth noting that such seg-
ment filtering is the most local (pointwise) filtering operation
that can be performed on the IMFs without altering the continu-
ity of the signal. Then, the signal is recomposed by summing the
filtered first IMF with the others (as well as the residual) and the
process is iterated until the first IMF is the one with the largest
amplitude at each point. Once obtained, the envelope of the
resulting IMF is normalized according to [21] and the phase
extraction process is performed by direct quadrature [21].

More explicitly, given a signal s!x" the operations involved in
the proposed EMDP algorithm can be summarized as follows:

1. Perform the EMD decomposition of the signal in N
intrinsic mode functions, d j!x", plus a residual r!x" of nonzero
local mean.

2. For each d j!x", estimate the amplitude function aj!x"
by interpolating the local extrema.

3. Identify the positions of the zeros of d 1!x" and split x in
a set of successive nonoverlapping intervals (segments) between
two consecutive zeros X i for i # 1;…; m − 1; m being the total
number of zeros of d 1!x". (If necessary, two more intervals X 0
and Xm may be defined for the borders.)

4. For each d j!x", determine Ai;j # maxx∈X i
aj!x".

5. For each segment X i, define a Boolean filter F!X i"
in the following way: if Ai;1 # maxk Ai;k, then F !X i" # 1,
otherwise F !X i" # 0.

6. If F!X i" is identically unity, d 1!x" is the sought function
and the process ends. Otherwise, compute the filtered signal
s!x" # F !x"d 1!x" % Σk≥2dk!x" % r!x" and return to step 1.

7. Normalize the envelope of the IMF and extract the
phase by direct quadrature.

This algorithm is applied line by line on the profilometric
images. For the EMD decomposition involved in the imple-
mentation of our algorithm, we employed the MATLAB library
made publicly available in [22].

3. EMD PROFILOMETRY OF A SURFACE WITH
BROADBAND SPECTRUM

In this section, we discuss the performance of the EMDP algo-
rithm as applied to a surface characterized by a broadband height
(or deformation) spectrum. Examples of such surfaces can be found
in nonlinear wave interaction regimes such as wave turbulence,
both in thin plates [23] and in gravity–capillary water waves [24].

We begin by considering a synthetic two-dimensional ran-
dom height field h!x⃗" # h!x; y" characterized by a isotropic
power-law spectrum Sh!k" given by Sh!k" ∝ k−α, with α taken
to be 3∕2. Numerically, such a height field is built indirectly by
first defining its Fourier transform ĥ as

ĥ!k" # k−α exp iθ; (2)
where i stands for the imaginary unit and θ is a two-dimensional
random phase field whose values are uniformly distributed
in the interval $−π; π& and satisfies the condition θ!kx; ky" #
−θ!−kx; −ky", necessary for h!x; y" to be real-valued. The height
field h!x; y" is obtained through the inverse Fourier transform
of Eq. (2).

In order to simulate the profilometric process, two fringe
images are created according to

I r!x⃗" # A!x⃗" cos$2πk0x& % B!x⃗" % Nr!x⃗"; (3a)
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I d !x⃗" # A!x⃗" cos$2πk0x % ϕ!x⃗"& % B!x⃗" % Nd !x⃗": (3b)

The first one constitutes a reference image in which sinusoidal
fringes of spatial frequency k0 are undeformed, whereas Id is an
image of the same fringe pattern with the apparent deformation
that results from its projection onto the surface h!x; y" as seen
by the camera. The height information is contained in the
phase ϕ!x; y", which is related to the height field under study
via the phase-to-height relation. In turn, the functional form of
this relation depends on the optical setup (parallel- or crossed-
optical axes), as well as on the type of projection employed (col-
limated or noncollimated). For the sake of concreteness, in this
section we assume parallel-optical axes and noncollimated pro-
jection. Moreover, the distance between the projector and the
probed surface, usually denoted by L, is taken to be much larger
than the characteristic height of the surface, so that the phase
field is proportional to the height field through

ϕ!x⃗" ≅ −
!
2πk0D

L

"
h!x⃗"; (4)

with D being the distance between the projector’s and the cam-
era’s optical axes. It is worth noting that this particular choice of
optical geometry and light characteristics does not entail any
loss of generality in our results concerning the performance
of the EMDP algorithm.

In Eq. (3), the functions A!x⃗" and B!x⃗" represent unwanted
contrast variations and background inhomogeneities, respec-
tively. Within the framework of FTP, these functions, as well
as ϕ!x⃗", are required to vary slowly compared to k0 for the
method to be capable of separating their contributions.

In order to realistically simulate the profilometry process, we
consider images with side length l # 512 pixels and a color
depth of 12 bits. The contrast A!x⃗" is modeled by means of
a paraboloidal intensity profile centered at the image center
and decreasing toward its edge, mimicking the usual experi-
mental lighting conditions

A!x⃗" # 210
#
1 −

!
r
l

"
2
$
; (5)

with r representing the radial distance as measured from the
center of the image. In turn, the background lighting inhomo-
geneities are represented by

B!x⃗" # 211
#
1 −

!
r
l

"
2
$
: (6)

Finally, the terms Nr!x⃗" and Nd !x⃗" in Eq. (3) correspond to
(two different and uncorrelated realizations of ) uniformly dis-
tributed (additive) random noise of amplitude 25, representing
25∕210 ≃ 3.12% of the signal amplitude.

The values of the parameters associated with the optical
setup are L # 1050 mm, D # 150 mm, and the fringe wave-
length in the physical space λ0 # 1∕k0 # 2.5 mm. The image
physical size corresponds to a square of area !160 mm ×160 mm",
leading to a spatial resolution of Δx # Δy # 0.31 mm∕pixels.

Figure 1(a) shows a top view of the synthetic height field
h!x⃗" (built as described above) depicting the large spectral con-
tent of the original signal. For this surface, the deformed fringe
pattern image I d !x⃗" (as would be captured by a camera) is dis-
played in Fig. 1(b).

Based on both I d !x⃗" and I r!x⃗" (the latter is not shown), the
proposed EMDP algorithm recovers the height field hEMDP!x⃗"
depicted in Fig. 1(c) for comparison purposes. In order to
quantify the quality of the reconstruction locally in physical
space, Fig. 1(d) shows a color map of the reconstruction error
defined as EEMDP!x⃗" # jh!x⃗" − hEMDP!x⃗"j and is measured in
mm. In this case, the mean reconstruction error gives hEEMDPi #
0.0296 mm, and its standard deviation is 0.0322 mm. For
comparison, Fig. 1(e) shows the height field hFTP!x⃗" recovered
from the same reference and deformed fringe images but em-
ploying the FTP technique with a Gaussian bandpass filter
centered at k0 and typical width given by its standard deviation,
set at k0∕4 # 0.1 mm−1 (or, equivalently, a FWHM of approx-
imately 0.24 mm−1). Figure 1(f ) shows the associated recon-
struction error EFTP. The result of the FTP analysis presents a
mean reconstruction error of 0.22 mm and a standard deviation
of 0.17 mm.

More importantly, we would like to determine whether our
reconstructed height field presents the same power-law scaling
as h!x⃗". For that purpose, we calculate the angularly averaged
amplitude spectrum Sh!k" and compare it to that of the imposed
height field. Figure 2 presents the results of such calculation for
the EMDP and the FTP reconstructed height fields, together
with that corresponding to the (original) imposed height field.

As Fig. 2 shows, EMDP succeeds in reconstructing a height
field which features almost exactly the same power-law depend-
ency as the probed surface. In particular, for wavenumbers be-
low the carrier frequency, k ≤ k0, the amplitude spectrum of
hEMDP!k" is within 3% of the original Sh!k". Moreover, for
k0 < k ≤ 2k0, the amplitude spectrum of the reconstructed
surface is within 4.5% of Sh!k". In this sense, EMDP overcomes
the intrinsic limitation of the FTPmethod: the fact that the prac-
tical upper limit of the spatial resolution is 1 pitch of fringe [7].

When studying a random height field such as this, it is im-
portant that the reconstructed field not only preserves the
power-law dependency of the original field but also that the
data distribution be consistent with that of the original field. To
address this question, we perform a two-sample Kolmogorov–
Smirnov test [25] testing the null hypothesis that the recovered
height field data is drawn from the same population as the origi-
nal (imposed) data. For the case of the EMDP reconstructed
field, the result of the Kolmogorov–Smirnov test shows that
the null hypothesis cannot be rejected (with a significance level
of 5%), and the associated p-value in this case is 0.980. For
EMDP, failing to disprove the null hypothesis means that the
original and the reconstructed fields’ statistical distributions are
consistent with a single distribution function. In contrast, for
the FTP reconstructed height field the null hypothesis is re-
jected with a p-value of 5 × 10−8, showing that the original
and reconstructed height data are indeed distributed differently.

Overall, the results presented in this section show that the
EMDP algorithm performs spectrally accurate reconstructions
of surfaces characterized by broadband spectra of deformation.
Moreover, the proposed algorithm not only outperforms FTP
within its applicability domain (k ≤ k0) but also extends the
measurable range up to 2k0, leading to a spatial resolution
equal to half of the projected pattern wavelength !λ0∕2" in
physical space.
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4. COMPARISON OF EMDP AND FTP APPLIED
TO BROADBAND SPECTRUM SIGNALS

In this section we compare the performance of EMDP and
FTP algorithms applied to a synthetic signal of a daisy pattern
as represented in Fig. 3(a). A characteristic property of the

analyzed signal is that the spatial frequency increases toward
the center of the imposed pattern. We generate two images,
i.e., a reference fringe image with intensity variation I r!x; y"
and a deformed fringe pattern Id !x; y", containing phase corres-
ponding to the imposed surface elevation. To create synthetic
fringe images, all of the parameters, i.e., fringe wavelength λ0,
contrast variation A!x; y", and lightning inhomogeneities B!x; y",
are chosen trying to match experimental conditions, presented
in the next section. The pixel size is assumed to be 0.29 mm.
The synthetic image covers an area of 232 mm × 232 mm. The
synthetic reference image is assumed to be in the form

I r!x; y" # A!x; y" cos
#
2π
λ0

x
$
% B!x; y"; (7)

where λ0 # 7 mm, while A!x; y" # −0.00275x2 − 0.55x %
1320 and B!x; y" # 2A!x; y".

To simulate the signal in more realistic way, uniformly dis-
tributed noise is added to each of the images (amplitude of the
noise is assumed to be 3%). The phase map ϕ with a daisy-
shaped pattern is added to the reference signal in the form
ϕ # a1 cos!nθ" % a2, with n # 26, and internal radius R1

and external radius R2, modulated by two Gaussian functions
f !r; θ" # A exp!−!r − μ"2∕2c2" at the internal and external
edges. The imposed surface elevation corresponding to phase
ϕ is shown in Fig. 3(a). The resulting deformed image of fringes
I d !x; y" is presented in Fig. 3(b). Fringe images are analyzed

Fig. 2. Amplitude spectra of the height fields recovered by EMDP
(continuous blue line) and FTP (dotted red line), as compared to that
of the original (imposed) signal (dashed black line). It is observed that
EMDP recovers the original spectrum slope well beyond the k0 limit,
showing that EMDP is a spectrally accurate method.

Fig. 1. (a) Synthetic two-dimensional random height field h!x⃗" characterized by an isotropic amplitude spectrum Sh!k" ∝ k−3∕2. (b) Associated
deformed fringe image corresponding to I d !x⃗". (c) The recovered height field hEMDP!x⃗" obtained employing the proposed EMDP algorithm.
(d) The (absolute) reconstruction error for hEMDP!x⃗". (e), (f ) The corresponding height field recovered by FTP and its associated error, respectively.
The height fields shown in panels (a), (c), and (e) have been rendered with shadow lighting in order to highlight their features. All units in mm, with
the only exception of the colorbar in panel (b) which is coded between 0 and 212, corresponding to the dynamic range of the intensity image for a
12 bit camera as assumed in this study.

9412 Vol. 54, No. 32 / November 10 2015 / Applied Optics Research Article



using FTP and EMDP algorithms. Reconstructed surface eleva-
tion fields using both methods are presented in Figs. 4(a) and
4(b). Figures 4(c) and 4(d) show the logarithm of absolute
errors of the surface elevation in each case. To quantify the
accuracy of FTP and EMDP standard deviation of error maps
as a function of radius are determined (see Fig. 5). Different
Gaussian filter sizes, i.e., Gaussian RMS width σ, are taken into
account for FTP reconstruction. As the filter size increases, the
accuracy of amplitude determination increases. However, for a
filter size of σ ≥ 0.36k0 artifacts appear, which are visible in
Fig. 5, in the form of undesirable oscillations. The origin of
these oscillations is strictly associated with the sampling of
fringe pattern [6]. For any filter size applied to FTP, one can
notice superiority in EMDP reconstruction. EMDP copes well
with rapid changes of slopes in the imposed surface elevation,

for example, at the external edge, whereas error obtained with
FTP drastically increases wherever such changes are present in
the signal.

5. EXPERIMENTAL VALIDATION

In this section we present experimental validation of the numeri-
cal results concerning a daisy-shaped pattern. The model, de-
signed with a surface elevation corresponding to the synthetic
phase ϕ, is manufactured using the rapid prototyping technique.
The accuracy of the model is 0.1 mm in all !x; y; z" directions
and is due to limitations of the printer. The obtained physical
model is presented in Fig. 6. The fringe pattern is projected using
a high-resolution projector (1920 pixels × 1080 pixels). Images
are captured using a Phantom SA4 camera with a resolution
of 1024 pixels × 800 pixels. The entrance pupils of the projector
and camera are set at the same distance L # 1050 mm from
the reference plane, while the horizontal distance between them
is D # 250 mm. The size of the projected pixel is around
0.39 mm, while λ0 # 7 mm.

The reconstructed surface elevation fields, using both meth-
ods, are shown in Fig. 7. Significant influence of the shadows
can be observed in the center of the model. Nevertheless, the
obtained experimental surface elevation fields confirm superi-
ority of EMDP as it can resolve higher spatial frequencies in

(a) (b)

Fig. 3. Synthetic patterns: (a) imposed surface elevation correspond-
ing to ϕ!x; y" and (b) fringe pattern I d !x; y" containing the imposed
daisy-shaped pattern. The size of the pixel is assumed to be 0.29 mm
(it is assumed that the projected pixel has the same size). Values of
other parameters: a1 # 0.6144, a2 # 2.0888, R1 # 40 pixels, and
R2 # 350 pixels. Gaussian function parameters: (i) internal edge
A1 # 1; c1 # 10; μ # 40 and (ii) external edge A2 # 1; c2 # 10;
μ # 320. The scale of the colorbar is in mm.

(a) (b)

(c) (d)

Fig. 4. Comparison of EMDP and FTP applied to a synthetic
daisy-shaped field: (a) FTP results with a filter size of σ # 0.36k0,
(b) EMDP results, (c) absolute error of FTP reconstruction, and (d)
absolute error of EMDP reconstruction.

Fig. 5. Accuracy of EMDP and FTP. FTP results are presented for
different filter size σ.

Fig. 6. Photograph of the experimental model produced with the
rapid prototyping technique. In the right top of the figure, a 2-euro
coin is shown for size comparison.
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the center of a daisy pattern with better accuracy in amplitude
determination.

6. CONCLUSIONS

We have presented a comparison of the performance of the
usual FTP and the EMDP. In the past years, the need for per-
forming accurate noncontact measurements has motivated
studies on signal processing to enhance the quality of the height
reconstruction in these methods. The EMD is based on an
iterative filter which avoids any spatial filtering. This results
in enhanced capabilities of the method for the small scales.
Numerical and experimental examples of these capabilities have
been provided together with a comparison with the Fourier
transform technique as used in standard FTP.
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