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The feasibility of using the band structure of a crystal to realize directional emission 
of water waves is investigated numerically and experimentally. The directionality of a 
source inside a square array of cylinders is obtained numerically for a perfect lattice in 
a lossless liquid. But in the experiments, the directivity is weakened, due to the effects 
of losses. Nevertheless, the waves are shown to satisfy the Helmholtz equation when 
proper attenuation is accounted for. Thus, the robustness of the directionality is studied 
numerically with respect to the effects of the attenuation and of the disorder.
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r é s u m é

On étudie la faisabilité d’une source directive pour les ondes à la surface de l’eau, basée 
sur les propriétés de la structure de bandes d’un cristal. Cette directivité est caractérisée 
numériquement pour un réseau périodique de cylindres rigides dans un fluide parfait. 
Dans l’expérience, la directivité est affaiblie, à cause de l’atténuation. Cependant, en 
prenant en compte cette atténuation, la propagation des ondes est toujours correctement 
décrite par l’équation de Helmholtz. Aussi, la robustesse de la directivité est-elle étudiée 
numériquement plus en détail, vis-à-vis des effets d’atténuation et de désordre.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette étude, la directivité d’une source d’émission placée dans un réseau périodique est étudiée, numériquement et 
expérimentalement, dans le contexte des ondes de gravité se propageant à la surface de l’eau. Si ces ondes satisfont, dans 
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des cas limites, une équation d’onde identique à celle vérifiée par les ondes acoustiques et par les ondes électromagnétiques 
en deux dimensions (l’équation de Helmholtz, Eq. (1)), elles présentent une complexité souvent négligée. Dispersives, non 
linéaires dans des conditions usuelles, susceptibles d’être affectées par des modes évanescents dans le volume du fluide 
dès que la bathymétrie du fond sous-marin varie brutalement, d’être affectées par le comportement de ménisques pour des 
obstacles émergeant hors de l’eau, les phénomènes attendus par simple inspection de l’équation de Helmholtz doivent être 
regardés avec vigilance au regard d’expériences qui diront si, oui ou non, ces phénomènes sont robustes. Dans ce papier, 
nous donnons des éléments de réponse à cette question dans le cas de l’hyper directivité prédite par Mei et al. [13] dans le 
contexte des ondes à la surface de l’eau. Pour ce faire, nous caractérisons, numériquement et expérimentalement, les ondes 
émergeant d’un réseau périodique (un cristal de taille finie) pour une fréquence en bord de bande, c’est-à-dire pour laquelle 
la structure de bandes prédit que seul un étroit faisceau d’onde peut s’échapper d’une structure périodique lorsqu’une source 
est placée en son centre. Cette directivité de la source est testée expérimentalement pour un réseau de cylindres émergeant 
(Fig. 1).

Dans la section 2, nous montrons que, pour une fréquence au bord de la bande interdite, et pour une position disymmé-
trique de la source dans le réseau, une très bonne directivité peut être obtenue (position B sur la Fig. 1) ; cette directivité 
est illustrée par le diagramme d’émission (Fig. 2(c)) ainsi que par le comportement d’indicateurs : (i) la section totale de 
diffusion, Eq. (5), qui mesure l’énergie totale sortant du réseau et (ii) une mesure de la directivité D, Eq. (6), qui mesure 
la proportion de l’énergie contenue dans les faisceaux directifs autour des directions ϕ = 0, π (le long de l’axe x). La Fig. 3
montre que ces deux indicateurs présentent un optimum pour la fréquence en bord de bande f = f0 = 5.69 Hz et pour une 
source en position B, réalisant ainsi une source directive. Dans la Section 3, cette prédiction est testée expérimentalement. 
Nous utilisons une technique de profilométrie par transformée de Fourier (FTP) qui permet une mesure résolue en temps et 
en espace du champ des « vagues », c’est-à-dire de l’élévation de la surface libre du fluide (Fig. 4), ainsi que la reconstruc-
tion du champ complexe η1(x, y) correspondant à la fréquence d’excitation de la source, Eqs. (7)–(8). Les expériences sont 
conduites pour une position de la source en A, non directive (Section 3.2), et pour une position de la source en B, pour 
laquelle la directivité est attendue à la fréquence f0 (Section 3.3). Nous observons que la directivité est affaiblie – Fig. 7(a) 
(champ expérimental) à comparer à (c) (champ théorique). Ceci est dû à une atténuation très forte dans le système réel, 
qui est déterminée en ajustant ce paramètre dans la simulation numérique. Dans tous les cas, un excellent accord expé-
rience/théorie est alors trouvé, qualitativement sur les champs spatiaux, Figs. 5 et 7 (a)–(b) et (d)–(e), et quantitativement 
sur les diagrammes d’émission, Figs. 6 et 8. L’origine de cette forte atténuation est probablement liée au comportement 
dynamique des ménisques sur les cylindres, qui n’est pas pris en compte dans la modélisation. Cette étude expérimen-
tale révèle que l’hyperdirectivité attendue est sensible à des écarts au cas idéal d’un milieu parfaitement périodique et sans 
pertes. Cependant, parce que l’équation modèle de Helmholtz n’est pas mise en défaut, nous terminons notre étude à la Sec-
tion 4 par une étude numérique plus systématique de la directivité de la source en fonction de l’atténuation et du désordre 
dans le milieu, effets qui peuvent exister dans tous les contextes d’ondes. Il est montré que l’atténuation et le désordre 
ont le même effet, fort à la résonance, d’affaiblissement des interférences constructives qui produisent la directivité. Pour 
conclure, il est cependant probable que l’affaiblissement de la directionalité observée dans une expérience de laboratoire 
soit moins important à l’échelle des vagues en mer, puisque l’atténuation est moins forte à cette échelle.

1. Introduction

Man-made photonic and phononic crystals have generated an intense research interest since the 1990s for their ability 
to produce unusual properties of wave propagations [1–3]. This is because it is possible to engineer the band structure to 
constrain the wave to follow peculiar directions or to produce complete band gaps where wave propagation is forbidden. 
Resulting superlensing and self-collimation effects have been reported for electromagnetic [4,5], acoustic [6,7], and elastic 
[8,9] waves. More recently, the interest has been extended to the case of gravity water waves [10,11], because they share, 
in some limiting cases, the same wave equation as electromagnetic and acoustic waves. However, surface waves have a 
complexity that is often neglected. Dispersive, non-linear in usual conditions, they are also susceptible to be affected by 
evanescent modes in the bulk of the liquid as soon as the bathymetry of the sea bottom varies rapidly and may experience 
strong damping. To cite Richard Feynman, “[water waves] that are easily seen by everyone and which are usually used 
as an example of waves in elementary courses [. . . ] are the worst possible example, because they are in no respects like 
sound and light; they have all the complications that waves can have” [12]. Thus, the phenomena expected by the simple 
inspection of the Helmholtz equation have to be considered carefully by means of experimental studies, able to say whether 
or not the phenomena are robust.

In 2010, Mei and co-authors [13] proposed the design of a highly directional source for water waves based on the band 
structure of a periodic array of surface-piercing cylinders. The idea behind directionality is to work at a frequency very close 
to the complete band gap where only small angular regions allow wave propagation, most of the directions being otherwise 
forbidden. In this paper, we inspect experimentally the feasibility of such a directional source. This is done by using a 
space–time resolved profilometry technique able to provide quantitative measurements [14–16] beyond the usual qualitative 
visualizations. The paper is organized as follows. In Section 2, we use numerical calculations of Multiple Scattering Theory 
(MST) to design the crystal. Following [13], two positions of the source are considered, among which only one provides the 
expected directionality, when working at the band edge frequency. Section 3 presents the experimental results in the same 
conditions. It is found that the wave experiences a high attenuation, or damping, which weakens directivity. Nevertheless, it 
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Fig. 1. (Color online.) Geometry of the 6 × 6 square lattice (a) side view and (b) top view, (c) experimental set-up; A and B show the two source positions 
inside the array.

is shown that the wave field still satisfies the Helmholtz equation, which is proven by computing MST solutions using the 
damping as adjustable parameter. The fitted damping is unexpectedly high, and might be attributable to the dynamics of the 
contact lines of the meniscus at the cylinders [17,18]. This attenuation is responsible for the some loss of directivity, not only 
because less energy emerges from the array, but because it changes the directivity function, that is the directionality of the 
structure. Accounting for actual attenuation in the numerics allows us to get an excellent agreement with the experimental 
results. As the validity of the Helmholtz equation is not in question, we end our study in Section 4 by inspecting more 
systematically the influence of the attenuation and of the disorder on the efficiency of the directional source.

2. Configuration of the set-up to produce directive source

The propagation of water waves, in the frequency regime (frequency ω), is described by the Helmholtz equation

(∇2 + k2)η(r,ω) = 0 (1)

where η is the water height and k is the wavenumber. This equation is obtained under the assumptions that the flow is 
incompressible, irrotational, inviscid, and that the water depth at rest, h0, is constant (flat sea bottom) [19]. Then, k is given 
by the dispersion relation for linear water waves

ω2 = g k tanh(kh0) (2)

with g the gravity constant. In the presence of rigid, surface piercing, obstacles, Neumann’s boundary condition applies

∂nη|Rig.Obs. = 0 (3)

with ∂n the normal derivative. This reflects the slip boundary condition for inviscid fluid and omits the presence of meniscus. 
These simplified equations for water waves present an analogy with acoustic and electromagnetic waves. In this section, we 
follow the idea of Ref. [13] to build a set-up based on the band structure of a crystal and able to produce an ultra-directional 
source of water waves.

The crystal consists of vertical rigid surface piercing cylinders of radius a = 10 mm, equally spaced on a square array of 
period d = 30 mm, resulting in a filling fraction φ = πa2/d2 ≃ 0.35. The structure, comprised of 6 × 6 cylinders, is immersed 
in a water layer of depth h0 = 33 mm (Fig. 1). The small dimension of the array will be justified later, in view of the 
attenuation experienced by the wave in practice. Two positions of the source are inspected. The position A is at the center 
of the square array; in the position B, the source is shifted by d/2 along the x-axis; this latter position of the source point 
has been shown to produce the highly directional source [13]. The band structure of the infinite crystal has been given in 
[13], exhibiting a complete band gap below the frequency f0 being the band-edge frequency ( f0 = 5.69 Hz in our case). 
Just above the band edge, the directions %K (ϕ = 0, π along x and ϕ = ±π/2 along y in Fig. 1(b)) begin to propagate with 
a high density of states. It results an angular band gap able to narrow the angular distribution of a beam generated by a 
source point located inside the array. This is the basic idea behind the concept of ultra directional wave source.

We performed a numerical calculation of the solution in the idealized case of Eqs. (1)–(3) using Multiple Scattering 
Theory (MST, see, e.g., [13,20]) for our array of rigid cylinders and for a line source emitting cylindrical waves (at position A 
or B). For the ease of comparison with experimental measurements, and to quantify the angular distribution of the water 
wave beam, we use the normalized directivity function of the wave intensity,
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Fig. 2. (Color online.) Directional emission, ftot(ϕ) in Eq. (4), of the source embedded in the lattice (a)–(b) with the point source at A and (c)–(d) with the 
point source at B. Frequencies are (a) and (c) at f = f0 = 5.69 Hz (band edge frequency), (b) and (d) at f = 6.13 Hz. Corresponding wave fields are shown 
in Figs. 6(c) and (f) for position A and 8(c) and (f) for position B.

ftot(ϕ) ≡ 2π
|η(r,ϕ)|2

∫ 2π
0 dϕ |η(r,ϕ)|2

(4)

with η(r, ϕ) being calculated at a distance r from the source (in practice, r = 120 mm will be used). Note that, for this 
low value of r (wavelengths will be typically in the range from 30 to 60 mm), ftot does not correspond to the definition 
of the directivity function, which is usually defined in the far-field region. Again, this is due to the actual damping in the 
experiments that renders unaccessible the far-field region; nevertheless, we have checked that the tendencies observed 
in this quite-near field remain the same in the far field. MST solutions have been calculated for f = f0 = 5.69 Hz and 
f = 6.13 Hz. The directivity functions are reported in Fig. 2 for the point source at positions A and B. As observed in 
[13], the point source at position A does not reaches directional emission, while the non-symmetrical position B reaches 
this goal, because of the cut off of the emission branches at ϕ = π/2, 3π/2 (along y). Also, the lobe corresponding to the 
beam emerging at ϕ = 0 is lower than the one corresponding to the beam emerging at ϕ = π because the distance of 
propagation from the source is higher. Note that this relative weakness of the lobe at ϕ = 0 is not due to the attenuation 
inherent to water wave (and which occurs in infinite medium) since this latter is not taken into account in the present 
MST calculations, but to the attenuation due to multiple scattering by the cylinders (three rows between the source and 
the array exit in the direction ϕ = 0 and only two rows in the direction ϕ = π). The wave fields corresponding to these 
four cases will be reported later in Figs. 6(c) and (d) and Figs. 8(c) and (d) respectively, for a comparison with experimental 
wave fields.

Next, to quantify the emission of the array, we define two quantities: (i) the total cross section

σt =
2π∫

0

dϕ |η(r,ϕ)|2 (5)

which represents the wave energy, from the source, which emerges from the array, and (ii) this quantity normalized by σ inc, 
which represents the wave energy, from the source, in the absence of the array. Also, as an indicator of the proportion of 
the wave energy emerging in beams along the x-direction, we use

D = 1
σt

⎡

⎢⎣

$ϕ/2∫

−$ϕ/2

dϕ |η(r,ϕ)|2 +
π+$ϕ/2∫

π−$ϕ/2

dϕ |η(r,ϕ)|2
⎤

⎥⎦ (6)

and isotropic emission would correspond to Diso = $ϕ/π; in the following, we will use $ϕ = 2π/45 (8◦). Thus, the value 
of D will be compared to the isotropic emission value Diso ≃ 0.04. Obviously, highly directional sources have to correspond 
to high values of the quantities σt/σ inc and D.

Fig. 3 reports the variation of σt/σ inc and D as a function of the frequency. The range of considered frequencies covers 
the complete band gap ( f between 5 and 5.5 Hz) and the band edge frequency f0. From both figures, the following tenden-
cies are observed, in agreement with [13]: In the full band gap, the wave remains trapped within the array, all directions 
being associated with evanescent waves, and very few energy can escape from the array (however, non-zero values are 
found since the energies are calculated in the near field where the evanescent waves are not completely damped). Only the 
position B results in high directivity, with D about 10 times higher than the reference isotopic emission; as expected, this 
is obtained for the band edge frequency f0 = 5.69 Hz.

We will now confront this prediction with results obtained in the frame of a laboratory experiment, and it is useful to 
note that, in the context of water waves, the presented modeling has a high level of idealization.
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Fig. 3. (Color online.) (a) Total cross section σt/σ inc as a function of the frequency. (b) Directivity D, reflecting the energy transported by the beams 
emerging along the x-direction (with angular aperture "ϕ = 8◦).

Fig. 4. (Color online.) (a) Picture corresponding to the measurement domain, as recorded by the camera, (b) typical instantaneous measured field using FTP 
(the colorbar is in mm, for the values of η(r, t)), (c) real part of the complex field corresponding to the linear field η1(r), Eqs. (7)–(8).

3. Experimental results

3.1. Experimental measurement of the wave field

The experimental set-up is shown in Fig. 1. The lattice is composed of brass cylinders placed in a rectangular tank, filled 
with water whose depth at rest is h0 = 33 mm. The dimension of tank is 174 × 68 cm2. The point source is realized using a 
linear motor equipped with a thin tip, moving vertically with a sinusoidal motion at frequency f (at position A or B, Fig. 1). 
The wave field is measured using an optical method (Fourier Transform Profilometry) adapted by our group to achieve 
space–time resolved measurements of the free surface elevation [21–23]. This technique requires diffusive reflection of light 
on the liquid surface, which is achieved by adding white pigments. As a compromise between the diffusive properties of 
the liquid and the low reflection of the waves at the tank wall, we use pigments that produce an attenuation α = 2.5
to 3.5 m−1 in the frequency range of 5.5–6.2 Hz [23]. The measurement domain is 250 × 350 mm2, with a pixel size of 
0.37 mm (Fig. 4(a)). The temporal resolution is controlled by the frame rate of the high-speed camera, which is fixed at 
100 Hz for our experiments. A typical instantaneous field of the free surface elevation η(r, t) measured by FTP is shown in 
Fig. 4(b). In this example, the point source is located at position A; as expected, the wave has a very low amplitude (about 
0.1 mm, while the source generates waves with an amplitude of about 1 mm), and it is not concentrated onto a thin beam. 
Also, the field is not smooth; this is partially due to the presence of noise in the measurements, but is also attributable to 
the non-linear generation of harmonics, even at these low wave amplitudes.

In order to evaluate quantitatively the amplitude and phase of the field corresponding to the fundamental frequency 
(hereafter referred to as the linear field), and to the harmonics generated by the non-linearities, the signal η(r, t) is expanded 
as a Fourier series:

η(r, t) =
∑

n

ηn(r)e2inπ f t (7)
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Fig. 5. (Color online.) Point source at A. Fields of |η(r)|2 measured with FTP and calculated using MST. (a)–(b)–(c) at the band edge frequency f = 5.69 Hz
and (d)–(e)–(f) at f = 6.13 Hz. (a) and (d) show the measured |η1(r)|2, Eq. (8), (b) and (e) show the fields |η(r)|2 computed with MST including attenuation 
to get the best agreement with the experiments; in (c) with α = 13 m−1 and in (d) α = 10 m−1, (c) and (f) show the reference fields |η(r)|2 calculated 
numerically without attenuation (α = 0).

where f is the frequency of the point source, and where the ηn are complex amplitudes. Notably, the linear field η1(r) can 
be computed from the measured fields

η1(r) = 2
tf

tf∫

0

dt η(r, t)e2iπ f t (8)

with tf a time chosen as a multiple of the wave period. Fig. 4(c) shows the real part of the linear field η1(r) e2iπ f t cor-
responding to the total field of Fig. 4(b). To measure the whole field emerging from the array and to characterize the 
directivity function at r = 120 mm, we perform two measurements as presented above, separately for x > 0 and x < 0 (by 
moving the camera). We checked that for the source in position A, the fields are symmetric with respect to the y-axis and 
only the one obtained for x < 0 will be reported. For the source in position B, the whole field will be presented.

3.2. Results for the point source at A

We have seen in Section 2 that this position does not lead to an efficient directional emission, in agreement with the 
numerical results presented in [13] for a similar configuration. Typical results are shown in Fig. 5(a) at the band edge 
frequency f = f0 = 5.69 Hz and (d) at f = 6.13 Hz, in the pass band. In these figures, we reported |η1(r)|2, from which the 
directivity functions defined in Eq. (4) can be deduced, see the red curves in Fig. 6. As expected, the source is not directive, 
with multiple lobes. To further compare with the numerics, we report in Figs. 5(c) and (f) the fields of |η(r)|2 obtained with 
MST as done in Section 2 for a lossless fluid. The disagreement is evident when the losses are not taken into account.

To account for the attenuation, we computed the theoretical solution using MST, but adding the attenuation α which 
has been characterized accurately for our experiments in a previous study (α ∈ [2.6; 3.5] m−1, see [23]). The obtained 
patterns, not reported, do not coincide with the present experimental results. Thus, we computed MST solutions using α
as an adjustable parameter. Optimized α-values are obtained, which nicely reproduce our experimental results, both for the 
wave intensity patterns (Figs. 5(b) and (d)) and for the directivity functions (blue curves in Fig. 6, to be compared with the 
experimental red ones). The optimized α-values (13 m−1 and 10 m−1, respectively) are significantly higher than the ones 
measured in the absence of the cylinders. We do not have firm explanation for this apparent, or effective, attenuation due 
to the array, but we think that it can be attributable to the dynamics of the contact line at the meniscus, which has been 
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Fig. 6. (Color online.) Point source at position A. Total directivity functions ftot(ϕ), Eq. (4), measured at r = 120 mm. Red curves, experimental, deduced 
from the measurement of |η(r)|2. Blue curves, numerical results using MST and with attenuation (a) α = 13 m−1 and (b) α = 10 m−1.

Fig. 7. (Color online.) Point source at position B. Same representation as in Fig. 5.

shown to introduce significant damping of water waves, see, e.g., [17,18]. Beyond the interest to understand such damping 
mechanism and the possible collective effect of the meniscus in periodic arrays, this observation poses the question of 
whether or not the source directivity is robust or not. This will be inspected further for a source located at position B, 
where high directivity is expected.

3.3. Results for the point source at B

For a point source located at B, we perform the same measurements and data processing as previously. Results are 
reported in Figs. 7 and 8. The numerical MST calculations have been performed with the optimized α-values determined 
from the results obtained for a source located at A. With these α-values, the agreement is again excellent between exper-



696 M. Chekroun et al. / C. R. Mecanique 343 (2015) 689–699

Fig. 8. (Color online.) Point source at position B. Same representation as in Fig. 6.

imental and numerical results, both in the qualitative aspect of the wave intensity fields (Fig. 7) and in the quantitative 
directivity functions (Fig. 8). However, as observed for the source at A, the attenuation produces a significant modification 
in the angular response of the array. In the present case, the directivity of the source is weakened. This is visible in the 
directivity functions, with the appearance of additional lobes and the split of the central lobes along the x-direction, but is 
more dramatic because the waves emerging from the array in these directions are damped after few wavelengths.

These second experiments confirm the sensitivity of the directional emission to the damping. However, as the numerics 
are able to describe the experimental results, we can conclude that the mechanism is sensitive to damping for any context 
of waves being described by the Helmholtz equation. In the following section, we inspect numerically this sensitivity as a 
function of the damping and as a function of the disorder in the periodic arrangement, which are common deviations with 
respect to the ideal situation of a perfectly periodic array in a lossless medium.

4. Influence of attenuation and disorder on directivity

Guided by the experimental results from previous section and owing to the agreement between experimental and nu-
merical results with high attenuation factor, we inspect numerically the effects of two possible sources of deviation with 
respect to the ideal case: the attenuation of the medium (whatever the source of this attenuation is) and the disorder in 
the positions of the cylinders. The MST calculations are performed for the 6 × 6 lattice at the band edge frequency and for 
a source at B, where the ideal calculation (perfect periodic lattice and lossless medium) predicts a highly directional source.

4.1. Influence of attenuation

We considered four values of attenuation, i.e. α = 1, 3, 5, and 10 m−1. In the considered frequency range, this corre-
sponds to waves that are typically attenuated after 20, 7, 4 and 2 wavelengths (wavelengths are typically in the range from 
3 cm to 6 cm). Results are compared to the ideal case α = 0, realizing high values of σt/σ inc and of D. Fig. 9 reports the 
evolutions of the normalized total cross sections σt/σ inc and of the parameter of directivity D as a function of the frequency 
for various α-values.

The significant decrease in the normalized total cross sections observed in Fig. 9(a) is not a direct consequence of 
attenuation. Indeed, both the incident wave and the scattered waves are damped when propagating. We have checked 
that σ inc ∝ e−2αr when varying α, as expected. However, σt decreases faster, resulting in the observed decrease of the 
normalized value, near the band edge frequency f0 = 5.69 Hz. At f0, σt/σ inc decreases by a factor 2 for α going from 0 
to 1 m−1 (for α = 1 m−1, the wave is damped typically after 20 wavelengths, being about 5 cm), while it remains almost 
constant at f = 6.13 Hz. This is not so surprising if we keep in mind that the band edge corresponds to a Bragg resonance, 
that is constructive interferences. In principle, all the waves interfere with the same amplitude, and the efficiency of the 
interferences increases with the large “time” spent by the wave within the array. Here, the damping produces a progressive 
loss of energy of the successive waves that interfere, resulting in a weakness of the resonance efficiency.

The decrease in the directivity of the source is less pronounced, with a rather linear decrease of D with α. We conclude 
that the main effect of the attenuation is to destroy the resonance mechanism on which the concept of directional source is 
based. The wave still emerges preferentially along the expected direction, but with an amplitude that has been considerably 
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Fig. 9. (Color online.) (a) Normalized total cross section σt/σ inc and (b) factor of directivity D as a function of the frequency f for various attenuation 
factors α (in m−1).

decreased. Only low attenuations, as can be obtained with electromagnetic, acoustic or elastic waves, leave the resonance 
intact.

4.2. Influence of disorder on the position

In addition to the losses of the medium, disorder in the position or the strength of the scatterers in the array can affect 
the expected directivity. This is inspected by means of a disorder in the positions of the cylinders within the array. In MST 
calculations, we shift the position of each cylinder within a disc of radius εd. The final position of each cylinder is chosen 
randomly, resulting in a perturbed periodic arrangement of the lattice. Finally, to avoid overlapping of the cylinders, ε has 
to be smaller than 1/2 − a/d ∼ 16%, and we choose ε = 0, 5, 10, 15%.

Fig. 10 collects the results. We reported, for one realization of the disordered structure, the normalized total cross 
section σt/σ inc and the directivity parameter D as a function of the frequency for various ε values. The same kinds of 
dependence are reported for the quantities averaged over 40 realizations. This statistical average is believed to correspond 
to the most probable behavior which that of each individual realization has been close to. This becomes questionable when 
strong disorder is considered, leading to more complicated situations, as the Anderson localization. A typical manifestation 
of such complication is the difficulty to make the simple average to converge, because of strong (rare) events that devi-
ate significantly from the mean behavior, and this seems to appear for ε = 15%. For smaller disorder, say around 5%, the 
directivity is maintained on the mean, and one particular realization is reasonably close to this mean. In these cases, we 
observe an important decrease in the energy emerging from the array at the resonance. Again, this is due to a weakening 
of the constructive interferences that require a strict periodicity. Because of the disorder, some of the waves, which should 
interfere, are lost (they emerge from the array with any direction), resulting in an effective attenuation due to disorder. Con-
trary to the case of an attenuation due to the propagation medium, this effective attenuation does not affect non-resonant 
propagation; there, the wave experiences mainly single scattering, not sensitive to the exact position of the scatterers.

5. Concluding remarks

In this paper, we have investigated the possibility of exploiting the band structure of a periodic square array to produce 
the directional sources for water waves, as suggested in [13]. This has been done in an experiment performed at the labo-
ratory scale, revealing the strong influence of the attenuation, which partly impedes the expected directivity. Nevertheless, 
we did not observe deviations to the Helmholtz equation due to the many hypothesis on the fluid and on the sea bottom 
variation that the derivation of the Helmholtz equation requires. Next, we have confirmed numerically that the attenuation, 
being either characteristic of the losses in the propagation medium or due to an effective attenuation because of disorder, 
weakens the expected directivity. This is because resonances involve long travels of the wave within the periodic structures, 
able to produce the resonant constructive interferences, but inherently more sensitive to any loss of energy within the array.

Our conclusion is twofold. (i) In the context of water waves, applications to the larger scale of the ocean waves remain 
feasible. Indeed, for waves of metric wavelength scale, losses are smaller. Nevertheless, care should be taken in the context 
of the ocean that non-linearities do not affect resonance. Work is in progress in this direction. (ii) Our conclusion concerning 
the sensitivity of resonant mechanisms is generic to any context of waves. Bragg-type resonances require that the successive 
waves, which are expected to interfere constructively, are identical (in amplitude and phase). Any deviation with respect 
to this perfect situation has important consequences on the resonance. This is probably a superiority of the metamaterials 
with subwavelength structure, since they are inherently less sensitive to local modifications of the microstructure.
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Fig. 10. (Color online.) Influence of the disorder on the directional emission. (a)–(b) Total directivity function σt/σ inc and (c)–(d) directivity parameter D. 
(a) and (c) correspond to a typical response of the structure for one realization of the disordered structure (with amplitude of disorder measured by ε); 
(b) and (d) correspond to the response of the periodic-on-average structure (here 40 averages have been performed).

Acknowledgements

The authors acknowledge the financial support of the “Agence nationale de la recherche” through grant ANR Dynamonde 
Project No. ANR-12-BS09-0027-01.

References

[1] C.M. Soukoulis (Ed.), Photonic Band Gap Materials, Kluwer Academic, Dordrecht, The Netherlands, 1996.
[2] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 

2011.
[3] P.A. Deymier (Ed.), Acoustic Metamaterials and Phononic Crystals, vol. 173, Springer, 2013.
[4] I. Bulu, H. Cayagan, E. Ozbay, Highly directive radiation from sources embedded inside photonic crystals, Appl. Phys. Lett. 83 (16) (2003) 3263–3265.
[5] H. Caglayan, I. Bulu, E. Ozbay, Off-axis directional beaming via photonic crystal surface modes, Appl. Phys. Lett. 92 (9) (2008) 092114.
[6] C. Qiu, Z. Liu, Acoustic directional radiation and enhancement caused by band edge states of two dimensional phononic crystals, Appl. Phys. Lett. 89 

(2006) 063106.
[7] M. Ke, Z. Liu, P. Pang, C. Qiu, D. Zhao, S. Peng, J. Shi, W. Wen, Experimental demonstration of directional acoustic radiation based on two dimensional 

photonic crystal band edge states, Appl. Phys. Lett. 90 (2007) 083509.
[8] W. Liu, X. Su, Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals, Phys. Lett. A 374 (2010) 2968.
[9] B. Morvan, A. Tinel, J.O. Vasseur, R. Sainidou, P. Rembert, A.C. Hladky-Hennion, N. Swinteck, P.A. Deymier, Ultra-directional source of longitudinal 

acoustic waves based on a two-dimensional solid/solid phononic crystal, J. Appl. Phys. 116 (21) (2014) 214901.
[10] M. Torres, J.P. Adrados, F.M. de Espinosa, D. Garcia-Pablos, J. Fayos, Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled 

bottom, Phys. Rev. E 63 (1) (2000) 011204.
[11] Y. Shen, K. Chen, Y. Chen, X. Liu, J. Zi, Self-collimation in liquid surface waves propagating over a bottom with periodically drilled holes, Phys. Rev. E 

71 (3) (2005) 036301.
[12] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. I, Addison–Wesley, Reading, MA, USA, 1963, Chaps. 51–54.
[13] J. Mei, C. Qiu, J. Shi, Z. Liu, Enhanced and directional water wave emission by embedded sources, Wave Motion 47 (3) (2010) 131–138.
[14] P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, A. Maurel, Different regimes for water wave turbulence, Phys. Rev. Lett. 107 (21) (2011) 

214503.
[15] A. Przadka, S. Feat, P. Petitjeans, V. Pagneux, A. Maurel, M. Fink, Time reversal of water waves, Phys. Rev. Lett. 109 (6) (2012) 064501.
[16] C.P. Berraquero, A. Maurel, P. Petitjeans, V. Pagneux, Experimental realization of a water-wave metamaterial shifter, Phys. Rev. E 88 (5) (2013) 051002.
[17] D.M. Henderson, J.W. Miles, Surface-wave damping in a circular cylinder with a fixed contact line, J. Fluid Mech. 275 (1994) 285–299.



M. Chekroun et al. / C. R. Mecanique 343 (2015) 689–699 699

[18] L. Jiang, M. Perlin, W.W. Schultz, Contact-line dynamics and damping for oscillating free surface flows, Phys. Fluids 16 (3) (2004) 748–758.
[19] P. Cobelli, V. Pagneux, A. Maurel, P. Petitjeans, Experimental study on water-wave trapped modes, J. Fluid Mech. 666 (2011) 445–476.
[20] C.M. Linton, P.A. Martin, Multiple scattering by random configurations of circular cylinders: second-order corrections for the effective wavenumber, 

J. Acoust. Soc. Amer. 117 (6) (2005) 3413–3423.
[21] P.J. Cobelli, A. Maurel, V. Pagneux, P. Petitjeans, Global measurement of water waves by Fourier Transform Profilometry, Exp. Fluids 46 (2009) 

1037–1047.
[22] A. Maurel, P.J. Cobelli, V. Pagneux, P. Petitjeans, Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilom-

etry, Appl. Opt. 48 (2) (2009) 380–392.
[23] A. Przadka, B. Cabane, V. Pagneux, A. Maurel, P. Petitjeans, Fourier transform profilometry for water waves: how to achieve clean water attenuation 

with diffusive reflection at the water surface?, Exp. Fluids 52 (2) (2012) 519–527.


