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We present an experiment where a stretched vortex is experiencing quasi-periodical turbulent bursts
inside a laminar environment. In previous studies (Cuypers et al., 2003 Phys. Rev. Lett., 91, 194502,
Cuypers et al., 2004 J. Turb., 5), the classical k−5/3 decay of the spectrum resulting from the evolution
of this burst has been characterized and interpreted in the framework of Lundgren’s mechanism
(Lundgren 1982 Phys. Fluids 25 2193). In this paper, the flow is further characterized in both the
physical and the spectral spaces using a statistical exploitation of phase averaged particle image
velocimetry measurements.

1. Introduction

In previous studies [1, 2], the authors have shown that the studied flow, i.e. the turbulence
resulting from the quasi-periodical burst of a stretched vortex inside a laminar environment
was responsible for the build-up of a Kolmogorov k−5/3 energy spectrum. The construction of
this spectrum with time has been studied. It has been shown that the −5/3 exponent results from
the time-averaged contribution of the turbulent burst over its typical evolution time Tv −∼ 1.5 s.
Instantaneously, the energy spectra exponents have been shown to follow a transition between
−1 and −2 over Tv .

The results have been compared and interpreted with the Lundgren stretched spiral vortex
model [3] that shows some common features with the experimental flow. The Lundgren
vortex is an asymptotic solution of the Navier-Stokes equation exhibiting an energy cascade
mechanism resulting from a single structure evolution. This mechanism results from the
evolution of the non-axisymmetric vorticity part of the structure under the influence of two
ingredients: the uniform stretching imposed to the structure and its own differential rotation.
In the Lundgren vortex model, the initial vorticity field is a free parameter for which the only
constraint is the presence of a differential rotation. Different choices for the initial vorticity
field yield different spiral structures and finally different instantaneous spectra. As shown by
Gilbert [4], a k p power law region is expected for these spectra where p is dependent on
the spiral structure. The key feature of the Lundgren model is that the time-averaged energy
spectrum of the structure results in an inertial range with a k−5/3 decay of the spectrum
independently of the initial condition.

In [2], computations have been performed for a particular solution of the Lundgren vortex in
the form of single’s spiral vortex proposed by Pullin et al. [5], with the stretching a, the initial
lateral extension of the burst R and the Reynolds number Re taken in the experimental range.
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The evolution of this particular solution has been compared with that of the experimental
structure. A good agreement with the experiment has been obtained for the inertial range
and for the evolution time of the structure Tv . However, in [1, 2] all the quantitative results
were obtained from a time single point hot film measurement, using the delicate local Taylor
hypothesis [6] in a critical condition. Moreover, since in this procedure computations of the
spectra over small time records imply poor spectral resolution, a minimum time interval �t had
to be chosen for the computation of the spectra; therefore, the ability to compute instantaneous
spectra was intrinsically limited.

In this paper, we present new results on this experiment using Particles Image Velocimetry
(PIV) measurements that give direct access to the spatial velocity fields.

First, the characterization of the vortex burst in the spatial domain is realized. The main result
is the decomposition of the velocity field as a mean velocity 〈U〉(r, t) plus a perturbation field
u′(r, t). The originality of this decomposition is that the mean fields correspond to ensemble
averages (and not time averages). This is why the mean velocity remains time dependent. Note
also that this decomposition, based on ensemble averages, is useful for any periodical flow
(e.g. wake flows).

Second, instantaneous Power Spectrum Density (PSD) are calculated directly from the
velocity fields. Therefore, no use of the Taylor hypothesis is required. The obtained results
confirm the temporal evolution of the instantaneous spectra, and the k−5/3 law is recovered
when instantaneous energy spectra are averaged over the whole burst lifetime.

In addition to the interest of using PIV measurements in our particular study, this paper also
gives the opportunity to present for the first time a new technique to directly determine the
instantaneous experimental PSD behaviour, with no need of time/space correspondence.

2. Experimental set-up

The experimental set-up is the same as the one presented in [1, 2]. A stretched vortex is
generated in a low velocity hydrodynamic channel with a turbulent rate of less than 0.5%. A
small step added to a laminar boundary layer profile in the bottom wall produces the initial
vorticity that is strongly enhanced by the stretching produced by sucking the flow through
slots on each lateral wall (figure 1). Varying the experimental parameters causes two regimes
to occur: in the first one, the vortex is stable, while in the second one the vortex is experiencing
periodical bursts. A laser-induced fluorescence visualization of the flow in this second regime
is shown in figure 2.

We focus on this second regime which is characterized by the following experimental
values: R = 3 cm (lateral extension of the burst), Re = �

ν
= 4000, with � the vortex circulation

at r = R; a coarse estimation of the stretching is given by a = [1–10 s−1] (these values are
obtained from [7]). These experimental values correspond to a suction flow-rate Q2 = 7.5 l/mn
and a downstream flow-rate Q1 = 12.5 l/mn (figure 1).

Figure 1. Experimental set-up.
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Figure 2. Laser-induced fluorescence cross-section visualization for one cycle of the flow, (a) t = 1 s, (b) t = 3 s,
(c) t = 5 s, (d) t = 5.5 s. The hot film position is pictured as a red cross on the visualization. Flow goes from right to
left. See also animation 1.

The velocity field of the flow is measured thanks to PIV measurements. Our PIV system is
composed of a high-resolution camera (1280 × 1024 pixels) capturing images at a frequency of
2 Hz and a double-pulsed Nd:Yag laser delivering 12 mJ at each pulse. We use a measurement
area of 5 cm × 4 cm. The interrogation window W chosen is 32 × 32 pixels2. The spatial
resolution obtained is 86 × 64 vectors. The PIV measurements are performed in a cross-section
of the vortex at the middle of the channel [(x, y, z = 0) plane] and provide therefore a measure
of U = Ux ex + Uyey.

PIV measurements are synchronized with a hot film measurement. The beginning of the
hot film acquisition is triggered by the first PIV measurement and is continuous afterwards.
To achieve hot film velocity measurements with minimum flow and optical perturbations, the
hot film is introduced at 45◦ through the lateral wall (figure 3). The probe itself is oriented

at 45◦ so that the velocity recorded is U =
√

U 2
x + U2

y, and is shifted of 1 mm from the z = 0

plane to avoid any intersection with the PIV laser sheet. Finally, the hot film probe is painted
with a rhodamine mixture, so that any green laser light reflected by the probe is shifted to
red light and is invisible to the camera which is equipped with an optical green filter pass
band.

Figure 3. Experimental set-up for synchronized PIV and hot film acquisition.
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3. Data processing

Let us recall the main features of our flow that motivate our data processing. We are interested
in the temporal build-up of the turbulent energy cascade. Our experiment produces a turbu-
lent burst that evolves in time, without forcing. This burst occurs periodically, allowing for
ensemble averages. Here, ensemble average means average over lots of events, each taken at
the same instant in each cycle.

PIV measurements give direct instantaneous velocity fields. To make possible ensemble
averages at any instant of the cycle, these fields have to be time located within the cycle. To do
that, we use the temporal velocity signal measured by the hot film probe (with absolute time)
on which the cycles can be identified, this signal being synchronized with PIV. The treatment
of the data is then as described below.

A typical velocity signal from the hot film shows the periodicity of the flow (a period of
duration T ∼ 10 s is formed of a laminar phase and a turbulent phase; see figure 4). Times tn
for the beginning of the nth cycle are determined via an ad hoc post-processing of this signal
detailed in [2].

Simultaneously to the hot film acquisition, a large number of PIV velocity fields are recorded
(N ∼ 4000 corresponding to about 200 cycles). The acquisition time ta of each velocity field
is first rescaled using t = ta − tn , with 0 ≤ t ≤ T. Hence, all velocity fields, which initially
come from different cycles, are indiscriminately time located (with time t) in a unique (virtual)
cycle.

With an acquisition frequency of the hot film of 400 Hz, the whole cycle [0, T ] is naturally
divided into 4000 time intervals. To obtain about 10 fields in each interval, we should record
40 000 fields. Because we cannot do that, we use the following procedure: The time interval
[0, T ] is divided into short sub-intervals Ii = [ti , ti + �t], with �t � T but large enough
to have several velocity fields in each interval. With �t = 0.1 s, approximately 40 velocity
fields are recorded at time t ∈ Ii . These velocity fields are denoted as Up(r, t), with index by
p = 1, . . . , Np ∼ 40. It is now possible to define the ensemble average at time ti

〈U〉(r, ti ) ≡ 1

Np

∑
p

Up(r, t ∈ Ii ). (1)

Figure 4. Example of two cycles on a typical hot film velocity signal. Times of PIV measurements are symbolized
as black vertical lines; times tn for the beginning of the turbulent parts are symbolized as red thick vertical lines.
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To define the mean fields (from which fluctuation fields will be deduced), another difficulty
has to be taken into account. In the time evolution of the turbulent burst (see figure 2 and
animation 1), we identify a coherent structure remaining over the whole cycle. This structure
is coherent in the sense that it concentrates the vorticity but also in the sense that it coherently
evolves in time along a trajectory that only slightly differs from one cycle to another. This has
to be opposed to the vorticity patches that randomly appear when the vortex explodes, with
no coherence from one cycle to another.

We identify the mean field as the ensemble average that conserves this coherent structure
field, whose centre is defined at the maximum vorticity location. Thus, even if the trajectories
of this structure differ only slightly, we have to perform a recentring of the instantaneous fields
over the mean trajectory before summing them as in equation (1). For t ∈ Ii , Rp(t) denotes
the vector position of maximum vorticity of ωp ≡ ∇ × Up (ωp = ωp ez is computed from the
velocity signal). The mean trajectory of the coherent structure is

〈R〉(ti ) ≡ 1

Np

∑
p

Rp(t ∈ Ii ),

and the spatial shift is δrp ≡ Rp − 〈R〉
The shift δrp is determined as follows: At a first step, it is set to zero and 〈ω〉0(r, ti )

is calculated from equation (1) as the ensemble average without centring. The shift δrp is
then estimated as the values that maximizes the intercorrelation function ρ(r, ti ) between
ωp(r, t ∈ Ii ) and 〈ω〉0(r, ti ):

ρ(r, ti ) ≡
∫

s
〈ω〉0(r0, ti )ωp(r0 + r, t)dr0,

ρ(δrp, ti ) = max[ρ(r, ti )], (2)

where S is the same surface for all p values. In this definition, the shift gives the translation
needed to put the coherent structure of the pth field on its mean trajectory (estimated at zero
order). All fields can now be centred using the change of co-ordinates r → r − δrp, and
the ensemble average can be taken as in equation (1). Note that we could iterate the process
using 〈ω〉0(r, ti ) obtained after the first centring instead of 〈ω〉1(r, ti ). It has been checked that
no significant difference occurs after the first iteration. The mean fields being defined, the
decompositions

Up(r, t ∈ Ii ) ≡ 〈U〉(r, ti ) + u′
p(r, t),

(3)
ωp(r, t ∈ Ii ) ≡ 〈ω〉(r, ti ) + ω′

p(r, t)

are meaningful, with (by construction) the fluctuation fields u′
p(r, t), and ω′

p(r, t), verifying
〈u′〉(r, ti ) = 0, 〈ω′〉(r, ti ) = 0.

An example of decomposition between mean and fluctuating vorticity at ti = 0 s is shown in
figure 5. This decomposition clearly exhibits a fluctuation part composed of vorticity patches
structures surrounding a nearly axisymmetric averaged vorticity field 〈ω〉.

Note that, in the following, ti and t are no more distinguished. Additionally, index p is
omitted.

4. Characterization of the experimental vortex in the physical space

In order to modelize the flow as a Lundgren type vortex, the differential rotation �(r, t),
whose relation with the mean vorticity field is detailed below, is an interesting quantity to
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Figure 5. Examples of decomposition between mean vorticity and fluctuating vorticity at ti = 0 s. From left to right:
the whole vorticity field ωp(r, t), the mean vorticity field 〈ω〉(r, ti = 0) and the fluctuating vorticity field ω′

p(r, t)

be determined. Indeed, it is a key feature in Lundgren’s mechanism, that, associated with
stretching, enables the energy transfer towards small scales.

4.1 Definition and role of the differential rotation in the Lundgren model

Lundgren’s asymptotic solution results from two keys: First, the derivation of a bi-dimensional
equation for vorticity

∂tω + (U.∇)ω = νω, (4)

written in new stretched variables for time and space t → [eat − 1]/a, r → reat/2, and for
new functions f → eat f .

Second, the linearization of this equation is performed (valid for long time) where the veloc-
ity reduces to its zero harmonic azimuthal component (this is a—non-trivial—consequence of
the hypothesis that all Fourier component of the vorticity persist for long time). Each Fourier
component of the vorticity ωn , with ω = ∑

n ωneinθ , follows a simple convection–diffusion
equation

∂tωn + in
∪o

r
ωn = νωn. (5)

With

� ≡ ∪0

r
= 1

r2

∫ r

0
r ′ω0dr ′, (6)

the inviscid part of the solution is written as ein(θ−ωt) (the complete solution is derived in [3] and
contains this term also). This shows that the non-axisymmetric vorticity winds up into sheet
like structures because of this differential rotation �, while the stretching (an effect which
appears when we come back to a real spatial variable re−at/2) contracts the whole structure into
closer sheets. This is also the picture of the transfer from large to smaller scales in the physical
space: the scales correspond to the periodicity of the vorticity sheets that decreases when time
increases. This is why � appears as an important parameter: combined to stretching, it ensures
the process of energy transfer from large to small scales and fixes the accumulation rate of
spiral turns.

The initial vorticity field ω(r, t = 0) is a free parameter in the Lundgren’s model that always
leads to solutions with a k−5/3 spectrum. However, the temporal evolution of the instantaneous
spectra is influenced by the initial condition that fixes �. It has been notably shown by
Vassilicos and Pedrezzetti [8] and Borgnat [9] that the rate of energy transfer is fixed by �.

Several forms for �(r ) are proposed in the literature depending on the particular solution
of the Lundgren vortex considered. A common class of solutions consider a Lundgren vortex
in the form of a single spiral vorticity layer. For such a solution the self-induced rotation �(r )
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of the layer is generally characterized by a power law decay (rα, α < 0). Such solutions have
been notably studied by Vassilicos and Brasseur [10] (without stretching) and Borgnat [9].
The solution of Pullin et al. [5] studied in [2] can be classified in this family of solutions, but
consider a halo of opposite vorticity surrounding the vortex in order to keep zero circulation
at infinity. In a two-dimensional study, Gilbert [4] has also considered shearing of vorticity
patches by a power law differential rotation.

Another type of particular solution, proposed by Lundgren [11], considers a Burgers vortex
core and spiral arms. In this case, �(r ) may be dominated by the vortex core induced rotation
rather than by the spiral-induced rotation. Therefore �(r ) shows a near r−2 decay outward of
the vortex core region.

4.2 Definition of the differential rotation for the experimental flow

We define the axisymmetric vorticity as the mean vorticity 〈ω〉. Because 〈ω〉 is slightly non-
axisymmetric, this is done through

ω0(r, t) = 1

2π

∫ 2π

0
〈ω〉(r, θ, t)dθ, (7)

from which rotation �(r, t) is computed

�(r, t) = 1

r2

∫ r

0
r ′ω0(r ′, t)dr ′ (8)

Figures 6 and 7 show the time evolution of �(r ) and ω(r ). A monotone decrease of �(r )
is observed for all time, a condition for the validity of Lundgren’s asymptotic development
(see [3]). The mean profile is characterized by a first region 0 < r < 0.2 cm of almost solid
body rotation defining the vortex core. A second region 0.5 cm < r < 2 cm is characterized by
an rα algebraic decay of the rotation �, where α, whose initial value is −1.6, shows a slight
increase with increasing time. This decay is significantly smoother than the near r−2 decay
associated with the near irrotational region of the vortex in its stable state [12]. Therefore, it

Figure 6. Evolution of differential rotation �(r, t), t = 0 s blue (−),t = 0.2 s black (−), t = 0.4 s red (+), t = 0.6 s
magenta (•), t = 0.8 s cyan (�), and t = 1.3 s black (◦). The inset shows the same data in logarithmic co-ordinates,
The curves are artificially vertically shifted for clarity.
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Figure 7. Evolution of the axisymmetric vorticity ω0(r, t), t = 0 s blue (−), t = 0.2 s black (−), t = 0.4 s red (+),
t = 0.6 s magenta (•), t = 0.8 s cyan (�), and t = 1.3 s black (◦).

appears that vorticity in the periphery of the vortex core gives a significant contribution to the
mean rotation.

These results should provide useful material for the modelling of the experimental turbulent
vortex as a Lundgren vortex solution.

5. Characterization of the vortex in the spectral space

5.1 Computations of the energy spectra from the hot film signal

An important issue of the present study is the characterization of the build-up of the turbulent
energy spectrum with time. In order to characterize the temporal evolution of the burst in the
spectral space, we have defined in [1, 2] quasi-instantaneous energy spectra and cumulative
spectra from the hot film measurements, which provide, respectively, the quasi-instantaneous
and time-integrated spectral signature of the turbulent vortex. However, two difficulties arise
in the computation of these spectra from the hot film measurements.

First, the correspondence between temporal velocity fluctuations and spatial velocity fluc-
tuations is achieved using a local Taylor hypothesis in a critical condition. Second, to keep a
minimal spectral resolution, spectra are computed over a minimal time interval t , incom-
pressible whatever the number of recorded cycles. In [1, 2] t was chosen in order to keep a
constant r = 1.5 cm.

The use of PIV measurements overcomes these two difficulties.

5.2 Computation of the spectra from the PIV signal

Computations from PIV measurements of quantities such as energy spectra that characterizes
all the scales of a turbulent flow is not usual. Indeed, the dynamical velocity range (DVR)
and the dynamical spatial range (DSR) obtained from a PIV measurements are still limited.
Following Adrian [13] the DVR and the DSR are estimated as follows:
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� The DSR is fixed by the ratio between the physical size Lx × Ly of the velocity field and the
physical size of the interrogation window M0 × W (where M0 is the optical magnification).

� The DVR is fixed by the ratio between the maximum resolved velocity Umax and the mea-
surement noise σu . This noise results from various sources: physical (dynamical and optical
characteristics of the particles, characteristics of the laser sheet), specificity of the flow (out
of plane motions, velocity gradients), instrumental (camera and digitalization) and can be
modeled as a white noise [14].

The interrogation window W and the physical size Lx × Ly have to be chosen so that the
bandpass of PIV fits the range of scales and velocities to be characterized. The optimal DVR and
DSR are obtained in our experiment for W = 32 × 32 pixels2 and (Lx × Ly = 5 cm × 3.8 cm).
For these values, the DSR is (0.06 cm, 5 cm) which is a priori sufficient to resolve the inertial
range scales estimated as 0.5 cm < r < 5 cm in [1, 2].

Following Foucaut et al. [14], an estimation of the noise level σu is obtained from the
comparison between the hot film energy spectrum and the PIV energy spectrum. For the
values of (Lx, Ly, W) chosen, we find σu ∼ 0.1 cm s−1. The resulting DVR (0.1 cm s−1, 40 cm
s−1) is therefore sufficient to resolve the velocities u associated with the inertial range scales
r , which can be estimated as 1 cm s−1 < u < 20 cm s−1 from hot film measurements.

The instantaneous bi-dimensional velocity PSD e(k, t) writes

e(k, t) ≡ k
∫ 2π

0
| û′(k, t) |2 dθk, (9)

where k ≡ (k, θk) in polar co-ordinates, and û′(k, t) is the fourier transform of u′(r, t).
Experimentally, the energy spectra are calculated for t = ti (times ti are defined in section 3).

In equation (9), time t equals ti on the left-hand side term and the integral on the right-hand
side term is evaluated as follows: First, the Fourier transform of the fluctuation velocity
fields for t ∈ Ii is calculated (using a Hannig window), yielding to a set of Np spectral fields
| û′(k, t ∈ Ii ) |2. The ensemble average 〈| û′ |2〉(k, ti ) is then taken over the Np fields, as
defined in equation (1). The obtained field, being defined on a Cartesian grid, is interpolated
over a polar grid and integrated at each constant k radius, after which it is multiplied by k as
in equation (9).

Note that the velocity PSD is also linked to the vorticity field through

e(k, t) = 1

k

∫ 2π

0
| ω̂′(k, t) |2 dθk, (10)

and the same procedure is used to experimentally calculate e(k, ti ) using the vorticity fields
obtained from the velocity fields (equation (3)).

From these instantaneous spectra, the cumulative spectrum, representing the time-integrated
contribution of the turbulent vortex to the spectrum, is simply defined as the time-average over
instantaneous spectra

Ec(k, t) ≡
∫ t

0
e(k, t ′)dt ′, (11)

and is experimentally calculated through

Ec(k, t) = 1

i

i∑
j=1

e(k, t j ). (12)
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5.3 Results

In this section, we present results obtained for the energy spectra computed from the PIV data.
These results are compared with the spectra computed from the corresponding synchronized
hot film measurement. For the sake of clarity, energy spectra computed from the PIV vorticity
field (equation (10)) are identified with the index 1, those from the PIV velocity field (equation
(9)) with the index 2, and those from the hot film with the index 3.

5.3.1 Mean energy spectra. For increasing time value, the cumulative spectrum in equa-
tions (11) and (12) is found to converge. We call Tv the time that ensures that the cumulative
spectrum has converged with a desired accuracy, and we call the mean energy spectrum
E(k) ≡ Ec(k, Tv). Practically, it is found that the cumulative spectra calculated from PIV
measurements converge in a time Tv � 2 s, larger than the cumulative spectra calculated from
the hot film acquisition (see section 5.3.3). Choosing in all cases Tv as the lifetime for the
turbulent cascade build-up, we ensure

Ea(k) = Ec
a(k, t = 2s), a = 1, 2, 3, (13)

have converged.
The mean energy spectra computed from PIV vorticity fields [E1(k)], from PIV velocity

fields [E2(k)], and the corresponding synchronized hot film acquisition [E3(k)] are represented
in figure 8. The hot film energy spectrum shows a neat Kolmogorov k−5/3 fall-off between
km = 0.2 cm−1 and kM = 2 cm−1. It has been shown in [1, 2] that this inertial range is consistent
with the inertial range estimation for a Lundgren energy cascade mechanism in the same
(experimental) conditions.

Most of the k−5/3 inertial range is recovered on the 2 PIV energy spectra. This result confirms
both the −5/3 decay and the ability of PIV measurements to characterize the scales in the
inertial range.

For wave numbers k in the dissipative range, a discrepancy between the PIV spectra E1(k)
and the hot film spectrum E3(k) is observed. A steeper decay is observed for the energy
spectrum computed from the vorticity field. This steeper decay results from a low-pass fil-
tering related to the estimation of the vorticity field based on finite differences. A diver-
gence between E1(k) and E3(k) is also observed in the dissipative range as a consequence of
the measurement noise σu . Indeed, this noise brings a spurious constant contribution to the

Figure 8. (a) red (+), PIV energy spectrum E1(k), obtained from the vorticity field; (−), hot film energy spectrum
E3(k). (b) blue (+), PIV energy spectrum obtained from the velocity field E2(k); (−), hot film energy spectrum E3(k).
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Figure 9. Comparison in the evolution of the instantaneous spectral exponent pi computed from (a) PIV vorticity
fields and from (b) velocity fields. For each plot, in blue (..) �t = 0.1 s, in red (−), �t = 0.2 s, in magenta (- -)
�t = 0.3 s. The spectral exponent computed from hot film (with �r = 2.5 cm, for detail see [2]) is indicated in black
(-).

spectrum that is no more negligible for the low-energy density levels associated with high
wave numbers. Finally note that the first point (k = 0.2 cm−1) of E1(k) has a lower value than
the first point of E3(k). This may result from the windowing effect; indeed, large scales of
the velocity field are comparable to the window size. Such a low value at k = 0.2 cm−1 is not
observed for the vorticity spectrum E2(k), because vorticity scales are much smaller than the
window size.

5.3.2 Instantaneous energy spectra. The evolution of the instantaneous energy spectra is
characterized by the evolution of the spectral exponent pi computed over the inertial range.
This evolution is compared for the PIV spectra and for the hot film spectra in figure 9. To
ensure robustness of the spectra, the spectral slopes pi,1, pi,2 are computed for several values
of the time interval �t between each time ti (defined in section 3), ranging from 0.1 to 0.3 s.
A general evolution trend from −1 to −2 of the spectral slope is observed for both PIV and
hot film data. This confirms previous results obtained from hot film measurements in [1, 2]
and the ability of the PIV phase-averaged measurements to resolve the dynamic evolution of
the burst.

In [2], the temporal evolution of the instantaneous spectra, from −1 to −2 has to be con-
trasted with the temporal evolution (from −2 to −1) of the classical single spiral structure,
often exhibited when Lundgren’s model is advocated. We had suggested in [2] that the −1
spectral exponent, which results from the spatial vorticity distribution (at t = 0), could be
explained by an initial spatial vorticity distribution in the form of vorticity patches randomly
ejected by the coherent structure when it explodes, rather than the vorticity sheet that leads in
the −2 behaviour in [5, 11]. Images of the fluctuating vorticity field for initial time ti = 0 s,
one of which is shown in figure 5, reinforce this hypothesis.

5.3.3 Cumulative energy spectra. The evolution of the cumulative spectra computed from
PIV velocity and vorticity fields [Ec

1,2(k, t)] and from the hot film data [Ec
3(k, t)] is represented

in figure 10. In each case, an evolution from −1 to −5/3 is observed. This confirms that the
−5/3 law only emerges from a time averaging of the instantaneous spectra as in the Lundgren
vortex model.
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Figure 10. Cumulative spectra Ec(k, t) calculated (a) from the PIV vorticity field Ec
1(k, t), (b) from the PIV velocity

field Ec
2(k, t) and (c) from the hot film signal Ec

3(k, t); the spectra are artificially vertically shifted. In each case, an
inset shows the evolution of the spectral exponent.

The time needed for the turbulent cascade build-up is around Tv � 2 s. This time is in agree-
ment with Lundgren’s spiral lifetime estimated in [5, 2] as τv = C(R2/4ν)Re−2/3, where C is
a constant (obtained in numerical computations equal to 10) and τv is a stretched time variable
(see section 4.1). Considering the coarse estimation of the stretching given in section 2, this
yields to 0.5 s ≤ Tv ≤ 2.5 s. Estimation of Tv appears to be slightly different when considering
the cumulative spectra computed from the PIV data (Tv � 2 s) and when considering the spec-
tra computed from the hot film data (the value is close to 1.5 s, as it was obtained previously
in [2] using other set of data). It should be pointed out that cumulative spectra calculated from
the hot film acquisition are computed from a time-increasing window: This is because the
mean velocity decreases in time so that the time/space correspondence δr = 〈U 〉(t)δt imposes
an increasing δt value to keep a constant spectral range. Therefore, the temporal resolution of
Ec

3(k, t) decreases with increasing time and can affect the spectral exponents. Such an effect
does not affect the exponents of the cumulative spectra calculated from PIV measurements,
since, by construction, they keep the same spectral resolution at any time with no need of
time/space correspondence.

6. Conclusion

Using phase-averaged PIV measurements, the transition to turbulence of our isolated structure
has been characterized in both physical and spectral spaces.

In the physical space, thanks to ensemble averages, velocity fields have been decomposed
into mean and fluctuating velocity fields. From the mean velocity field, the evolution of
the differential rotation � has been characterized. It has been notably shown that it is a
decreasing function of r , a condition in the derivation of the asymptotic solution of Lundgren.
This suggests that our experimental conditions are favourable to permit that our burst indeed
follows a Lundgren’s mechanism of energy transfer.

In the spectral space, the use of PIV measurements overcomes difficulties encountered in
the calculation of instantaneous energy spectra from the hot film data, results that have been
previously presented [1, 2]. The −1 to −2 transition of the instantaneous spectral slopes is
confirmed, as well as the k−5/3 law obtained when averaging the spectra over the whole burst
lifetime.

A perspective to this work is the modelling of the experimental flow as a Lundgren vortex.
PIV data should provide helpful material in this perspective. Also, on the basis of the PIV data,
the characterization of the energy transfers and associated intermittency should be achievable.
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