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Abstract Displacements of a viscous fluid by a miscible
fluid of a lesser viscosity and density in cylindrical tubes
were investigated experimentally. Details of velocity and
Stokes streamline fields in vertical tubes were measured
using a DPIV (digital particle image velocimetry) tech-
nique. In a reference frame moving with the fingertip, the
streamline patterns around the fingertip obtained from the
present measurements confirm the hypothesis of Taylor
(1961) for the external patterns, and that of Petitjeans and
Maxworthy (1996) for the internal patterns. As discussed
in these papers, the dependent variable, m, a measure of
the volume of viscous fluid left on the tube wall after the
passage of the displacing finger, is a parameter that
determines the flow pattern. When m>0.5 there is one
stagnation point at the tip of the finger; when m<0.5 there
are two stagnation points on the centerline, one at the tip
and the other inside the fingertip, and a stagnation ring on
the finger surface with a toroidal recirculation in the fin-
gertip between the two stagnation points. The finger pro-
file is obtained from the zero streamline of the streamline
pattern.

Keywords Miscible fluids, Finger, Fingering
displacement, PIV/DPIV, Velocity field, Streamline, Flow
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1
Introduction
The displacement of one viscous fluid by another in a
porous medium is an important problem with a variety of
applications, e.g., the secondary recovery of petroleum in

the petrochemical industry. As the pore-level details of
such flows in a real porous medium are too complicated to
measure experimentally, and to simulate numerically, the
flow in simple geometries, such as a Hele-Shaw cell or a
capillary tube, has been used to model certain aspects of
these flows. One possible model, that of viscous fluid
displaced by another fluid of less viscosity in a capillary
tube, has been studied in a number of papers, e.g., Taylor
(1961), Cox (1962), Reinelt and Saffman (1985), Petitjeans
and Maxworthy (1996) [hereinafter PM], and Chen and
Meiburg (1996) [CM] among many others. Taylor (1961)
studied the displacement of a viscous fluid by another
immiscible fluid (air) in a horizontal capillary tube. A
diagnostic for the fluid left on the tube wall behind the
finger front, i.e., the fraction m=1)Um/Utip, was measured
as a function of capillary number, Ca=Uml2/r. Here,Um is
the mean velocity of the Poiseuille flow ahead of the fin-
gertip,Utip is the tip velocity of the finger propagation, l2 is
the viscosity of the displaced fluid, and ris the surface
tension. For a large Ca and a value of viscous Atwood
number close to 1, Cox (1962) found that the fraction, m,
approached a constant value of 0.6 (Taylor’s experiment
extended only to a relatively small capillary number and
gave the value to be 0.56). Here, the Atwood num-
ber,At=(l2)l1)/(l2+l1), is a measure of viscosity contrast
between the two fluids, with l1 and l2 being the dynamic
viscosities of the displacing and displaced fluids, respec-
tively. The corresponding numerical simulations by
Reinelt and Saffman (1985) agreed well with these
experiments.

If two fluids are miscible, then the interfacial tension
between them tends to zero and the Peclet number (Pe)
must replace the capillary number in the immiscible case
as one of the controlling parameters. The Peclet number,
defined as Pe=Umd/D here, represents the relative impor-
tance of convection and diffusion, where d is the tube
inner diameter and D is a suitably averaged diffusion
coefficient. PM (1996) extended Taylor (1961) by using
two miscible fluids (glycerine and glycerine/water
mixtures) in capillary tubes. Kuang, Maxworthy, and
Petitjeans (2003) [hereinafter KMP] conducted a similar
experiment using silicone oils to even smaller Pe. For large
Peclet number, the fraction m was found to depend only
on At. When At tended to unity, the fraction m increased
to a value of 0.61, which is virtually identical to the value
of 0.6 obtained by Cox (1962) for immiscible displace-
ments. For a small Peclet number, PM (1996) found the
fraction m depended strongly on At and a gravitational
parameter, F ¼ gd2Dq=m2Umq2, which represents the
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relative importance of the gravitational and viscous forces.
Here, g is the gravitational acceleration, Dq ¼ q2 � q1 is
the density difference between the two fluids, q2and m2 are
the density and kinematic viscosity of the displaced fluid,
respectively. The parameter F is negative if gravitational
effects stabilize the finger displacement and positive if they
destabilize it.

The dependence of the finger streamline patterns on the
value of m was hypothesized originally by Taylor (1961) for
the flow outside the finger and extended by PM (1996) to
the flow inside the finger. They suggested two probable
streamline patterns in a reference frame moving with the
fingertip: when m>0.5, the flow pattern shows only one
stagnation point at the tip of the finger; when m<0.5, there
are two stagnation points on the centerline, one at the tip of
the finger and the other within the fingertip, together with a
stagnation ring on the finger surface. For the latter case, PM
(1996) argued that a toroidal recirculation must exist inside
the fingertip. However, because of the lack of experimental
data, the flow patterns have not been confirmed quantita-
tively. The numerical simulations of CM (1996) for miscible
displacements in tubes showed a similar streamline pattern
for m>0.5, but a different one for m<0.5. In a frame of
reference moving with the c=0.5 contour, where c is the
dimensionless concentration, CM’s streamline pattern
(1996) shows, in the latter case, no stagnation points on the
tube centerline so that a continuous flow of less viscous
fluid emanates along the tube centerline.

As one of the motivations, an attempt is made to give a
quantitative description of the velocity fields and stream-
line patterns of such miscible displacements. Also, this
work is a part of an ongoing project in which space
experiments, uncontaminated by gravitational forcing, will
be performed to investigate the dynamics of miscible
interfaces in micro-gravity. In this paper, three possible
cases were studied: (1) the gravity-driven case with no
fluid injection, (2) the gravitationally unstable case with
fluid injection, and (3) the gravitationally stable case
with fluid injection.

2
Experimental setup
Since we were unable to measure the velocity fields in
capillary tubes used by PM (1996) and KMP (2003),
cylindrical tubes with larger diameters had to be used so
that the DPIV (digital particle image velocimetry) tech-
nique could be applied. Figure 1 gives a schematic dia-
gram of the experimental setup. A cylindrical tube, with a
diameter of 0.7 cm or 1 cm and a length of 16.5 cm, was
mounted vertically inside a square glass tube with a cross-
section of 2.5 cm·2.5 cm. The space between the two tubes
was filled with a glycerine-water mixture (about 98%
concentration) with approximately the same refractive
index as the glass so that an undistorted view of the flow
inside the cylindrical tube could be produced. In the
present experiment of fingering displacement, two silicone
oils with different viscosities and densities were used. The
less viscous (displacing) fluid is 100cs silicone oil with a
viscosity,m1=1 cm2/s and a densityq1=0.964 g/cm3, and the
more viscous (displaced) fluid is 1000cs silicone oil
withm2=10 cm2/s andq2=0.97 g/cm3. For this fluid pair, the

Atwood number is At=0.82 and the diffusion coefficient is
D=4.6·10)8cm2/s. Because the less viscous fluid had a
smaller density, to prepare for an experiment, about two
thirds of the cylindrical tube was first filled with the more
viscous fluid, injected from the bottom, and then the less
viscous fluid was added to fill the rest of the tube from the
upper end. Consequently, the fluids in the tube were in a
gravitationally stable state and a flat interface was gener-
ated between them. To perform an upward displacement
in the gravitationally unstable state, the tube had to be
inverted 180�.

A detailed description of the DPIV technique used in
the present experiment has been provided by Fincham
and Spedding (1997). The measurement apparatus, as
shown in Fig. 1, included a laser and a cylindrical lens to
generate a laser sheet of about 1 mm in thickness, a
digital video camera to provide images of 768·484 pixels,
and an image capture card with the software package,
CIVit, installed on a PC for data acquisition and pro-
cessing. To conduct DPIV measurements, the silicone oils
were seeded with tiny particles with an average diameter
of 12 lm and an approximate density of 1.1 g/cm3. The
particle concentration in the fluids was very small (of the
order of 10)3g/cm3) so that the influence of the particles
on the fluid properties was negligible. By carefully run-
ning the experiment and setting parameters from the
CIVit interface, the velocity measurement could give
approximately ±1% accuracy for the velocity vectors. For
example, the time interval between two images is one of
key parameters for an accurate DPIV measurement.
Generally, it is set so that the particle displacement
between images is approximately 5 pixels, with the actual
displacement measured to sub-pixel accuracy (Fincham
and Spedding 1997).

3
Results of the velocity field measurements

3.1
The gravity-driven unstable case with no fluid injection
Consider an interface in a vertical cylindrical tube with a
heavier fluid on the top of a lighter fluid. When there is no
fluid injection, the interface is unstable and gravity causes
the lighter fluid to rise and the heavier fluid to sink in the
tube. The interfacial stability depends strongly on the
value of Peg=Ugd/D, where Ug is a gravity-driven charac-
teristic velocity, as given by Eq. 1 below. Numerical sim-
ulations by Fernandez et al. (2002) for two-dimensional
flow in a narrow gap show that differences in the initial
perturbation (either a sine or a cosine shape) give rise to
different finger configurations for a large Peg (in their
paper, this parameter was designated as the Rayleigh
number, but here, the Peclet number is used for consis-
tency). Observation of the present experiment showed a
non-symmetric finger to be the result of a non-symmetric
perturbation generated when the tube was inverted, as
demonstrated in Fig. 2, which is similar to Fig. 15b of
Fernandez et al. (2002). Note, however, that Fig. 15 in
Fernandez et al. (2002) is the result of simulations for a
two-dimensional Hele-Shaw flow rather than a tube flow,
so the similarities are only qualitative.
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DPIV results for the flow field around the upward
moving fingertip in a vertical tube of 1 cm diameter with
no fluid injection are presented in Fig. 3 for (a) velocity

profiles and (b) the streamline pattern. Velocity profiles at
values of x from 0 cm to 1.1 cm with intervals of
Dx ¼ 0:1 cm were plotted. The x locations are given in the

Fig. 2. Sketch of a finger evo-
lution from an unstable inter-
face with no flow injection

Fig. 1. Schematic diagram of the experimental
setup for DPIV measurement of a more
viscous fluid 2 displaced by a less viscous fluid
1 in a vertical cylindrical tube
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abscissa of Fig. 3b. At the moment of measurement, the tip
of the finger was about 3 cm from the initial interface
location. The velocity profiles show that the flow field of
this displacement is slightly non-symmetric. The tip
velocity for this case was found to be 5.63·10)3cm/s. In a
reference frame moving with the fingertip, the streamline
pattern, as shown in Fig. 3b, reveals a non-symmetric flow
field both internal and external to the finger. The method
used to obtain the tip velocity and the streamline pattern is
outlined in Sect. 3.2. The highlighted zero streamline gives
the finger profile, which was found also to be non-sym-
metric. This leads to a hypothesis, as demonstrated by the
present experiment in Sect. 3.2 and the numerical simu-
lation by Payr et al. (2003), that a minimum injected flow
is needed to produce an axisymmetric finger. However, the
minimum injection velocity or Peclet number to achieve
this state has not been determined. In the present exper-
iment, it was always much larger than this minimum value.
For the present case of no fluid injection, the mean
velocity, Um, is zero so, strictly speaking, Pe=0 and
F !1, based on Um. To define an equivalent Peclet
number, Pe�, and the gravitational parameter, F�, to be
consistent with the following sections, an equivalent mean
velocity, defined by U�m ¼ 1�mð ÞUtip, was introduced.
This equivalent mean velocity can be treated as a mean
velocity for the upward moving finger. Here, the fraction

m=1)(df/d)2 was obtained using the measured finger
diameter,df, and the tube diameter, d, as defined by PM
(1996). The finger diameter was obtained far from the
fingertip. However, as shown later in Fig. 5, the finger had
nearly a constant diameter after a distance of about 1.5df

from the fingertip. Then, the zero streamline profile at
x=1.3 cm in Fig. 3b gives the finger diameter df=0.63 cm,
or the fraction m=0.6, which leads to the equivalent mean
velocity U�m ¼ 2:25� 10�3 cm/s and the corresponding
Peclet number Pe*=4.9·104, and F*=269, based on U�m.

Clift et al. (1978) gives a buoyancy velocity,Ug, for an
axisymmetric, immiscible bubble rising through a viscous
fluid in a tube, which does not depend on the value of the
surface tension and is similar to the buoyancy velocity
given by Fernandez et al. (2002) for miscible fluids in a
Hele-Shaw cell, as:

Ug ¼
gDq=q2ð Þd2

102m2
: ð1Þ

Extending the use of Eq. 1 to miscible fluids, we have the
Peclet number induced by the gravity forcing alone, based
on the finger propagating velocity, to be:

Peg ¼
gDq=q2ð Þd3

102Dm2
: ð2Þ

For a miscible displacement of 1000cs by 100cs silicone oil
in a tube with d=1 cm, using g=980 cm/s2,
Dq ¼ 0:006 g/cm3,q2=0.97 g/cm3, andm2=10 cm2/s in
Eq. 1, we have a gravity-driven rising finger veloc-
ity,Ug=5.94·10)3cm/s. This value is very close to the tip
velocity of 5.63·10)3cm/s, obtained using the DPIV mea-
surement, which implies that Eq. 1 may give a good esti-
mate of the propagation velocity of a miscible finger
driven by gravity only. The Peclet number based on Ug is
Peg=1.29·105.

3.2
The gravitationally unstable case with fluid injection
In this case, as in Sect. 3.1, a heavier and more viscous fluid
(1000cs silicone oil) was on the top of a lighter and less
viscous fluid (100cs silicone oil) with a finger penetrating
upwards into the heavier fluid (F>0). The measurement of
the velocity field around the tip of the rising finger in a tube
of 1 cm diameter is presented in Fig. 4 with a mean velocity
Um=3.5·10)3cm/s, Pe=7.7·104, and F=171.4. The fingertip
at the moment of measurement was 3.2 cm above the initial
interface location, as in the case in Sect. 3.1. Figure 4a shows
velocity profiles at locations from x=0 cm to 1.1 cm and
at intervals of Dx ¼ 0:1 cm, with the x locations given by the
abscissa of Fig. 4d. The velocity profiles show an axisym-
metric flow field. The maximum velocities in the profiles, as
shown in Fig. 4a, increased with x to a constant value of
0.028 cm/s at about 0.5 cm behind the fingertip. Reversal of
flow near the tube wall is shown in Fig. 4a by the velocity
profiles for x>0.6 cm or about 0.2 cm behind the fingertip,
which indicates that the heavier fluid moved downwards
under gravity.

Figure 4b shows six velocity distributions along the
tube centerline with time intervals of 10 s. The uniform
displacement of the centerline velocity profiles indicates

Fig. 3a, b. The velocity field around the fingertip of an upward
displacement in a tube of 1 cm diameter with no fluid injection.
(a) Velocity profiles with x location of each profile numbered.
(b) Streamline pattern with the zero streamline highlighted
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the propagation of the finger at a constant velocity, i.e., the
tip velocity, which was calculated to be
Utip=13.37·10)3cm/s. The fraction m, calculated using the
mean and the tip velocities, was m=0.74. By subtracting
the tip velocity from the unsteady flow field, the velocity
vector field in a frame of reference moving with the fin-
gertip was obtained, as shown in Fig. 4c. The flow in this
frame cannot be precisely steady for miscible fluid dis-
placements due to molecular diffusion, but is quasi-steady
for large Pe. The quasi-steady state velocity vector field
shows the finger front (a stagnation point), but not the
finger profile. The finger profile was obtained by calcu-
lating the instantaneous, equivalent steady-state Stokes
streamline patterns, as shown in Fig. 4d. The zero
streamline, as highlighted in the figure, gives the finger
profile and a stagnation point at the tip of the finger is
confirmed. The streamline pattern is identical to that
hypothesized by Taylor (1961) and PM (1996), and pro-
posed by CM (1996) for m>0.5. Figure 5a shows a pho-
tograph of the finger for the same condition. A comparison
between this profile and the zero streamline of Fig. 4d is
presented in Fig. 5b, where the open circles represent the
image profile and the solid line the zero streamline. The
correspondence between the two is satisfying. Also, the
zero streamline profile has been fitted to an exponential

function, as described by Rakotomalala et al. (1997). By
analyzing the constants in the fitting exponential function,
the equation of the finger profile was obtained:

z1 ¼ �
df

2
� 1�mð Þ exp � px1

2 1�mð Þ

� �
; z1?0; ð3Þ

where x1,z1 are the coordinates with the origin at the fin-
gertip. The fitted result, for df=0.6 cm and m=0.74, is also
plotted in Fig. 5b, as shown by the dashed line.

3.3
The gravitationally stable case
In the gravitationally stable case (F<0), the lighter and less
viscous fluid was injected into the heavier and more vis-
cous fluid in a downward direction. PM (1996) and KMP
(2003) predicted that the fraction m should be greater than
0.5 for a high-speed displacement when the absolute value
of F tended to zero. In that case, the streamline pattern
should be similar to that presented in Sect. 3.2. When the
absolute value of F was large and the fraction m became
less than 0.5, gravity made the interface at the fingertip
flatter and a different flow pattern could be expected.
Figure 6 shows the results of injecting 100cs into 1000cs
silicone oil in a tube of 1 cm diameter at a mean velocity

Fig. 4a–d. The velocity field around the fingertip of an upward
displacement of 100cs into 1000cs silicone oil in a tube of 1 cm
diameter with Pe=7.7·104. (a) Velocity profiles with x location of
each profile numbered. (b) Velocity distributions along the tube

centerline at 10 s intervals. (c) Velocity vectors field. (d)
Streamline pattern with the zero streamline (finger profile)
highlighted
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Um=4.14·10)3cm/s with Pe=9·104and F=)146.4. The fin-
gertip was located at about 2 cm from the initial interface
at the time of measurement. Figure 6a shows the velocity
profiles at x locations from x=0 cm to 1.1 cm with inter-
vals of Dx ¼ 0:1 cm, where the x locations correspond to
the abscissa of Fig. 6b of the streamline pattern. The
velocity profile downstream of the fingertip, e.g., at
x=1.1 cm, is a parabola with a maximum velocity of
around 8.1·10)3cm/s, close to the calculated maximum
velocity of 8.28·10)3cm/s for a Poiseuille profile with the
applied volume flux. When approaching the tip, the profile
exhibits a decrease in the maximum velocity. At the
location x=0.4 cm, the velocity has a nearly flat profile
inside the finger and then twin-peaked profiles at x=0.5,
0.6, and 0.7 cm. The twin-peaked profile represents a
reversed flow inside the fingertip. Ahead of the fingertip at
x=0.8 cm, the twin-peaked profile becomes flat and,
eventually, evolves to a Poiseuille profile again.

The velocity of the finger propagation was found, using
the method described in Sect. 3.2, to be Utip=5.06·10)3cm/s,
from which the fraction m was calculated to be 0.18. In a
reference frame moving at the tip velocity, the steady-state
streamline pattern was obtained as shown in Fig. 6b. The
highlighted zero streamline gives the finger profile. The
streamline pattern clearly shows the flow field around the
fingertip. There are two stagnation points with one at the
tip of the finger and the other inside the finger on the axis.
On the finger surface off the tube axis, there is a stagnation
ring. A toroidal recirculation, which reflects the twin-

peaked velocity profile in the fingertip, is between the two
stagnation points and the stagnation ring. Again, this
streamline pattern agrees well with the streamline patterns
hypothesized by Taylor (1961) for immiscible displace-
ment and PM (1996) for miscible displacement at m<0.5.
The similarity of flow patterns for immiscible and miscible
flows for both m greater or less than 0.5 raises a question:
why do immiscible flows with surface tension look so
much like miscible flows with zero surface tension and
when does this similarity break down? In fact, this was one
of the major reasons for studying such miscible flows in
the first place. In the region with great concentration
gradient, additional, so-called Korteweg (1901), stresses
can potentially be important, as discussed by Joseph and
Renardy (1993) and Chen and Meiburg (2002). Based on a
comparison with Taylor (1961) for immiscible fluids, PM
(1996) obtained an ‘effective’ surface tension for miscible
fluids which was considered to be a result of Korteweg
stresses.

Observations by PM (1996), Lajeunesse et al. (1999), as
well as the present experiment, showed a leakage of the less
viscous fluid into the more viscous miscible fluid through
the fingertip for m<0.5. Figure 7, for 100cs into 1000cs
silicone oil downwards in a tube of 1 cm diameter with
Pe=9·104, shows that less viscous fluid continuously leaked
from the finger tip to form another thinner finger, which has

Fig. 6a, b. The velocity field around the fingertip of a downward
displacement of 100cs into 1000cs silicone oil in a tube of 1 cm
diameter with Pe=9·104. (a) Velocity profiles with x location of
each profile numbered, and (b) streamline pattern with a zero
streamline (finger profile) highlighted

Fig. 5a, b. Finger profile of an upward displacement (a) image
profile and (b) finger profile from zero streamline in Fig. 4d. The
dashed line is a fitting of zero streamline using Eq. 3
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been called a ‘‘spike’’. This type of spike cannot exist in an
immiscible displacement because the interfacial tension
between two immiscible fluids prevents the interface from
deforming. However, surface forces of a miscible displace-
ment are not large enough to prevent this leakage. Thus, the
spike is generated if the fluids are miscible and the maxi-
mum velocity of the Poiseuille profile is larger than the tip
velocity of the finger, i.e., m<0.5. The leakage of the less
viscous fluid from the tip of the finger means that such flows
are never steady, even in a reference frame moving with the
underlying fingertip. The spike in Fig. 7 has a diameter of
about one tenth of the principal finger diameter. It propa-
gates at a higher speed until it reaches the maximum velocity
of the Poiseuille profile ahead of the fingertip. The unsteady
development of the spike finger cannot be detected by the
present velocity measurements since the streamline pattern
in Fig. 6b represents only the instantaneous values of a
slowly evolving velocity field. To detect the spike, a measure
of the species concentration is required, as shown in the
numerical simulations of CM (1996).

Values of m obtained in the present experiment using
DPIV, as well as measurements of the fraction m in cap-
illary tubes presented in KMP (2003) and the results by PM
(1996), are plotted in Fig. 8 as a function of F. All of these
data show good agreement. In particular, when F becomes
large and negative, m approaches zero, as hypothesized
earlier for the very stable case. On the other hand, as F
becomes large and positive, m appears to be approaching
unity, or at least a value close to this. This suggests that the
finger becomes thinner and thinner as F increases and
may, in fact, approach some asymptotic state very similar
to the spike observed when m is less than 0.5.

4
Conclusions
Velocity fields of fingering displacement were measured
using a DPIV technique in vertical cylindrical tubes. In the
present experiment, three cases of measurements, including
(1) the gravitationally unstable case with no fluid injection
(gravity-driven only), (2) the gravitationally unstable case
with fluid injection, and (3) the gravitationally stable case

with fluid injection, were performed. A non-symmetric
finger flow field was found for case 1 and an axisymmetric
finger for case 2. This leads to the hypotheses that a
minimum injection of fluid is needed to generate an
axisymmetric finger in a cylindrical tube in the gravita-
tionally unstable case, and that a non-symmetric finger will
be generated if the injected flow is less than the minimum
value. Future investigations will be necessary to determine
the minimum injection velocity needed to produce a sym-
metry finger. Velocity profiles show symmetric flow fields
around the fingertip in cases 2 and 3 with fluid injection.
Instantaneous steady-state streamline patterns in a frame
moving with the fingertip are consistent with the hypotheses
of Taylor (1961) and their simple extension by PM (1996) for
both m less and greater than 0.5. For the gravitationally
unstable case (F>0), the fraction m was found to be greater
than 0.5 and the streamline patterns show one stagnation
point at the tip. For a gravitationally stable case (F<0) with
m<0.5, the streamline pattern shows two stagnation points,
one at the tip of the finger and another inside the fingertip,
and a stagnation ring on the finger surface. A toroidal
recirculation exists inside the fingertip between the two
stagnation points and the stagnation ring, which results in a
twin-peaked velocity profile in this region. The finger
profile was obtained using the zero streamline from the
streamline patterns. By fitting the zero streamline for the
finger with m>0.5, an exponential function, similar to
that given by Rakotomalala et al. (1997) for a finger in a
Hele-Shaw cell, was found to closely represent the finger
profile. Finally, the values of the fraction m from the
velocity measurements were in good agreement with pre-
vious data obtained by PM (1996) and KMP (2003) in small
diameter capillary tubes.
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