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1. Introduction

Numerous numerical simulations and experiments have shown the presence of coherent structures
concentrating vorticity of turbulent flows [1, 2], introducing by the way, the idea that statistical
laws in turbulence might be controlled by discrete structures. There have been several attempts
to model turbulence using collections of coherent structures [3]-[6]; for an interesting review see
[7]. To provide a satisfactory modelling of turbulence, these models must be able to reproduce
the k=%3 law, predicted by Kolmogorov [8] and verified in many experiments. This was not
achieved in [4]-[6]. The first model based on Burgers sheets and tube vortices proposed in 1951
by Townsend [4] leads to a k! spectrum for vorticity tubes, and to a k=2 spectrum for vorticity
sheets. The —5/3 exponent of Kolmogorov lies between these two values, suggesting that a more
complex structure having both a tube- and sheet-like character might be a good candidate. Such
a structure was proposed by Lundgren in 1982 [3] in the form of an unsteady stretched spiral
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vortex. Lundgren showed that a dynamical model of isotropic turbulence based on an ensemble
of these structures at different ages of evolution, effectively reproduces the k~%/3 spectrum. The
Lundgren spiral vortex is an asymptotic solution of the Navier—Stokes equation, consisting of
the superposition of a two-dimensional (2D) rotational flow and a uniform straining irrotational
flow stretching the vorticity along the vortex axis. To perform the calculation of the spectrum
over the N vortices, an ergodicity hypothesis is used: the energy spectrum FE(k) of N vortices is
written as F(k) = 27]1\[:1 E, (k)= ./\/'fttlz E(k,t)dt, where t; and to are, respectively, the instants
of creation and destruction of the structure, and A the rate of production and destruction of the
vortices. Therefore, the k~%/3 spectrum results from the time-averaged energy spectrum over a
single structure lifetime. In this model, the energy cascade process leading to the k~%/3 spectrum
can be understood as the decrease with time of the space separating two successive turns of the
spiral. This evolution results in the combination of the differential rotation imposed by the core
which wind up the vorticity and the contraction due to the stretching. The Lundgren vortex is
an asymptotic solution of the Navier—Stokes equation valid for long time where the initial spiral
structure plays the role of a free parameter. The initial process leading to such a spiral vortex is
therefore not contained in the model. However, several mechanisms such as vortex coalescence,
roll-up of shear layers or wavy instabilities are known to produce spiral structures. The general
idea is that nonuniformities in the vortex cross-sections resulting either from vortex instabilities
or coalescence with neighbours are sheared and lumped into vorticity sheets by the differential
rotation, and are idealized in the model as a spiral structure. This hypothesis was tested in [9],
where Lundgren reformulated the model in such a way that the strictly 2D part of the flow can
be separated from the straining part of the model. The 3D energy spectrum can therefore be
calculated from the enstrophy spectrum of the 2D unstrained flow by a simple transformation.
The main advantage of this reformulation is that the 2D enstrophy spectrum can be obtained
numerically from any vortical flows, and not only from the asymptotic analytical solution.

Lundgren’s mechanism for the build-up of the energy cascade has initiated a field of research
whose results show nice predictions for turbulent flows [10, 11]. However, despite the fact that
spiral structures have been identified in turbulent flows [12, 13|, experimental evidence showing
that these structures are responsible for the k%3 part of the spectrum is still lacking. In
a recent letter [14], the authors have presented experimental results on a structure resulting
from a vortex burst and have shown that this structure shares some common features with
Lundgren’s theoretical one. The studied flow is a unique vortex whose environment causes it
to break periodically into a turbulent burst. In contrast with classical experiments focusing on
coherent structures in turbulence, no surrounding turbulent flow exists, so that the observed
turbulence results only from the vortex burst. In agreement with Lundgren’s theory, it has
been found that the energy spectrum is time-dependent and does follow a five-thirds law when
averaged over the lifetime of the vortex burst. In the present paper, interest is in comparing in
more detail the temporal evolution of our experimental structure and a single spiral structure
evolving according to Lundgren’s mechanism. This is done through qualitative comparison of the
vorticity fields and through quantitative comparisons of the time evolution of the energy spectra.
The paper is embellished with several animations and visualizations to give a communicative
representation of the computed quantities.

2. Experimental set-up

We describe in this section the experimental set-up in which the turbulent vortex burst
periodically occurs. In addition to PIV measurements of the vorticity field, the main quantitative
data are obtained using a hot-film probe. The recording data are rescaled benefiting from the
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Figure 1. Working section of the hydrodynamic channel. The vorticity contained
in the lower boundary layer is enhanced by the addition of a small step and
stretched by a suction through two slots in the lateral wall to generate a strong
stretched vortex; see also animation 1.

periodicity of the phenomenon and exploit via a local Taylor hypothesis to build the power
spectrum density (velocity PSD) in the spectral k£ domain. Finally, we introduce the notion
of instantaneous/cumulative PSD that will be used later in the paper to compare with the
Lundgren vortex model.

2.1. Experimental set-up and vortex burst characteristics

The experiment is performed in a water channel, where the flow is generated by gravity from a
constant level tank. The channel of 2m length is made of Plexiglas. It consists of two sections:
the first section generates a laminar flow and the second is the working section. The working
section is represented in figure 1. Its cross-section is 7cm x 12 ¢cm and the typical longitudinal
velocity is a few cm s~!. At the middle of the working section, a small step (5 mm height) added
to the laminar boundary layer profile of the bottom wall produces the initial vorticity. This
initial vorticity is strongly enhanced by the stretching produced by sucking the flow through
slots on each lateral wall (slot diameter is 0.6 cm) which are aligned with the step axis. A
stretched vortex is produced, whose axis is attached at both extremities to the suction slots. A
video of the experimental set-up and of the vortex generated is given in animation 1. At fixed
suction flowrate o, varying the downstream flowrate () leads to the occurrence of two regimes,
low values of Q1 correspond to a stable, nearly stationary vortex. Above some critical value of
Q@1 (not discussed here), the vortex follows a periodic cycle: in the first stage of the cycle, it
remains coherent while it is elongated under the influence of the flow, and in the second stage, it
explodes in a turbulent burst; thereafter another vortex is generated and so on. The two stages
of the cycle are illustrated in figure 2 that shows two different visualizations:

e A cross-sectional visualization using a fluorescent dye sheet injection plus an illumination with
a laser sheet.

e A top view visualization, using colorant dye injected through small inox tubes. An animation
of this last visualization is given in animation 2.

Care has to be taken on the streak lines observed in figure 2(a) that takes the form of a
spiral. This does not correspond to the vorticity field, axisymmetric at this stage (see [15]). It
should also be noticed that the second stage of the flow, referred as the turbulent burst, still
shows some coherence; this can be guessed from figures 2(c) and (e) and will be made clear from
PIV measurements in section 4.1. The two stages have roughly the same duration T~ 5s and
a whole cycle has a period T,y ~ 10s. In previous studies, the vortex has been characterized
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Figure 2. Sketch of the vortex cycle at @ > Q.. First stage of the cycle, the
vortex is still coherent; (a) side view and (b) top view. Second stage of the cycle;
the vortex breaks into a turbulent burst; (c—e) side view and (d—f) top view. See
also animation 2.

Table 1. Characteristics of the vortex when it breaks. uy'® denotes the

maximum azimuthal velocity ug(r), reached for r = 1y (ry the vortex core size),
I' denotes the circulation and R the lateral extension of the vorticity (the
corresponding measurements can be found in [15]). Finally, a coarse estimation
of the stretching a = 9,u, is given (from [18]).

up' 70 r Re=T/v R a
10cms™  0.6cm  40cm?s™' 4000 ~3cm  1-10s7!

in terms of a coherent structure in both stable and unstable regimes [15]-[18]. Benefiting from
previous measurements [15], we report in table 1 the characteristics of the vortex when it breaks
(in the present experiments, Qi = 12.51min~! and Q = 7.51min™!). Since measurements
of the axial velocity wu,(z) is not possible in the periodic regime, only a coarse estimation
of the stretching a = 0,u, is given, corresponding to measurements performed in the stable
regime [18].

2.2. PIV and hot-film measurements

To characterize the experimental vortex structure, we performed PIV measurements in a cross-
section of the vortex at the middle of the channel ((r, 6, z = 0) plane). Our PIV system comprises
a high-resolution camera (1280 x 1024 pixels) capturing images at a frequency of 4 Hz and a
double-pulsed Nd:YAG delivering 12 mJ at each pulse. The experimental apparatus is sketched
in figure 3. The measurement area, 9cm X 7 c¢m, is large enough to give a picture of the whole
turbulent burst whose lateral extension is R ~ 3cm. The interrogation cell is 16 x 16 pixels
with a 50% overlap, leading to a spatial resolution of 128 x 160 vectors. The resulting
space tick between two vectors is 6l = 0.5 mm. The PIV works as a low-pass filter since it
cannot resolve scales smaller than d§l. Since the dissipative scale in our experiments is ks
with 10 < kps < 34cm™! (see section 4.2), the resolution is sufficient to capture the scales in
the inertial range. At this stage we have not performed a quantitative analysis of the PIV
measurements. Indeed, computations of quantities like the energy spectrum can only be obtained
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Figure 3. Experimental set-up for PIV measurements.

via an ensemble averaging over N PIV velocity fields, where N is large enough to obtain
statistical convergence of the computed quantities. Since the energy spectra are time-dependent,
such an averaging is only valid if the acquisition of the PIV images is synchronized with the burst
period. Work is in progress in that direction. Therefore, we give only a qualitative analysis of
the PIV measurements via visualizations of the instantaneous vorticity field of the burst in
section 4.1.

To quantify the burst, local measurements of the velocity have been taken using a hot-film
probe, located at a distance d from the z-axis, as indicated in figure 1. The probe is set parallel

to the axis of the stretching so that it measures U =  /u2 + ug A typical time recording is shown
in figure 4. It is composed of several periodic cycles, each cycle being formed of two parts: in
the first one, the velocity increases smoothly, whereas the second one shows strong fluctuations
with a global decrease in the velocity. A visualization during one cycle has been performed
using fluorescein illuminated with a laser sheet in the plane (7,0, z = 0). This visualization (the
probe location is shown by a red cross) and the corresponding velocity signal U are reproduced
in animation 3. In the first part of the animation, the vortex, still coherent, is advected from
the left under the effect of the downstream flow. The corresponding recorded velocity smoothly
increases because the vortex brings a stronger and stronger velocity contribution as it comes
closer and closer to the probe. The second part of the animation shows the vortex burst,
followed by a growing turbulent mixing region of the fluorescent dye inside the laminar flow.
In the velocity signal, it corresponds to strong fluctuations superimposed to a mean velocity.
Finally, the animation shows the relaminarization of the flow, whereas another vortex appears
from the left, advected by the downstream flow, that will experience a similar scenario.
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Figure 4. (a) Full temporal recording of the velocity U(t,) (t, denotes the
absolute time). (b) Close up of the temporal recording over several vortex cycles
U (tq); the mean velocity Uppeqn is indicated by red line and O indicates the times
t, at which the vortex breaks on each cycle; see also animation 3.

2.3. Data processing

2.8.1. Defining the mean velocity. Time recording data U(t,) (where t, denotes absolute time)
is periodic with a mean periodicity Tice. This allows to define a mean velocity Uean oOver a
cycle via a coherent cycle averaging technique (note that, physically, Uyyeqn results from both the
remaining downstream flow and from the rotation induced by the vortex core). We compute the
intercorrelation function of the whole signal U with Uy(,?) = U(t(o) — 0 4 Teyete), a part of the
signal U starting at some arbitrary time t(°) in the laminar region, and whose length is Teycle
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(we denote by U(t — t’) the part of the signal U truncated from ¢ to ¢'). The maxima of the
intercorrelation function give the approximative times {t,(ql )}nzl,.--, n for the beginning of the N
cycles, and the ensemble average Ul = (1/N) 27]:[:1 U(tg) St Teyce) a first evaluation of

the mean velocity. In the next step, the intercorrelation of the signal U using UTS%) (instead of
(2)

Uﬁ?)) gives a new set of initial times {t,(f)}nzl,m,]v and a new mean velocity Uy,”. The operation

is iterated j times until U%) has converged with a desired accuracy, and we denote by U,,eqn the
converged mean velocity (and {tn}n:L__.7 N the corresponding times). Different choices for ¢(0)
will mainly result in shifted values of {¢, } and in a corresponding shifting of Useqn, this shifting
will not affect further calculations.

2.8.2. Defining initial and final times of the turbulent burst. Heuristically speaking, we define
the initial time of a cycle as the beginning of the second stage on each cycle!

Actually, we give in our study a very particular sense to the initial time: it is the time where
the turbulent spectrum (with k—5/3 range) starts to build up. Since we need to use the averaged
spectra eat(k, t) to define this time (see section 2.4), the discussion on the determination of this
initial time is given in the appendix.

Final time has a less important definition. It could be defined as the initial time plus Tty ce;
in that case, the first stage where the flow is laminar would be included. We prefer to focus on
the second stage and, thus, the final time is here defined as the initial time plus 7" (the duration
of the second stage). It is shown in the appendix that this definition is satisfactory in the sense
that T is larger than the duration of the turbulent cascade build-up.

In the following, the set of initial times {¢, }n—1,. ~ is chosen to be equal to the initial times
of the turbulent burst.

2.8.3. Defining the fluctuating velocity on each cycle. The Upeqn and the corresponding
{tn}n=1,...~ being obtained as described above, data are rescaled as follows:

Up(t) =U(tg =ty = tn +T) — Unean(), (1)

where t =0 — T is a new time. The N signals wu,(t) correspond to the velocity fluctuations in
the second stage of each cycle, i.e. from the initial time ¢, to the final time, T (figure 4(b)).

2.8.4. The local Taylor hypothesis. The hot-film measurement provides a one-point time
recording of the velocity. Since theoretical predictions are usually made in the spatial domain or
spectral k£ domain, we need to obtain spatial scales from time scales. This is achieved using the
local Taylor hypothesis r = fot Unmean(t") dt’ (this definition will be slightly adapted in section 2.4).
This hypothesis, firstly advocated in [19] and which can also be found detailed in [20]-[22],
reduces the bias the classical Taylor hypothesis (of frozen turbulence) introduces on the velocity
signal when large velocity fluctuations are considered (in our case (U — (Unean))?)/ (Umean) is
of order 30%, where () indicates a time average). Using a local Taylor hypothesis, we take into
account the advection of small scales by large scales that can be pictured here by the advection
of the fine-scale structures of the turbulent spot by the vortex-core-induced motion (see figure 5).
We now work with the NV signals wu,(r):

Un, (7“ = /0 t Unmean (') dt’) = up(t). 2)
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Figure 5. Result of the transformation dt — 07(t) = Upean(t)0t using the local
Taylor hypothesis on a temporal window [¢;t + At].

2.4. Cumulative/instantaneous velocity PSD

2.4.1. The averaged velocity PSD. The usual velocity PSDs are built as follows:

1 N
= N;En(k)v (3)

where E, (k) is the velocity PSD of uy,(r), defined in (2) for » =0 to fo Unmean(t') dt’.

In this definition, the spectrum FE(k) results both from a time integration over the duration
T of the burst and from an ensemble average over the N signals. The convergence of the
spectrum in terms of ensemble average is obtained with 1% accuracy for 100 cycles averaging.
In the following, the spectra are obtained with typically 200 cycles ensemble averaging. It is
this spectrum that is expected to show an inertial range [k;kas] with k=5/3 behaviour (see
section 4.2).

2.4.2. The instantaneous velocity PSD. We define the instantaneous velocity PSD e(k,t) as
the ensemble average (average over the N signals) of the k spectra taken at a given time ¢ in the

turbulent burst (thus, E(k fo e(k,t)dt). The natural way to obtain these spectra would be

to take the Fourier transform of the Velomty field in the physical space u(x, t) (for instance, from

PIV images). As previously said, this is not possible and we choose an alternative procedure.
Let us consider a slightly modified formulation of the local Taylor hypothesis (2):

Un(r =0 —= Ar) = u,(t = t + At), (4)

where
t+5t
r :/ Umean(t/) dtlv (5)
t

Journal of Turbulence 5 (2004) 030 (http://jot.iop.org/) 9


http://jot.iop.org/

Comparison of experimental turbulent and Lundgren vortexes

with
t+At
r<Ar= / Umean(t') dt’ for 6t < At. (6)
t

Working with this temporal window [t;¢ 4+ At] allows one to solve, in the k& domain, the scales
between 0 and Ar that are detected by the probe during that time. The corresponding spectrum
is defined by

€At ki t €n, At k’ t (7)

M:

n:l

where ey, a¢(k,t) is the velocity PSD of w,(r), defined in (4) for r =0 to Ar. The physical
meaning of ea(k,t) is an average of the spectra between ¢ and ¢ + At. When At tends to zero,
eat(k,t) tends to the instantaneous spectrum e(k,t). However, since in that procedure, a small
At implies a small Ar (and thus a less resolved spectrum), a balance has to be chosen between
the precision on time ¢ and the quality required for the spectrum calculation.

We are interested in studying the behaviour of the instantaneous spectra in the inertial
range [km; k] (fixed by the behaviour of E(k)). When decreasing Ar, the first resolved k value
(except k = 0) is given by 1/Ar and can thus overtake k,,. To give a consistent representation
of the spectra, we use the following criterion: Ar (and thus At) is chosen in such a way that at
least 80% of the inertial range is kept.

Finally, if At becomes of order T, i.e. At cannot be considered as small, the significance of
eat(k,t) is rather an averaged spectrum over the duration At, starting at ¢ (as in figure 8).

2.5. The cumulative velocity PSD

The cumulative velocity PSD is simply defined as E€(k, t) f() e(k,t') dt’. With our experimental
procedure, this means E°(k,t) ~ eai—(k,0). Th1s spectrum is the mean value of the
instantaneous spectra between the initial time ¢ = 0 of the turbulent burst and time ¢ between
0 and T'. Consequently, we have, by definition E(k) = E°(k,T).

The cumulative spectrum allows one to accurately define the time T;, of the cascade build-up
(see section 5.1).

3. Numerical calculation of Lundgren’s single spiral model

We give in this section the main characteristics of the Lundgren vortex mechanism. This
mechanism is simple and the model is flexible since the initial condition appears as a free
parameter, allowing for applications to many flow configurations. Probably, the Lundgren vortex
mechanism captures the essence of the turbulent process in the physical space: if in some place
of the flow, a local stretching exists, any nonaxisymmetric vorticty in the, locally, perpendicular
plane will be rolled-up (this is a bidimensional mechanism), whereas the stretching produces
a radial compression of the rolled-up structure. It is this latter compression, combined with
differential rotation, that is responsible for the transfer from large to small scales in the physical
space since the radial distance between turns decreases.

We have chosen an initial condition for the numerical calculations borrowed from Pullin and
Saffman [10, 23] in the form of a single spiral. Although this condition appears to differ from our
experimental initial condition, it allows a comparison in the generic process of turbulent cascade
build-up, which is done in sections 4 and 5.
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3.1. The characteristics of the Lundgren model

In the Lundgren model [3], a solution of Navier—Stokes equations is sought of the form
(ur,up,uz) = (—ar/2 4+ vp(r,0,t),v9(r,6,t),az). Such a solution corresponds to a time-
dependent z-vorticity w3P(r,0,t) = (9,(rvg) — dgv,-)/r submitted to a stretching d,u, = a along
the z-axis. The total velocity field is three-dimensional but it can be shown that the equations
reduce to a bidimensional dynamics for the vorticity w(p, 8, 7) defined by

3D(Ta97t) = eatw(p,G,T), (8)

with p = 7e®/2 and 7 = (e® — 1)/a (w is found to be solution of the bidimensional equation for
the vorticity). An asymptotic solution (for long time) for w is found by Lundgren in the form

w(p,0,7) = an (p, 7)™, (9)

—in T—vn?A2(p)r3
On(p,7) = fulp)e AP OIT, (10)

where
40 = flp) and A= d, Q) (11)

and f,,(p) are arbitrary functions. The circulation of the whole structure is given by

00 =2 [ fule)d ap (12)

To get insights of the form of this solution, let us recall the inviscid case with particular initial
condition f,(p) = f(p) for n # 0. Using [[&(0 — Q7)e "™ de ¥ one gets

P(r,0,t) = e {folp) + f(p)3 (0 — Qp)7)}- (13)

This corresponds to a spiral of vorticity evolving through (6,r = e~®/2Q~1(0/7)), with Q(p)
being dependent on the axisymmetric rotation fy(p).

Adding the effect of viscosity in (13) allows for accounting for the vorticity diffusion of the
spiral and gives

P(r,0,t) = {n ) +2f(p) > cos(n w»ewMMm#m}. (14)
n=1

3.2. Calculation of the vorticity field

In the following discussion, R denotes the lateral extension of the vortex at t = 0, I'y the typical
circulation, 6 = \/v/a the Burgers vortex radius and we use the nondimensional parameters
Re =Ty/v and a = §?/R?; also, nondimensional time 7' = a7 and ¢ = p/R are used. Following
[10, 23], we define the functions fy and f as

thJMwﬂo:a%j(—ﬁ)eﬁ (15)
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f(p) = aReaf(§) = —aRe=¢%"¢, (16)

where C' = ~(0.75) (with v being the gamma function). The choice of these functions ensures
['(0c0,t) = 0 and Q(p) decreasing (or A(p) < 0). We use also, in the following,

Op) = aRealde),  thus  Gdel€0() = fole) (17)
A(p) = aReTAE),  thus  R(€) = de(©). (18)

Solution (13) is written as

WP (r,0,t) = e®aRead (£, T), (19)
D(&,T) = fol&) +2f(€) D cos(n( — aReQU€)T))e ™ RENET/3, (20)
n=1

For given Re and a, it is easy to compute &V (&, T) in (20) where the series are truncated
at N terms such that [N (£, T) — @N1(E, T)| < €|@™ (€, T)| with € being the desired accuracy.
In our calculation, € is set equal to 1074

3.3. Calculation of the energy spectrum

In [3, 10, 23] the total energy spectrum is written as Ey(k) + E(k), where Ey(k) refers to the
axisymmetric contribution and

E(k) = / ek 1) dr, (21)

1

=

n

(k. r) = TS Lk )P, (22)
=1

v1+ar

where N denotes a production of vortex length per unit time (in the following, N'R?/a is set
to 1).

The time integral F(k) is shown to be split into a contribution of order O(1) for ar < 1
and a contribution of order O(ar) for ar > 1 [10]. This latter contribution is responsible for the
range in k~°/3. Thus, neglecting terms of O(1) gives the famous Kolmogorov law!

A detailed discussion on the early and late cutoff times 7 and 7» and their physical meaning
can be found in [10, 23]. In our computation, we retain the value 71 = ¢/a with ¢ = 0.475, chosen
n [10], and we checked that the time integral for E(k) has converged for 7 = C/(4aRe*/a)
where C' ~ 10 in [10].

i) = [ () aulomioan (23)
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We introduce the nondimensional wavenumber K = kR and the functions

E(k) = 2na’Re*R3a® E(K), (24)
e(k,7) = 2na’Re*R3a® (K, T), (25)
I.(k,7) = aReR?a I,(K,T). (26)

To compute es(k,7) and F4(k), we use the same approximation as in [3, 10]. For K > 1,
the asymptotic form of the Bessel function J,(2) >~ /27/z cos(z — nmw/2 — 7/4) is written as

I(K,T)=2r / An(6)(19n(®) 4 elon(®)) ge (27)

- ”w% xp(i(n(n) + 7/4), (28)
where

A4,(6) = (“?>/ Ef(g)e e BN, (29)

on(€) = —naReQET — —5 4 T(an 4 1). (30)

VI+T 4
Here, we have used the stationary-phase evaluation, with &, given by the implicit relation
(¢'(&n) = 0)

naReA(&,)TV1+T + K = 0. (31)
As it has been assumed that A(€) <0, the integral of the term with phase ¢U(¢) =
—naReQ(E)T + (KE/(V1+T)) — (w/4)(2n + 1) vanishes. We can now write

| 2

Z i) (32)

En 1
14T 20TK? |
=—K3exp( e )Zw e (33)
E(K) = /T " é(K,T)dT. (34)

As shown previously, é(K,T) can be evaluated by éV(K,T) truncating the series to the
first N terms such that |e(K,T) — eV }(K,T)| < e[e" (K, T)|. In our calculation, € is equal
to 107*. To evaluate E(K), the following definition is introduced:

T
E¢(K,T) = / e(K, T")dT". (35)
T
This spectrum corresponds to the cumulative spectrum between 77 and T and will be used in the
comparison with experiments. Then, we numerically integrate (using a explicit Runge-Kutta
scheme), for each value of K,

dE(K,T)
ot

It has been checked that E°(K,T) has converged with an accuracy of around 2% for each K
when T reaches Ty (thus E(K) = E¢(K,T > T3)).

=é(K,T),  with initial condition ~ E°(K,T}) = 0. (36)
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Figure 6. Visualization of the vorticity field w,. Top: experimental vorticity
field; bottom: numerical PIV vorticity field. From left to right (t — ¢t; = 0.25 s,
t=0.5s,t=0.75s, t = 1s); see also animation 4.

3.4. Nondimensional parameters in our calculations

In the discussion below, results have been obtained using the nondimensional parameters
Re = 4000, o = 1/1395, and time and space have been rescaled using R = 3cm and a = 1.55s57 1.
The values chosen here corresponds to the experimental values of table 1. We choose the specific
value a = 1.55s7! in the experimental range 157! < a < 10s™! so that the numerical lifetime
to — t1 exactly equals the experimental lifetime T, = 1.5 s for the build-up of the cascade (which
will be defined in section 5.1). Otherwise using the complete experimental range for a, leads to
0.5s <ty < 2.5s.

4. A first qualitative comparison

We give in this section two qualitative comparisons between our experimental vortex and the
Lundgren single spiral vortex. First the comparison is given with vorticity visualizations: if this
kind of comparison could appear as the simplest way to quantitatively compare both vortexes,
experimental limitations of PIV images have not allowed further analysis. However, it gives hints
that our experimental vortex indeed experiences the kind of mechanism contained in Lundgren’s
model.

The second comparison is with the time-averaged velocity PSD E(k). In both cases, the
spectra are shown to have an inertial part with £~%3 behaviour whose range and time of build-up
compare nicely.

4.1. Visualizations in the physical space

Animation 4 and figure 6 give the comparative temporal evolution of the vorticity w, =
(1/r)((8/0r)rVy — (3/36)V,) experimentally obtained from the PIV measurements and of the
vorticity w3P(r,6,t) numerically calculated as described in section 3.2 (all quantities are in
dimensional form). The initial time roughly corresponds to the beginning of the explosion in
the experiment and to ¢; in the numerical calculation. The final time is T;, = 1.5 s, which is the
experimental lifetime of our vortex. The time separating two successive images is 0.25 s.

The observed process in the experiments and in numerical calculations nicely compare in
images 3 to 6 (animation 4). In both cases, the vorticity is concentrated in a spiral structure
that evolves in time rolling up around the stretching axis.
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Figure 7. Experimental velocity PSDs averaged over the whole cycle E(k) =
er(k,0) for various distances d of the probe from the z-axis (d = 55, 65, 75, 85,
95, 135 and 230 mm). The inset shows the compensated spectra k°/3E(k).

The process differs both at the beginning and at the end of the animation. The first images
correspond to the initial condition. It is thus not surprising to observe a difference at this stage:
our experimental initial condition is not single spiral arm, but rather a distribution of vorticity
patches. In the last images, the turbulent cascade probably has yet to build up. In the numerical
calculations, the structure tends to axisymmetry under the effect of the radial compression. In
our experiments, this does not occur. The radial compression seems to vanish. This can be
attributed to the following mechanism: when the vortex breaks, it can be seen from animation
2(b) that the structure is no more attached to the suction hole. One can guess that the stretching
persists during some time, sufficient to allow the turbulent cascade (in the sense sought in the
Lundgren mechanism) to process and, finally, vanishes after few seconds.

4.2. A turbulent spectrum in both cases!

We first report results on the experimental spectrum. Figure 7 shows the velocity PSDs averaged
over the whole burst lifetime E(k) as a function of the distance d from the z-axis. A clear k=%/3
decay region of the energy spectrum is obtained in the region where the vortex explodes (here
d =55mm). This result shows that the evolution of such a stretched vortex burst contains
already all the dynamics for the generation of a Kolmogorov spectrum. The inertial range is
kmp ~02cm™! < k< kyr~2cm™h

Figure 8 shows the spectra eas~p/3(k,t) calculated for d = 55 mm and at ¢ =0,7'/3, and
2T'/3, i.e. the three spectra averaged over each third of the burst life. Both figure 7 and 8
suggest that the turbulent vortex, i.e. leading to an inertial range with k=5/3 behaviour, has
a lifetime shorter than the burst duration 7: the whole turbulent spectrum is built in a time
T, of around T'/3 ~ 1.5 s in the region where the vortex breaks (the value of T, will be defined
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Figure 8. Experimental velocity PSDs averaged over a third cycle compared with
the velocity PSD averaged over the whole cycle for d = 55 mm. Curve 1 denotes
E(k) averaged over the whole cycle, 2 denotes eai—155(k,t = 0) averaged over
the first third cycle, 3 ear—155(k,t = 1.558) averaged over the second third cycle
and 4 enr—155(k,t = 3s) averaged over the last third cycle. The inset shows the
corresponding compensated spectra K>/ Seas(k,t).

more precisely from figure 10). Thereafter, the turbulence decays (in time and space). It has
to be noticed that the turbulence decay with time observed in figure 8 cannot be ascribable to
a simple advection of the spot beyond the probe position. In that case, the whole turbulent
spectrum would be recovered for further positions of the probe contrary to the results shown
in figure 7.

In the Lundgren model, the averaged velocity PSD presents a k~>/3 behaviour in an inertial
range [km; kar], with kp, = 1/R and kp = y/a/v. With the experimental values of table 1, one
gets ky, ~ 0.3cm™! and 10ecm™" < kj; < 34cm™! that reasonably compare with experimental
inertial range.

Velocity PSD is numerically calculated as described in section 3.3, and the result is shown
in figure 9. It can be seen that the numerical velocity PSD has a reduced inertial range. This
is also observed in [10, 23] and can be attributed to the approximation used in the numerical
calculations.

5. Evolution of the spectra: Lundgren’s process versus experiments

To better understand the build-up of the k~5/3 spectrum, we compare the temporal evolution
of the spectra during [0,7},] in the experiments and in the numerical calculations of a single
spiral vortex.

Several works concerning the Lundgren model show that, instantaneously, spiral structures
give an energy spectra with kP behaviour, where p is dependent on the considered structure
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Figure 9. Numerical cumulative spectra E°(k,t) for increasing ¢ (time spacing
is equal to 0.16 s) for a = 1.55s71, a = 1395 and Re = 4000. Spectra have been
calculated from ¢; ~ 0.25 to 38, with ¢3 ~ 1.75s. The inset shows the cumulative
slope penum as a function of time (the origin corresponds to t;).

[10, 24, 25]. For instance, Gilbert [24], applying Lundgren’s ideas to a two-dimensional turbulent
flow, showed that spiral structures have an energy spectra with A(¢)kP behaviour for ki(t) <
k < ko(t). If the behaviours of A(t),k1(t), k2(t) depend on the details of the spiral structure,
one remarkable feature is that averaging over the lifetime of the structure always lead to a k2
spectrum. Gilbert supposes that this result can be generalized to the 3D case of stretched spiral
vortices, where a k~%/3 should emerge after time averaging. Such a behaviour has been obtained
and physically interpreted by Pullin et al [10] for the single spiral model which was used to
perform computations presented in this section.

5.1. Evolution of the cumulative spectra

The experimental cumulative spectrum represents the averaged contribution of the vortex burst
between t =0 and ¢ and is expected to be an equivalent to the cumulative spectrum in the
numerical case. In both cases, we calculate the evolution of the cumulative spectrum slope,
Denum Numerically and pe ¢.p experimentally, as time increases. Experimentally, pe c.p is obtained
by fitting E°(k,t) with kP using the range 1/Ar < k < kj; when Ar < k! and in the whole
inertial range when Ar > k! Numerically, pcnum is computed using the whole inertial range
(lem™! <k <5cm™'). Figure 9 shows the cumulative spectra E°(k,t) as a function of k
numerically obtained for increasing ¢ values. The spectral slope (inset of figure 9) is found
to vary from a value close to —2 and to progressively reach —5/3 for t =ty —t; =T, . This
shows, as expected, that the k~5/3 law results from time averaging over the vortex lifetime.
Figure 10 is the experimental equivalent of figure 9. In this case, the spectral slope pc eyp (inset
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Figure 10. Experimental cumulative spectra E€(k,t) ~ eat(k,0) for increasing ¢

values (¢ = 0.25, 0.34, 0.43, 0.61, 1.1, 1.5 and 4.5s) (the fit in kP is indicated by

red dotted lines). The inset shows the variation of the k slope pe cqp versus ¢; see
also animation 5.

in figure 10) is found to decrease from a value close to —1 for small times and it reaches the —5/3
value at T, and thereafter remains constant. To provide a more communicative representation
of this result, animation 5 shows a time-evolving representation of the spectral slope and the
corresponding temporal window plotted against the visualization of the flow.

From figures 9 and 10 we can conclude that both experimental and numerical processes
of turbulent cascade build-up result from a temporal evolution of the spectra, whose averaging
leads to a k~%/3 behaviour. We can also confirm in both cases that the whole spectrum is built
in a time T,, = 1.5s.

The initial values of the spectral slope, —2 for Lundgren’s spiral and —1 experimentally,
can be attributed to the difference in the initial conditions: a vortex sheet-like structure in
numerical calculations and probably a distribution of vorticity patches close to vortex tubes in
the experiments.

5.2. Evolution of the instantaneous spectra

Figure 11 shows the instantaneous spectra e(k,t) as a function of k numerically obtained for
various times t. The evolution of the energy spectrum is in agreement with [11, 25] and shows a
similar behaviour to the one predicted by Gilbert [26] for 2D spiral vortices. The instantaneous
numerical spectra are characterized in the inertial range by two regions, a region k < k.(t) with
a k! ‘tube-like spectrum’ and a region k > k(t) with a k=2 ‘sheet-like spectrum’. For the initial
times, the spectrum is dominated by the k=2 region, as time increases, k.(t) increases until a
near k! spectrum invades the whole inertial range. Consequently, the instantaneous spectra
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Figure 11. Numerical instantaneous spectra e(k, t) for increasing ¢ (time spacing
is equal to 0.16s) for a =1.55s"1, a =1395 and Re = 4000. Spectra have
been calculated from ¢; ~ 0.25 to 3s, with t3 ~ 1.75s. The inset shows the
instantaneous slope p; pum as a function of time (the origin corresponds to ;).

slope pjnum, computed using the inertial range (k, ~ 1 em~ < k< ky~5 cm_l), shows a
transition from a value close to —2 to a value close to —1 (inset in figure 11). The evolution
in the spectral space is the consequence of the roll-up of the spiral arm in the physical space
(see figure 6). The thick vorticity layer presents for ¢ = t1 gives the initial k=2 contribution in
the instantaneous spectrum. As the vorticity layer rolls-up and is simultaneously subjected to
a lateral contraction, the spiral arm diffused in a vortex core. In the spectral space, this results
in the transition to the k~! spectrum.

The quasi-instantaneous spectrum ea:(k,t), defined for small At, is an experimental
equivalent to the instantaneous numerical spectrum. Figure 12 shows the time evolution
of the quasi-instantaneous spectrum slope p; ez, for Ar=1.6,2 and 2.5cm. As for the
cumulative spectrum, an animation (animation 6) showing the evolution of the spectrum slope
for Ar = 1.6 cm against a visualization of the flow is provided.

It can be seen that p; cqp varies from a value close to —1 to a value close to —2 when time
increases from 0 to T, suggesting that the initial nonaxisymmetric vorticity field has a tube-
like structure, which evolves with time into sheet-like structures. These tube-like structures
result from the vortex burst (figure 2(c)). The transition, inverted compared with the numerical
computation, may therefore be interpreted as a consequence of the difference in the initial
nonaxisymmetric vorticity field, the instantaneous spectral slope being dependent on the type
of vorticity that is wound up [26].

However, we do not observe experimentally two regions in the quasi-instantaneous spectra
as in the numerical case. This can be due to a less resolved k-space in the post-processing.
Further work is in progress to study such a possible transition.
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Figure 12. k-slope p; ¢z of the quasi-instantaneous velocity PSDs as a function
of time (quasi-instantaneous mean velocity PSD ea.(k,t) averaged over a small
At). To obtain a consistent representation, we have chosen a constant Ar for
each curve: Ar = 1.6 cm (black); Ar = 2cm (blue); Ar = 2.5 cm (red); see also
animation 6.

6. Conclusion

We have presented an experiment where a stretched vortex is experiencing quasi-periodical
turbulent bursts inside a laminar flow environment. It has been shown that the velocity
fluctuations resulting from the bursts are responsible for the build-up of a turbulent k%3
spectrum. Benefiting from the quasi-periodicity of the bursts, we have developed a data post-
processing to characterize the build-up of the turbulent spectrum with time. This analysis has
been particularly motivated by an existing theoretical framework for the energy transfer in that
type of structure, notably the Lundgren mechanism.

To compare this mechanism with our experiment, we have performed numerical calculations
according to Pullin et al [10, 23] for a particular solution of the Lundgren model. The results
show that our experimental structure shares some common features with the theoretical structure
proposed by Lundgren. In both cases, the instantaneous spectra varies with time while averaging
over the lifetime of the structure results in a k~°/3 spectrum. In addition, both the lifetime of
the structure and the inertial range compare well. Finally, PIV measurements during the burst
show a partial roll-up of a spiral structure qualitatively similar to the roll-up of the spiral arm
in the numerical computation.

Future studies may address the following: first, PIV acquisitions synchronized to the probe
acquisition will allow one to study more precisely the temporal evolution of the spectrum;
and secondly, a numerical study of a Lundgren vortex with an initial condition closer to the
experimental one, for instance a vorticity patch should allow a better comparison with the
experiment. Work is in progress in these two directions.
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Figure A.1. Determination of ¢; .. Upper panel: velocity signal Upean (red), uy,
(black); lower panel: p(t;), slope of the experimental spectrum e(Tcyde,ti)(k, ti).

Appendix

In section 2.3, we have denoted by {¢,} the inset of the turbulent part on each cycle. These
initial times are defined as the times where the k~°/% turbulent spectrum starts to build up.
To determine {t,} experimentally, we use the following procedure: in a first step, we define an
arbitrary set of times {ty,} as described in section 2.3 (in figure A.1, they are indicated as the
origin of time). Then, we compute the averaged spectra e(Tcycze—ti)(k’ t;) over the signals:

T, cle
Un(ti = Teycle) = Un <7“ =0—>r= / ’ Unmean(t') dt') (A.1)

t;

for increasing values of ¢;, starting from t; = 0. As expected, the first averaged spectrum
er.,..(k,0) has a spectral slope (p(0) = —1.61) in the inertial range very close to —5/3. Indeed,
in that case, er, . (k,0) = E°(k, Teycte) ~ E(k). When ¢; increases, the parts of the velocity
signals from {¢,} to {to, + t;} are suppressed. If these parts do not contribute to the turbulent
cascade build-up, no influence on the spectra slope is expected. In contrast, if these parts contain
information necessary to the cascade build-up process, the spectral slope is expected to depart
from —5/3. Therefore, the initial time of the turbulent cascade build-up is the critical time
ti for which the spectrum slope starts to diverge from —5/3. To determine ¢;., we apply
the following criterion: we consider that t; . is reached when a significative divergence (=3%)
between the spectra slope p(t;) and the mean value of the spectra slope, computed between
t; =0 and t; =t;, is observed:

ti,c
‘p(ti,c) - 1/ti,c/ p(ti) dtl’ == 3% (A2)
0

We obtain ¢; . = 4.4s with the set of initial times {¢(,} chosen as in figure A.1. The new set of
initial times {¢,} are defined as {t, =ty + t; .} and the final times as {t,, + T'}.
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