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Wavelength selection of fingering instability inside Hele—Shaw cells
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Fingering instabilities involving fluids confined between two plates sometimes give rise to a typical
wavelength\ proportional to the gap. This unexplained behavior is investigated for the case of the
Rayleigh—Taylor instability between two liquids of the same viscosity. Using qualitative scaling
arguments and linear stability analysis for a simplified model of hydrodynamics, we show that, in
the miscible caseh becomes a natural cut-off when diffusion is negligible, i.e., when theePe
number Peh®Apg/(#D) is large ( viscosity, g gravitational acceleratior diffusivity, Ap
density difference The same result holds in the immiscible case for large capillary number Ca
=h2Apg/(12y) (y surface tension In this saturation regime, the dominant wavelength is given by
A=~2.3h, while in the opposite limitlow Pe or low Ca \ scales, respectively, &8Pe orh/Ca.
These results are in agreement with a recent experimental stud00@ American Institute of
Physics. [DOI: 10.1063/1.1410120

I. INTRODUCTION at very low Reynolds number. We propose a new explanation
. . L . for the saturation regime by using simple qualitative argu-
The instabilities of an interface between miscible or IM- ments(Sec. 1), and we check our interpretation on a simpli-
miscible fluids induced by differences in viscosity or densityfiaq version c;f the equations governing fluid motitBec.
have stimulated growing mteré@tmotwatgd by numefgéus l11). In short, we replace the Stokes equation by an effective
appl|cat|9n§s,_9(pharmacolggy and chemical industri®s,  oqation for the mean velocity averaged over the cell gap, in
geophysics,™ etc). In this paper, we consider the case of \ypich the derivatives in the direction normal to the plate are
two fluids in a Hele—Shaw cell, which constitutes a roughgeqyced from an ideal Poiseuille flow, similar to that in-
but ;lmple representathn of a porous materlal..lndeed, Manyoived in the Darcy regime. Sometimes called a “Brinkman”
applications, such as oil recovery, take place in such @ m&,oqe| in the literature related to porous media, this model
dium. Available studies have identified different cases, whichy,ows us to obtain both limits. i.e.. a Darcy flow interacting
depend on the nature of the instabilityiscous or gravita- it diffusion at low Pelet number or surface tension at low
tional), and on the ratio of advection to molecular diffusion capillary number, and a Stokes flow at high Pe or high Ca. In
or surface tension effects, usually measured, depending qfe miscible case, the results are compared to recent experi-

whether or not the fluids are miscible, either by &lB®  1ona) measurementdVery good agreement is found for a
number or a capillary number, both dimensionless. Viscoug;qe range of Pelet numbersfrom 0.1 to 10).

instability is generally referred to as Saffman—Taylor insta-

bility, and Rayleigh—Taylor is generally associated with

gravity-driven instability, although it should be pointed that ||, PHENOMENOLOGICAL APPROACH
Saffman and Taylor in their seminal papeincluded both _

. . - . . - .. A. Qualitative argument
pressure-driven and gravity-driven cases in the high friction
limit (low-Reynold$ which corresponds to the Hele—Shaw The geometry of the problem is suggested in Fig. 1. A
flow. For low Pelet or low capillary number, i.e., when dif- fluid of density p, tests on top of a lighter one of density
fusion or surface tension dominates, the typical wavelergth p,=p;—Ap, both fluids being confined between two verti-
is a function of the diffusivity or surface tensiofi:'?while  cal plates separated by a gapUsually, the stability of an
in the opposite limit, experimerts® reveal that its value, interface is discussed by calculating a dispersion relation
normalized by the cell thickneds, saturates at a constant o(k=27/\) that governs the growth of initial sinusoidal
value. Available theoretical models have mostly discussegerturbations of the interface positioazecexp(kx+ot),
the first regime, but no satisfactory explanation has been proxvherek is assumed to be positive in this section. Neglecting
posed for the behavior of the wavelength at high values ofor the moment any damping effect associated with diffusion
the Pelet or capillary number. A tentative explanation wasor surface tension, and restricting the analysis to low Rey-
suggested by Patterstrin the case of miscible fluids, but it nolds numbefwhere inertial effects are negligiblehis dis-
is based upon a principle of minimum dissipation which, topersion relation should correspond to an equilibrium between
our knowledge, still remains unproven. buoyancy effects and viscous stresses. Without going into the

In this paper, we reconsider this problem in the simplestetails of the calculations, we can estimate the scaling in-
possible situation, a Rayleigh—Taylor instabitfty” induced  volved as follows.
by a density mismatch between two fluids of equal viscosity, At the beginning of its growth, a “finger” or a “cell” of
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FIG. 1. (a) Schematic representation of the interfacial instability. The upper
and the lower layer have, respectively, density and densityp,=p;
+Ap. In the Darcy regime X>h), the friction exerted on the patterns
interacts with the plates of the cell across a surface area of ardeks a
result, the global buoyancy forde;=(h\¢)gAp is counterbalanced by the
viscous forceFy= n\2(o¢/h). (b) Schematic representation of the interface
in the Stokes regimeN<h). The friction exerted on a finger occurs on a
scale that is now the pattern wavelength. Thus, the buoyancy fosce
counterbalanced by the viscous foreg= n(\h)(c¢{/h).

the pattern, typically of siza/2 in the x direction, is sub-
jected to a global buoyancy force or ordegec(hhs)gAp
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whereAx=DKk? in the miscible case, andi= (yh?/ )k® in the
immiscible casé.

Of course, as we shall see, the actual relationship has a
more complicated algebraic structure and involves numerical
prefactors omitted here. However, Ed)) is sufficient to lead
to the following predictions. At very lowk, one recovers
qualitatively the well-known Darcy type dispersion relation:
o=(h?245)Ap g k,*® which favors the growth of small
wavelengths.

The Pelet number is defined here asPg*h/D with a
characteristic velocity of finger growth* =Apgh?/127.
Similarly the capillary number is GanU*/y. As it appears
from Eq.(1), when the Pelet or the capillary number is large
enough, diffusion or surface tension becomes insignificant
and the wavelength selection should result solely from a
crossover from the Darcy regime to a “Stokes regime” in
which o decreases witk (regimek>1/h). In this case, i.e.,
for Pe>1 or for Ca>1, the most unstable wavelength,
should be proportional to the gap, i.8,.h. In the oppo-
site limit, the crossover to a diffusion- or surface-tension-
limited growth will occur beforek reaches 1, so that the
dominant wavelength scales as,,,~h/Pe in the miscible
case, oM ma,—h/Ca? in the immiscible case.

B. Physical interpretation of the result

From a physical point of view, the saturation of the
wavelength at high Pe or high Ca has its origin in a change
of the mechanisms which govern the viscous effects, as op-
posed to the growth. In the Darcy limilarge wavelength
most of the friction exerted on a finger interacts directly with
the plateg[Fig. 1(a)], over a length scale which coincides
with the gaph. In the Stokes limit'small wavelength most
of the friction occurs laterally against the reversed flow in-
duced around neighboring fingers, on a scale that is now the
pattern wavelengthFig. 1(b)]. The scaleh emerges as a
compromise between these two limits. At low Pe or Ca, this

wheres designates the pattern amplitude. This force is balmechanism is hidden by a more conventional crossover be-
anced by a force of viscous origin of a form depending ontween Darcy-limited growth and diffusion or surface tension.

the range of wavelengths considergske Figs. (a) and
1(b)]. WhenA>h, we are in a Darcy regime, in which most
of the viscous friction acting on the cell will be interacting

lIl. LINEAR STABILITY ANALYSIS

with the solid boundaries, over a surface area typically of

order\? (\ is also the characteristic extent of the flow in the

A. Approximating Stokes equations with a Brinkman

z direction. We thus expect the viscous force to scale agdnodel

Fyx ph?(o/h) wherey is the viscosity, andr{/h a typical
velocity gradient. In the opposite limit<h, the typical gra-
dient becomesr{/\N and the typical surface areeh, the

We now describe more precisely the hydrodynamics in-
volved, again at very low Reynolds number. In this limit,
both liquids follow Stokes law, but the resulting equations

viscous force acting mainly between lateral cells. The vis-are still difficult to solve?® We have therefore replaced this

cous force now scales &5, n(Ah) (o ¢/\). The dispersion
relation is deduced, at least qualitatively, by writing the
equalityFg=F, . To get an idea of the influence of diffusion

or surface tension, we can also introduce in the result a phe-

nomenological damping term A. This leads to
2

problem by a simpler one, writing approximate equations for
the mean velocity averaged, over the cell thickness:

0=—-VP+7y U+ pg, (29

12
—+V?
h2

0=V-U, (2b)

where P(x,z,t) and p(x,z,t) are, respectively, the pressure

o=-A+-ghpk  (k<lh), (1a)
A

o= —A+ 2P sam), (1b)
nk

and density fieldd)=(U,,U,) is the fluid velocity averaged
over the cell thickness, and the opera%e (dy,d,) is de-
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fined for coordinateg andz only. These equations are some-
times called a Brinkman modglin the literature related to
porous media.

B. Miscible case

Equationg2a) and(2hb) must be coupled with a diffusion
equation:

p=po+(p1—p2)C, (3a

Jc
E+(U-V)C=DVZC, (3b)
where c(x,z,t) is the local concentration of liquid 1. The
density differenceAp=p;—p, is assumed small compared
to p,, which allows the linearization of thep(c) relation
(3a). It should be noted thdRa) will reduce to Darcy’s equa-
tion in the limit \<h, and to a Stokes flow in the opposite

Fernandez et al.

Forz=0, §vanishes, and/, can be expressed as a linear
combination of the functions expkx), exp(1x), and
exp(*+£x), with 1?=k?+ /D and £&2=k?+12h?. The coef-
ficients, which are different in the two half spaczes0 and
z<0, are linked by the continuity ofv; across the interface
(z=0), that of its derivatives up to the fifth orderdidzand
a discontinuity condition in the sixth-order derivative de-
duced from Eq(6) (see Ref. 23 for more detajlsElimina-
tion of these coefficients leads to the dispersion relation dis-
cussed in the following.

2. Dispersion relation: From low to large Pe clet
numbers

After some cumbersome algebra, we finally obtain the
following dispersion relation that links the reduced growth
rate 3 = 12no/Apgh to the reduced wave vectay=|k|h,
both quantities being here rendered dimensionless by using

limit A>h, in agreement with the qualitative ideas discussedhe scaling factors identified qualitatively at high chR

at the beginning of this paper.

1. Base state and its perturbations

For a flat interface, initially perfect, with a discontinuous

concentration profile, the system is expected to evolve solely
by diffusion. It should remain in a time-dependent base state

with zero velocityUy=0, and a hydrostatic pressure field
Po(x,z,t) governed by the evolution of the concentration
c(x,z,t) according to

VPo=[pa+Apcy(zt)]g, (4a)
Co(z,t) =3[ 1+erf(z/\Dt)] (4b)

in which erf(u) designates the error function. In treal case

of an interface initially slightly perturbed, one should include
perturbation terms, i.elJ=0+u(x,z,t), P(X,z,t)=Pqy(z,t)
+p(x,z,t), and c(x,z,t)=cy(z,t) +c’(X,zt). Linearizing

the equations, we get the following two equations that coupldn® 9ap in the cellzp

the concentration perturbatiari(x,z,t) to the zcomponent
of the perturbation velocity,(x,z,t):

12 a*c’
nV F—V UZ=—Apgﬁ, (58
d 9Co
R 2|l = — =
[&t DV~<|c o u,. (5b)

Following a method previously applied by Kurowski and
Misbatf? to unconfined Rayleigh—Taylor instabilities, we
expand nowu, and ¢’ into normal modes,[u,,c’]
=[w4(2),c1(2) Jexplkx+at), whereo is supposed to be de-

number in Sec. Il:

g l2oaf, 9 | 6al g
Pe 2 J12+q?| PeX JPeX+q?]
@)

The implicit equation(7), which can be reduced to a
fourth-order polynomial, is solved numerically for a large
range of Pelet numbers. We show an example of these four
solutions for Pe=10° in Fig. 2: The real and the imaginary
parts of the reduced growth ral are represented in Figs.
2(a) and 2b), respectively. The branch; is always real and
displays a maximum. The two branchEs andX ; are real

up to g=5.65 and then become complex conjugates. These
two solutions are not relevant in this case. The fourth solu-
tion X, remains constant and positivE,=12/Pe. This
branch,, represents the characteristic diffusion time across
=K/D (K=h?/12, whereK is the
permeability of the cell The dispersion relation which cor-
responds t&  is displayed in Fig. 3 for four different values
of Pe (1, 10, 18, and 10). The wave vector,,, corre-
sponding to the maximum growth ra¥,,, increases with
Pe until it saturates aj,=2.7 (i.e., \/h=2.3)for high Pe
(Pe>100). This value corresponds to the most unstable wave
vector obtained from the dispersion relation, Ed, in the
asymptotic case (Pex):

=g | 1= s . ®
2|7 12+¢?

Note that althoughy,,,, tends to a constant value with

fined at very small time in a quasisteady state approximatiorincreasing Pe, the cutoff wave vecig] > (qc) =0] contin-
As long as time remains much smaller than the diffusionues to increase. Indeed, the larger Pe, the smaller the diffu-
time scale, we assume a sharp profile for the diffusion fieldsion length becomes, so that largebecome unstable. This

dcqldz=6(z), &(z) being the Dirac delta function. This
yields a single differential equation fov; :

d> |12 d2+k2 5 d? 2
— K|S o—D| ——k*| |w
dz h?2 dZ dz '
A
——ngkzé(z). ©6)

behavior, i.e., the saturation of,,x coupled to the increase
of g, has also been noted by Broffinfor the Rayleigh—
Taylor instability of a thin viscous layer between immiscible
fluids.

The most unstable wavelength, normalized by the gap,
Mmax/h=27/0ax and the growth rat&, .., are represented
as functions of Pe in Fig. 4. For large values of Pe, the
wavelength scales with the gap of the cal},,,=2.3n and
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FIG. 2. Solutions of the dispersion relation, E@), at Pe=10%. (a) Real The ag.reemem betwe?n these theoretical .ValueSan.
part of 3 vs g. (b) Imaginary part ofS vs q. and ., With recent experiments, as well as with numerical

simulations, is very gootf notably when the Reynolds num-

the growth rate is constarX,,,=0.4. This is the main result ber is very low. In particular, the asymptotic wavelength ob-
derived from this model. Moreover, the dispersion relationserved by Fernandeet al!® was closer to the theoretical
(7) covers both the diffusive regime at low RRarcy’s re-  value(2.3 h) for larger viscosity(smaller R¢ than for lower
gime) and the convective regime at large (okes regime  viscosity flow (lower Re. Indeed, when the Reynolds num-

ber is not negligible, the assumption of a parabolic profile in
N I A the gap is no longer valid.
Po=1 - In the limit Pe<1, Eq. (7) reduces to the characteristic

Pe=10 . . . .
Pe- 100 ] dispersion relation of the Darcy’s regimé?

Pe=10* 1
| S=5(q-Pe’q’—~Pe qVo’+2 Peq). 9

The most unstable modes,,/h and 2,5 calculated from
Eq. (9) scale, respectively, as Peand as Pe.

The change of behavior between low and largel&te
numbers and the selection of the wavelength, can be pointed
out qualitatively by intersecting the two qualitative equations
(1a and(1b). This leads ton/h= 24, which is an approxi-
mation not so far from the theoretical value 2.3.

—
+ 0O o

>3

100 1000 .
q C. Immiscible case

FIG. 3. Growth rate>; as a function of the wave vectorfor Pe = 1, 10, We now apply the Brinkman model to an interface be-
1%, and 1d. The continuous line represents the asymptotic¢R9 dis-  tween two immiscible fluids of the same viscosity, in the
persion relation. The dashed line corresponds to the asymptotic behavigigme geometry. At=0 the interface 1:&):0) is slightly

in _the Dargy r_eglmeZ—q/Z), a_nd the dotted line represents the asymp- disturbed.g’(x,z,t), u’, p’(X,Z,t), and p, represent the
totic behavior in the Stokes regim& €& 3/q). The crossover between these . . . . .
two asymptotic regimes yields a wavelength proportional to the thicknes€rturbation field. The linearized equations for the perturba-

of the cell. tions read
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o 92
0=-Vp'+7 ?+V2 U'+p'g+ Zygé(z—go),
(103
0=V-U’, (10b
where
20!

3’?5(2—50)

represents the discontinuity of the pressure at the interfact 1

and &z) is the Dirac delta function. This expression is not
trivial but is consistent with the analysis of Park and
Homsy?® after neglecting the pressure gradient in the cell ga
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FIG. 5. Evolution of the reduced wavelengthh as a function of the cap-

ﬁllary number Ca. The miscible case has been overlaid in order to show that

due to the transverse meniscisThese equations must be the asymptotic limits are the same.

coupled with the linearized incompressibility condition:

ap’

ap
W=
ot

&Z_O'

(11)

Expanding the perturbations into normal modes xp(
+ot), and taking into account thatl'/dt=w’'({")=a{’
where w' (") is the vertical velocity of the interface
={'(x,z,1), yields a single differential equation for the am-
plitude w, of w:

d , 12| 0
P o |

_ 2 4 Apa2sn N
gApk-S8(z)w+ yk*S(z)w1—Apc©d(z) 0y (12

For z=0, § vanishes andv, can be expressed as a linear
combination of the functions exp(kx), exp(ilx) with 12
=k?+12h?. The coefficients, which differ in the two half
spacez>0 andz<0, are matched as a result of the continu-

havior has been observed by Maxworthgnd Mahet® with,
however, a different asymptotic valyeespectivelyh/h~5
and\/h~3).

IV. CONCLUSION

A complete dispersion relation has been obtained for the
instabilities between miscible fluids as well as for immiscible
fluids. These equations cover the whole range of parameters
from the Darcy regime to the Stokes regime. This has been
achieved using a Brinkman equation instead of a Darcy
model. Comparison with experiments is very gdbddore-
over, numerous papéers’ have reported the observation of
the asymptotic behavior that can be explained by the model
presented in this paper. In the near future, this dispersion
relation will be extended to the case of miscible, or immis-
cible, fluids with different densities, viscosities, and veloci-
ties. A further interesting challenge would be to study the
transition from a Hele—Shaw geometry toward a three-

ity of the velocity and the tangential stress across the intergimensional configuration.

face (z=0). Thus, integrating Eq(12) over an infinitesimal
layer of thicknesse (e—0) which includes the interface
between the two fluids, the dispersion relation is obtained:

~12
(13

12 , ,
ZWFU:M(QAP_)"() 1-1[k[| k T

Moreover, we have observed that the instabilities be-
tween miscible or immiscible fluids have the same
asymptotic behavior \=2.3n) in the convective regime:
miscible fluids at large Riet number, i.e., when the diffu-
sion is negligible, have the same behavior as immiscible flu-
ids at large capillary number, i.e., when the surface tension is
negligible.

The wavelength corresponding to the maximum growth rate
is plotted, together with the miscible case, in Fig. 5 as a\ckNOWLEDGMENTS

function of the capillary number.

Using the reduced growth rate=12na/gAph and the
reduced wave vectay=|k|h with the capillary number Ca,
the dispersion relatiofEq. (13)] reduces to

2—3( - qga) 1-— (14
2197 12¢ JEr12)

At low Ca(g<<1), the most unstable wavelengttih scales
as Ca'211% At large Ca, Eq.(14) vyields the same
asymptotic dispersion relation as the miscible one—Bj.
The most unstable wavelengtvh is also constant\/h

=2.3, just as for the miscible case. Experimentally this be-
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