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Wavelength selection of fingering instability inside Hele–Shaw cells
J. Fernandez, P. Kurowski, L. Limat, and P. Petitjeans
Laboratoire de Physique et Me´canique des Milieux He´térogènes, CNRS,
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Fingering instabilities involving fluids confined between two plates sometimes give rise to a typical
wavelengthl proportional to the gaph. This unexplained behavior is investigated for the case of the
Rayleigh–Taylor instability between two liquids of the same viscosity. Using qualitative scaling
arguments and linear stability analysis for a simplified model of hydrodynamics, we show that, in
the miscible case,h becomes a natural cut-off when diffusion is negligible, i.e., when the Pe´clet
number Pe5h3Drg/(hD) is large ~h viscosity, g gravitational acceleration,D diffusivity, Dr
density difference!. The same result holds in the immiscible case for large capillary number Ca
5h2Drg/(12g) ~g surface tension!. In this saturation regime, the dominant wavelength is given by
l'2.3h, while in the opposite limit~low Pe or low Ca! l scales, respectively, ash/Pe orh/Ca1/2.
These results are in agreement with a recent experimental study. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1410120#
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I. INTRODUCTION

The instabilities of an interface between miscible or i
miscible fluids induced by differences in viscosity or dens
have stimulated growing interest1,2 motivated by numerous
applications ~pharmacology and chemical industries,3–5

geophysics,6–9 etc.!. In this paper, we consider the case
two fluids in a Hele–Shaw cell, which constitutes a rou
but simple representation of a porous material. Indeed, m
applications, such as oil recovery, take place in such a
dium. Available studies have identified different cases, wh
depend on the nature of the instability~viscous or gravita-
tional!, and on the ratio of advection to molecular diffusio
or surface tension effects, usually measured, depending
whether or not the fluids are miscible, either by a Pe´clet
number or a capillary number, both dimensionless. Visc
instability is generally referred to as Saffman–Taylor ins
bility, and Rayleigh–Taylor is generally associated w
gravity-driven instability, although it should be pointed th
Saffman and Taylor in their seminal paper10 included both
pressure-driven and gravity-driven cases in the high frict
limit ~low-Reynolds! which corresponds to the Hele–Sha
flow. For low Péclet or low capillary number, i.e., when dif
fusion or surface tension dominates, the typical wavelengl
is a function of the diffusivity or surface tension,1,11,12while
in the opposite limit, experiments13–15 reveal that its value,
normalized by the cell thicknessh, saturates at a constan
value. Available theoretical models have mostly discus
the first regime, but no satisfactory explanation has been
posed for the behavior of the wavelength at high values
the Péclet or capillary number. A tentative explanation w
suggested by Patterson15 in the case of miscible fluids, but i
is based upon a principle of minimum dissipation which,
our knowledge, still remains unproven.

In this paper, we reconsider this problem in the simpl
possible situation, a Rayleigh–Taylor instability16,17 induced
by a density mismatch between two fluids of equal viscos
3121070-6631/2001/13(11)/3120/6/$18.00
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at very low Reynolds number. We propose a new explana
for the saturation regime by using simple qualitative arg
ments~Sec. II!, and we check our interpretation on a simp
fied version of the equations governing fluid motion~Sec.
III !. In short, we replace the Stokes equation by an effec
equation for the mean velocity averaged over the cell gap
which the derivatives in the direction normal to the plate a
deduced from an ideal Poiseuille flow, similar to that i
volved in the Darcy regime. Sometimes called a ‘‘Brinkma
model in the literature related to porous media, this mo
allows us to obtain both limits, i.e., a Darcy flow interactin
with diffusion at low Pe´clet number or surface tension at lo
capillary number, and a Stokes flow at high Pe or high Ca
the miscible case, the results are compared to recent ex
mental measurements.18 Very good agreement is found for
wide range of Pe´clet numbers~from 0.1 to 104).

II. PHENOMENOLOGICAL APPROACH

A. Qualitative argument

The geometry of the problem is suggested in Fig. 1
fluid of densityr1 tests on top of a lighter one of densit
r25r12Dr, both fluids being confined between two ver
cal plates separated by a gaph. Usually, the stability of an
interface is discussed by calculating a dispersion rela
s(k52p/l) that governs the growth of initial sinusoida
perturbations of the interface positiondz}exp(ikx1st),
wherek is assumed to be positive in this section. Neglect
for the moment any damping effect associated with diffus
or surface tension, and restricting the analysis to low R
nolds number~where inertial effects are negligible!, this dis-
persion relation should correspond to an equilibrium betw
buoyancy effects and viscous stresses. Without going into
details of the calculations, we can estimate the scaling
volved as follows.

At the beginning of its growth, a ‘‘finger’’ or a ‘‘cell’’ of
0 © 2001 American Institute of Physics
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3121Phys. Fluids, Vol. 13, No. 11, November 2001 Wavelength selection of 2D fingering instability
the pattern, typically of sizel/2 in the x direction, is sub-
jected to a global buoyancy force or orderFB}(hl§)gDr
where§ designates the pattern amplitude. This force is b
anced by a force of viscous origin of a form depending
the range of wavelengths considered@see Figs. 1~a! and
1~b!#. Whenl@h, we are in a Darcy regime, in which mo
of the viscous friction acting on the cell will be interactin
with the solid boundaries, over a surface area typically
orderl2 ~l is also the characteristic extent of the flow in t
z direction!. We thus expect the viscous force to scale
FV}hl2(sz/h) whereh is the viscosity, andsz/h a typical
velocity gradient. In the opposite limitl!h, the typical gra-
dient becomessz/l and the typical surface arealh, the
viscous force acting mainly between lateral cells. The v
cous force now scales asFV}h(lh)(sz/l). The dispersion
relation is deduced, at least qualitatively, by writing t
equalityFB5FV . To get an idea of the influence of diffusio
or surface tension, we can also introduce in the result a p
nomenological damping term2A. This leads to

s52A1
h2

h
gDrk ~k!1/h!, ~1a!

s52A1
gDr

hk
~k@1/h!, ~1b!

FIG. 1. ~a! Schematic representation of the interfacial instability. The up
and the lower layer have, respectively, densityr1 and densityr25r1

1Dr. In the Darcy regime (l@h), the friction exerted on the pattern
interacts with the plates of the cell across a surface area of orderl2. As a
result, the global buoyancy forceFB5(hlz)gDr is counterbalanced by the
viscous forceFV5hl2(sz/h). ~b! Schematic representation of the interfa
in the Stokes regime (l!h). The friction exerted on a finger occurs on
scale that is now the pattern wavelength. Thus, the buoyancy forceFB is
counterbalanced by the viscous forceFV5h(lh)(sz/h).
Downloaded 22 Oct 2001 to 193.54.81.50. Redistribution subject to AI
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whereA}Dk2 in the miscible case, andA}(gh2/h)k3 in the
immiscible case.1

Of course, as we shall see, the actual relationship h
more complicated algebraic structure and involves numer
prefactors omitted here. However, Eq.~1! is sufficient to lead
to the following predictions. At very lowk, one recovers
qualitatively the well-known Darcy type dispersion relatio
s5(h2/24h)Dr g k,19 which favors the growth of smal
wavelengths.

The Péclet number is defined here as Pe5U* h/D with a
characteristic velocity of finger growthU* 5Drgh2/12h.
Similarly the capillary number is Ca5hU* /g. As it appears
from Eq.~1!, when the Pe´clet or the capillary number is larg
enough, diffusion or surface tension becomes insignific
and the wavelength selection should result solely from
crossover from the Darcy regime to a ‘‘Stokes regime’’
which s decreases withk ~regimek@1/h). In this case, i.e.,
for Pe@1 or for Ca@1, the most unstable wavelengthlmax

should be proportional to the gap, i.e.,lmax;h. In the oppo-
site limit, the crossover to a diffusion- or surface-tensio
limited growth will occur beforek reaches 1/h, so that the
dominant wavelength scales aslmax;h/Pe in the miscible
case, orlmax;h/Ca1/2 in the immiscible case.

B. Physical interpretation of the result

From a physical point of view, the saturation of th
wavelength at high Pe or high Ca has its origin in a chan
of the mechanisms which govern the viscous effects, as
posed to the growth. In the Darcy limit~large wavelength!,
most of the friction exerted on a finger interacts directly w
the plates@Fig. 1~a!#, over a length scale which coincide
with the gaph. In the Stokes limit~small wavelength!, most
of the friction occurs laterally against the reversed flow
duced around neighboring fingers, on a scale that is now
pattern wavelength@Fig. 1~b!#. The scaleh emerges as a
compromise between these two limits. At low Pe or Ca, t
mechanism is hidden by a more conventional crossover
tween Darcy-limited growth and diffusion or surface tensio

III. LINEAR STABILITY ANALYSIS

A. Approximating Stokes equations with a Brinkman
model

We now describe more precisely the hydrodynamics
volved, again at very low Reynolds number. In this lim
both liquids follow Stokes law, but the resulting equatio
are still difficult to solve.20 We have therefore replaced th
problem by a simpler one, writing approximate equations
the mean velocity averaged, over the cell thickness:

052“P1hF12

h2
1“

2GU1rg, ~2a!

05“"U, ~2b!

whereP(x,z,t) and r(x,z,t) are, respectively, the pressu
and density fields,U5(Ux ,Uz) is the fluid velocity averaged
over the cell thickness, and the operator“5(]x ,]z) is de-

r

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



e-

e
d

te
e

s
le
ta
ld
on

de

p

d
e

-
io
io
ld

s

ar

e-

dis-

he
th

sing

a
e
ur

y
.

ese
lu-

ss

-
s

ve

h

iffu-

le

ap,

the

3122 Phys. Fluids, Vol. 13, No. 11, November 2001 Fernandez et al.
fined for coordinatesx andz only. These equations are som
times called a Brinkman model21 in the literature related to
porous media.

B. Miscible case

Equations~2a! and~2b! must be coupled with a diffusion
equation:

r5r21~r12r2!c, ~3a!

]c

]t
1~U"“ !c5D“

2c, ~3b!

where c(x,z,t) is the local concentration of liquid 1. Th
density differenceDr5r12r2 is assumed small compare
to r1 , which allows the linearization of the (r,c) relation
~3a!. It should be noted that~2a! will reduce to Darcy’s equa-
tion in the limit l!h, and to a Stokes flow in the opposi
limit l@h, in agreement with the qualitative ideas discuss
at the beginning of this paper.

1. Base state and its perturbations

For a flat interface, initially perfect, with a discontinuou
concentration profile, the system is expected to evolve so
by diffusion. It should remain in a time-dependent base s
with zero velocityU050, and a hydrostatic pressure fie
P0(x,z,t) governed by the evolution of the concentrati
c(x,z,t) according to

“P05@r21Drc0~z,t !#g, ~4a!

c0~z,t !5 1
2@11erf~z/ADt !# ~4b!

in which erf(u) designates the error function. In thereal case
of an interface initially slightly perturbed, one should inclu
perturbation terms, i.e.,U501u(x,z,t), P(x,z,t)5P0(z,t)
1p(x,z,t), and c(x,z,t)5c0(z,t)1c8(x,z,t). Linearizing
the equations, we get the following two equations that cou
the concentration perturbationc8(x,z,t) to thez-component
of the perturbation velocityuz(x,z,t):

h¹2F12

h2
2¹2Guz52Drg

]2c8

]x2
, ~5a!

F ]

]t
2D¹2Gc852

]c0

]z
uz . ~5b!

Following a method previously applied by Kurowski an
Misbah22 to unconfined Rayleigh–Taylor instabilities, w
expand now uz and c8 into normal modes,@uz ,c8#
5@w1(z),c1(z)#exp(ikx1st), wheres is supposed to be de
fined at very small time in a quasisteady state approximat
As long as time remains much smaller than the diffus
time scale, we assume a sharp profile for the diffusion fie
]c0 /]z5d(z), d(z) being the Dirac delta function. Thi
yields a single differential equation forw1 :

F d2

dz2
2k2GF12

h2
2

d2

dz2
1k2GFs2DS d2

dz2
2k2D Gw1

52
gDr

h
k2d~z!. ~6!
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For z50, d vanishes, andw1 can be expressed as a line
combination of the functions exp(6kx), exp(61x), and
exp(6jx), with l 25k21s/D andj25k2112/h2. The coef-
ficients, which are different in the two half spacesz.0 and
z,0, are linked by the continuity ofw1 across the interface
(z50), that of its derivatives up to the fifth order ind/dzand
a discontinuity condition in the sixth-order derivative d
duced from Eq.~6! ~see Ref. 23 for more details!. Elimina-
tion of these coefficients leads to the dispersion relation
cussed in the following.

2. Dispersion relation: From low to large Pe ´clet
numbers

After some cumbersome algebra, we finally obtain t
following dispersion relation that links the reduced grow
rate S512hs/Drgh to the reduced wave vectorq5ukuh,
both quantities being here rendered dimensionless by u
the scaling factors identified qualitatively at high Pe´clet
number in Sec. II:

S5
12

Pe
1

q

2 F12
q

A121q2G2
6q

PeS F12
q

APeS1q2G .

~7!

The implicit equation~7!, which can be reduced to
fourth-order polynomial, is solved numerically for a larg
range of Pe´clet numbers. We show an example of these fo
solutions for Pe5103 in Fig. 2: The real and the imaginar
parts of the reduced growth rateS are represented in Figs
2~a! and 2~b!, respectively. The branchS1 is always real and
displays a maximum. The two branchesS2 andS3 are real
up to q55.65 and then become complex conjugates. Th
two solutions are not relevant in this case. The fourth so
tion S4 remains constant and positiveS4512/Pe. This
branchS4 represents the characteristic diffusion time acro
the gap in the cell,tD5K/D (K5h2/12, whereK is the
permeability of the cell!. The dispersion relation which cor
responds toS1 is displayed in Fig. 3 for four different value
of Pe ~1, 10, 102, and 104). The wave vectorqmax corre-
sponding to the maximum growth rateSmax increases with
Pe until it saturates atqsat52.7 ~i.e., l/h52.3)for high Pe
~Pe.100!. This value corresponds to the most unstable wa
vector obtained from the dispersion relation, Eq.~7!, in the
asymptotic case (Pe→`):

SPe→`5
q

2 F12
q

A121q2G . ~8!

Note that althoughqmax tends to a constant value wit
increasing Pe, the cutoff wave vectorqc@S(qc)50# contin-
ues to increase. Indeed, the larger Pe, the smaller the d
sion length becomes, so that largerq become unstable. This
behavior, i.e., the saturation ofqmax coupled to the increase
of qc has also been noted by Brown24 for the Rayleigh–
Taylor instability of a thin viscous layer between immiscib
fluids.

The most unstable wavelength, normalized by the g
lmax/h52p/qmax and the growth rateSmax, are represented
as functions of Pe in Fig. 4. For large values of Pe,
wavelength scales with the gap of the cell,lmax52.3h and
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the growth rate is constant,Smax50.4. This is the main resul
derived from this model. Moreover, the dispersion relat
~7! covers both the diffusive regime at low Pe~Darcy’s re-
gime! and the convective regime at large Pe~Stokes regime!.

FIG. 2. Solutions of the dispersion relation, Eq.~7!, at Pe5103. ~a! Real
part of S vs q. ~b! Imaginary part ofS vs q.

FIG. 3. Growth rateS1 as a function of the wave vectorq for Pe5 1, 10,
102, and 104. The continuous line represents the asymptotic (Pe→`) dis-
persion relation. The dashed line corresponds to the asymptotic beh
in the Darcy regime (S5q/2), and the dotted line represents the asym
totic behavior in the Stokes regime (S53/q). The crossover between thes
two asymptotic regimes yields a wavelength proportional to the thickn
of the cell.
Downloaded 22 Oct 2001 to 193.54.81.50. Redistribution subject to AI
The agreement between these theoretical values oflmax

andSmax with recent experiments, as well as with numeric
simulations, is very good,18 notably when the Reynolds num
ber is very low. In particular, the asymptotic wavelength o
served by Fernandezet al.18 was closer to the theoretica
value~2.3 h! for larger viscosity~smaller Re! than for lower
viscosity flow ~lower Re!. Indeed, when the Reynolds num
ber is not negligible, the assumption of a parabolic profile
the gap is no longer valid.

In the limit Pe!1, Eq. ~7! reduces to the characterist
dispersion relation of the Darcy’s regime:1,12

S5
1

2
~q2Pe21 q22Pe21 qAq212 Peq!. ~9!

The most unstable modeslmax/h and Smax calculated from
Eq. ~9! scale, respectively, as Pe21 and as Pe.

The change of behavior between low and large Pe´clet
numbers and the selection of the wavelength, can be poi
out qualitatively by intersecting the two qualitative equatio
~1a! and ~1b!. This leads tol/h52p, which is an approxi-
mation not so far from the theoretical value 2.3.

C. Immiscible case

We now apply the Brinkman model to an interface b
tween two immiscible fluids of the same viscosity, in th
same geometry. Att50 the interface (z5z050) is slightly
disturbed.z8(x,z,t), U8, r8(x,z,t), and p8 represent the
perturbation field. The linearized equations for the pertur
tions read

ior
-

s

FIG. 4. ~a! l/h vs Pe. At low Pe, the dimensionless wavelength scales
Pe21, and is equal to 2.3 at large Pe.~b! Smax vs Pe. At low Pe~Darcy
regime!, S scales as Pe, and it is equal to 0.4 at large Pe~Stokes regimes!.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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052“p81hF12

h2 1“

2GU81r8g1
p

4
g

]2z8

]z2
d~z2z0!,

~10a!

05“"U8, ~10b!

where

g
]2z8

]z2
d~z2z0!

represents the discontinuity of the pressure at the inter
and d~z! is the Dirac delta function. This expression is n
trivial but is consistent with the analysis of Park a
Homsy25 after neglecting the pressure gradient in the cell g
due to the transverse meniscus.26 These equations must b
coupled with the linearized incompressibility condition:

]r8

]t
1w

]r

]z
50. ~11!

Expanding the perturbations into normal modes exp(ikx
1st), and taking into account thatdz8/dt5w8(z8)5sz8
where w8(z8) is the vertical velocity of the interfacez
5z8(x,z,t), yields a single differential equation for the am
plitude w1 of w:

hsF ]

]z2 2k22
12

h2GF ]

]z2 2k2Gw1

52gDrk2d~z!w11gk4d~z!w12Drs2d~z!
]w1

]z
. ~12!

For z50, d vanishes andw1 can be expressed as a line
combination of the functions exp(6ikx), exp(6ilx) with l 2

5k2112/h2. The coefficients, which differ in the two ha
spacesz.0 andz,0, are matched as a result of the contin
ity of the velocity and the tangential stress across the in
face ~z50!. Thus, integrating Eq.~12! over an infinitesimal
layer of thickness« («→0) which includes the interface
between the two fluids, the dispersion relation is obtaine

2h
12

h2
s5uku~gDr2gk2!F12ukuS k21

12

h2D 21/2G . ~13!

The wavelength corresponding to the maximum growth r
is plotted, together with the miscible case, in Fig. 5 as
function of the capillary number.

Using the reduced growth rate(512hs/gDrh and the
reduced wave vectorq5ukuh with the capillary number Ca
the dispersion relation@Eq. ~13!# reduces to

( 5
1

2 S q2
q3

12 CaD S 12
q

Aq2112
D . ~14!

At low Ca(q!1), the most unstable wavelengthl/h scales
as Ca21/2.1,19 At large Ca, Eq. ~14! yields the same
asymptotic dispersion relation as the miscible one—Eq.~8!.
The most unstable wavelengthl/h is also constant:l/h
52.3, just as for the miscible case. Experimentally this
Downloaded 22 Oct 2001 to 193.54.81.50. Redistribution subject to AI
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havior has been observed by Maxworthy27 and Maher28 with,
however, a different asymptotic value~respectively,l/h;5
andl/h;3).

IV. CONCLUSION

A complete dispersion relation has been obtained for
instabilities between miscible fluids as well as for immiscib
fluids. These equations cover the whole range of parame
from the Darcy regime to the Stokes regime. This has b
achieved using a Brinkman equation instead of a Da
model. Comparison with experiments is very good.18 More-
over, numerous papers29,30 have reported the observation o
the asymptotic behavior that can be explained by the mo
presented in this paper. In the near future, this dispers
relation will be extended to the case of miscible, or imm
cible, fluids with different densities, viscosities, and velo
ties. A further interesting challenge would be to study t
transition from a Hele–Shaw geometry toward a thre
dimensional configuration.

Moreover, we have observed that the instabilities b
tween miscible or immiscible fluids have the sam
asymptotic behavior (l52.3h) in the convective regime
miscible fluids at large Pe´clet number, i.e., when the diffu
sion is negligible, have the same behavior as immiscible
ids at large capillary number, i.e., when the surface tensio
negligible.
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