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Mass and momentum transport in longitudinal vortical structures in liquid flow
Example of Görtler vortices

P. Petitjeans, J. L. Aider, J. E. Wesfreid

Abstract The difference between mass and momentum
transport in longitudinal vortical structures is shown in this
paper. The patterns observed by visualization using laser
induced fluorescence are the signature of the mass transport,
while the flow structures revealed by anemometry show the
momentum transport. Experiments and numerical simulations
are performed in order to compare the velocity field of the
Görtler instability with the mass distribution of a passive
scalar. The typical scales involved in this problem are dis-
cussed with relation to the Schmidt number, in order to
compare the size of the observed ‘‘mushrooms’’ with the size of
the longitudinal Görtler vortices. It is found that the nonlin-
earities which strongly influence the velocity perturbation do
not modify the shape and the size of the scalar structures.

1
Introduction
Flow visualization by a passive tracer gives information on
mass transport in a flow, whereas velocity measurements, by
anemometry for instance, give access to momentum transport.
The patterns observed by visualization in liquid are usually
quite different from those measured by velocimetry. A careful
discussion is needed in order to deduce quantitative informa-
tion when dye is used as tracer to follow the streamlines, or to
display the typical mushroom observed in vortical structures.
It has been previously shown that streaklines, pathlines, and
streamlines are different in non-steady flows (Hama 1962;
Maurel et al. 1996). Even in stationary flows, diffusion, inertia,
and topology of the flow can increase the difference between
mass and momentum patterns (Simon and Pomeau 1991;
Babiano et al. 1994).

In this article, visualizations of flows are obtained with
diffusing passive tracers, such as dye in liquid, which is one of
the most common ways to visualize a flow. Attention is focused
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on the complex problem of the difference between the patterns
observed in visualization with a diffusing tracer, and the
structures existing in the velocity field. Preliminary results
have been presented by Petitjeans and Wesfreid (1992), and
this problem has been analyzed by Liu and Lee (1990), Finlay
et al. (1990), Liu and Sabry (1991), Liu (1991), Liu and Lee
(1995). A phenomenological analysis of the typical scales
involved in this problem is presented.

This problem is studied both experimentally and numer-
ically in the particular case of spatially developing Görtler
vortices. This centrifugal instability appears in boundary layers
over a concave wall; the consequence of the imbalance between
centrifugal forces and the radial gradient of pressure (Floryan
1991; Saric 1994). Pairs of counter-rotating longitudinal rolls
arise in the direction of the main flow (Fig. 1). As with most
centrifugal instabilities, nonlinearities have a strong influence
on the spatial growth of vortices, long before turbulence
appears and at a much smaller Reynolds number than for shear
instabilities. In such a three dimensional nonparallel flow, it is
difficult to measure the full 3D velocity field in a reasonably
large section of flow. This explains why only one or two
components of the velocity along some judiciously chosen axes
are measured. To determine these axes, visualization is used to
get most of the spatial quantities such as wavelength, size of the
vortices, and position of their core. This paper shows to what
extent visualization can be utilized to interrogate the velocity
field, and in what ways it fails.

In order to complement the experimental investigations,
a 3-D numerical simulation is performed which gives the full
3-D velocity field and the mass-concentration field. The mass
and the momentum transport in the experiment is qualitatively
compared with the numerical simulation. For this work, there
is no possible quantitative comparison between experiments
and simulations, since the initial conditions cannot been matched
exactly. Nevertheless, simulations help in the qualitative under-
standing and interpretation of experiments, and give much in-
formation on the spatial evolution of the scalar and velocity fields.

In the first part of this paper, the experimental set-up is
presented, as are the methods used to visualize the flow and to
obtain the velocity field. In the second part, a comparison
between the visualization and the velocity field is discussed,
and a phenomenological interpretation of the difference is
proposed. The third section explains the numerical method
used in the three-dimensional simulation, and the results
obtained are described. Finally, an analysis of these results is
given which better illuminates the interpretation of visualiz-
ations obtained with a diffusive passive tracer.
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Fig. 2. Experimental set-up

Fig. 1. Görtler vortices in the boundary layer on a concave wall

A key facet of the analysis presented is that it can be partially
extended to the problem of thermal transfer using analogy
between mass and temperature (in that they are both passive
scalars).

2
Experimental set-up and methods
The apparatus is a low velocity water channel specially
designed to study the Görtler instability (Peerhossaini and
Wesfreid 1988; Petitjeans and Wesfreid 1995; Petitjeans and
Wesfreid 1996; Aider and Wesfreid 1996). This set-up is well
equipped for Laser Induced Fluorescence visualization, using
a light sheet and dye injection facilities. Velocity measurements
are obtained through an automatic laser Doppler anemometry
(LDA) system. The experimental set-up is shown in Fig. 2.

The flow is generated by gravity with a constant level water
tank of capacity 384 liters, located 175 cm above the channel.
The flow velocity is controlled with several valves and a flow
meter. The channel is built of Plexiglas (1.5 cm thick).
A succession of different sections makes the flow as laminar as
possible: a diffuser, a converging section, a diverging section,
a settling chamber, a 2D contraction chamber, and a relaxation
section where it is possible to inject dye as a sheet or as several
jets. The section which follows is the curved section where
the Görtler instability is studied. A straight vertical section
is attached to the end of the curved section and allows the
observation of the persistence of the rolls. The concave test
section consists of a curved duct with width, L

z
\10 cm

(Fig. 2). The radius of curvature of the outer concave wall
is R

o
\10 cm, and the radius of the inner convex wall is

R
i
\5.7 cm. The two centers of curvature are slightly different

(d\0.7 cm in the horizontal direction) to compensate for the
growth of the boundary layers. On each wall, there is a devi-
ation of the flow in the inlet of the curved section to eliminate
the boundary layers which are developed upstream.

2.1
Visualization (mass transport)
The structures generated in the curved section are visualized
with the Laser Induced Fluorescence method (LIF). The dye is
injected far upstream (2 m) without perturbing the flow. The
dye current is generated using gravity (from a constant level
tank). The difference between the level of dye and the level
of water is carefully controlled in order to keep the initial
conditions constant and to prevent dye jet instabilities. A light
sheet is generated with an argon laser and a cylindrical
lens. The dye mixture is a 0.1 g/l concentration solution
of Fluoresceine (C

20
H

10
Na

2
O

5
) in water, so that the density

difference, do/o\10~4, is negligible. The absorption spectrum

389



Fig. 3. a Visualization in a cross-section, a\52° from the leading
edge. The dark frame represents the walls; b streamwise velocity field
in the same cross-section as Fig. 3a

is maximum for an excitation wavelength of j+490 nm,
corresponding to the blue ray of an argon laser light. The light
is re-emitted in the green (j+514 nm). This method allows
observation of structures with vorticity orthogonal to the
plane of the light sheet. A cross section of the flow exhibits
mushroom-like structures in the boundary layer over the
concave wall. Figure 3a is a typical picture obtained with this
method in the cross-section a\52° from the leading edge, in
a stationary case with a mean centerline velocity U

0
\4.6 cm/s.

This figure also gives a schematic representation of the rolls.
The stems of the mushrooms correspond to the region where
the rotation of the rolls induces a flow from the concave wall to
the external flow, and so increases the local thickness of the
boundary layer: this region is called ‘‘outflow’’. In the opposite
direction, the region between two mushrooms corresponds to
a place where the rotation of the rolls induces a flow from the
external flow towards the concave wall, and ‘‘crushes’’ the
boundary layer: this region is called ‘‘inflow’’. This representa-
tion can be observed in all the centrifugal instabilities, such as
the Taylor—Couette instability between two coaxial cylinders in
rotation, or the Dean instability in a Poiseuille flow in a curved
duct. These structures are also observed in the Coriolis
instability in rotating channels which generates longitudinal
rolls.

2.2
Velocity field (momentum transport)
The streamwise component of the velocity field is measured
with an automatic Laser Doppler Anemometer. This system
consists in a fiber optic probe which gives a simple method
of positioning the volume which is to be measured in the
flow. Titanium Dioxide Particles (TiO

2
) are added to the

water with a concentration of approximately 0.1 mg/l. Their
mean diameter is 50 lm, and their density is close to 1. The
streamwise velocity component U is measured to deduce
the streamwise perturbation u, because it is the largest per-
turbation compared to the two other components v and w (as
usual for longitudinal vortices). This system is controlled
by a computer which records the data. In the same section
where a picture is taken of the dye visualization (a\52°),
the streamwise stationary velocity field is also ‘‘scanned’’,
recording about 2500 velocity measurements (every 0.1 cm
in the spanwise direction z, and every 0.05 cm in the radial
direction y). In order to compare the two fields (longitudinal
velocity and dye concentration), a gray level (between 0 and
255) is associated with each velocity measurement. As a result,
a picture is obtained as a representation of the streamwise
velocity field (Fig. 3b) where the isochrome lines correspond
to iso-velocity lines (streamwise component) in the same
cross-section as Fig. 3a, and under the same conditions,
because the flow is stationary.

Before making a comparison between mass transport and
momentum transport, it is important to note that these
measurements allow an observation of the strong influence of
the nonlinearities in the velocity field. If the nonlinearities are
very weak, the streamwise velocity profile would be sinusoidal
in the spanwise direction, z. In that case, the inflow and the
outflow regions would have the same spanwise extension. The
influence of the rolls in this situation would have no effect on
mass transfer (or heat transfer by analogy) between the wall
and the external flow: what is taken in the inflow regions
(where the gradient of velocity is larger), is exactly compen-
sated by what is lost in the outflow region (where the gradient
is smaller). In this experiment (Fig. 3b), this is not the case
anymore. Nonlinearities deform the spanwise profile and act
such that the inflow regions are much more extended than the
outflow regions. The mass (or heat) transfer is largely in-
creased in this type of flow, which is still laminar (Smith and
Haj-Hariri 1993). Indeed, these nonlinearities appear very
rapidly in the Görtler instability, and in most of flows which
produce counter-rotating longitudinal rolls. This asymmetry is
more pronounced in the counter-rotating longitudinal rolls
than in co-rotating transversal rolls, such as those seen in shear
instabilities. Therefore, the production of longitudinal vortices
in a laminar flow is a good way to enhance the mass (or heat)
transfer without using a turbulent flow. Indeed, the new
generation of static high efficiency mixers in heat exchangers
or chemical reactors use short longitudinal vortices induced by
rows of nuggets to enhance the mixing.

3
Comparison between concentration field and velocity field
In Fig. 3a and 3b, mushrooms are observed which are located
in the same spanwise position z. Everything else is different:
the size is not the same, neither is the thickness of the patterns.

The Schmidt number is used in order to understand the
difference between the thickness of the patterns in these
two pictures. The dimensionless Schmidt number, Sc\l/D,
represents the ratio of the vorticity diffusion to the mass
diffusion, where l is the kinematic viscosity, and D is the mass
diffusion coefficient. This number can also be written as the
ratio of two characteristic times, Sc\qm/ql, where q

m
is the
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characteristic time of mass diffusion, and ql is the character-
istic time of vorticity diffusion. For water and a solution of
fluoresceine, l\1.14]10~2 cm2/s and D\3.6]10~6 cm2/s,
corresponding to a Schmidt number Sc+3200. Thus mass
diffuses about 3200 times more slowly than vorticity. The
difference in thickness between the two mushrooms patterns in
Fig. 3a and b is given by the ratio of characteristic length of

vorticity diffusion (dl\
Jlql) to the characteristic length of

mass diffusion d
m
\JDq

m
, i.e. dl/d

m
\Jl/D\JSc+56.

Hence, the region between the vortices shown as the stem in
the velocity field is wider than that observed in the concentra-
tion field, which is compatible with what is observed in Fig. 3.

For gas, the Schmidt number is of order unity, Sc+1. In
other words, vorticity and mass diffuse the same distance in
the same time. Indeed visualization with smoke in gas (Fig. 4b
from Ligrani and Niver, 1988) yields similar images to the
velocity field shown in Fig. 3b. Similar observations were found
in numerical simulations by Liu et al. (same ref. already cited)
and Finlay et al. (1990).

This problem of mass diffusion is exactly analogous to the
problem of thermal diffusion if temperature can be considered
a passive scalar, i.e. if there is no convection induced by the
temperature gradient. In this case, the Schmidt number is
replaced by the Prandtl number, Pr\l/K, which represents the
ratio of vorticity diffusion effects to thermal diffusion effects.

In order to better understand the difference in size between
the mass mushrooms and vorticity mushrooms, the former is
compared with the perturbation velocity field. Figure 5 gives
measurements of the streamwise perturbation u, and estima-
tions of the radial and spanwise eigenfunctions for the

Fig. 4. a Visualization in liquid (water); b visualization in gas (air)
from Ligrani and Niver (1988)

Fig. 5. Interpretation of visualizations

Fig. 6. Pseudo-image showing the concentration of dye. The highest
concentration is in the lightest color

perturbations v and w. These estimations are purely qualitat-
ive. They are obtained by matching the form of the eigenvalues
of Floryan and Saric (1982) and the measurement of u, as
well as from the numerical simulations presented later. The
maximum radial perturbation is at y(v

.!9
)+0.9 cm from the

concave wall in this experiment. The stem of the mushroom
is thinner at this position where the radial velocity, v, is
the highest. This is confirmed by Fig. 6, which represents
a pseudo-image of a visualization showing the concentra-
tion of dye. Indeed, the stem is thinner around the middle
(y+0.9 cm). This is because the radial velocity, V, is larger in
this region. Therefore the dye has less time to diffuse.

The spanwise perturbation w is equal to zero at about the
same position where v is maximized. This is the position of
the centers of the rolls. In addition, the positions where w is
maximized are also obtained (y+0.3 cm and y+1.4 cm). The
location of the center of the Görtler rolls can be deduced and
superimposed with the visualization (Fig. 5). The centers of
the rolls are located at the extremities of the ‘‘hat’’ of the
mushrooms.

4
Numerical simulation

4.1
Numerical method
A fully three-dimensional numerical simulation of steady
spatially developing Görtler vortices in a rectangular curved
channel is performed. Moreover it is necessary to include
a diffusive passive scalar in this simulation with the character-
istics of the water-fluoresceine mixture that was used in the
experiments. Because of the difficulty in matching the initial
conditions with those of the experiments, the simulation will
be compared with the experiments only qualitatively.

The Fluent Computational Fluid Dynamics package1 is used.
It is based on a control volume, finite difference method. The
numerical method consists of first dividing the domain into
discrete control volumes before integrating the differential
equations about each individual control volume. The algebraic

1from Fluent Inc.
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equations are discretized using a curvilinear coordinate system
to enable the computation of the flow in complex geometry.

As a passive scalar is simulated in a secondary flow, five
basic equations for the convective incompressible fluid have to
be solved:
— the mass conservation equation or continuity equation:

Lo
Lt

]+ · (oV )\0 (1)

— the momentum conservation equation in three dimensions:

LV

Lt
](V·+ )V\[+P]lDV (2)

— and one specie convection-diffusion equation for the passive
scalar:

Lm

Lt
](V · + )m\DDm (3)

where m is the mass fraction and D is the diffusion
coefficient.
Equations are solved using the SIMPLEC (Semi Implicit

Method for Pressure Linked Equation — Consistent) algorithm
with an iterative line-by-line matrix solver. The SIMPLEC
algorithms are based on using a relationship between velocity
and pressure corrections in order to recast the continuity
equation in terms of a pressure correction calculation.

As the code does not solve the equations at all points
simultaneously, and the equations are coupled and nonlinear,
an iterative procedure is required with iterations continuing
until all equations are satisfied at all points.

4.2
Geometry and physical properties
The geometry of interest is a 90° curved channel with a 10 cm
radius corresponding to the experimental apparatus as
illustrated on Fig. 2. To describe completely the flow with good
spatial resolution and without increasing the number of cells,
the symmetry of the problem is taken into account. A plane of
symmetry is imposed as a boundary condition in the middle of
the channel. To make sure the Görtler instability is observed
(boundary layer instability) and not the Dean instability
(Poiseuille flow instability), a constant longitudinal veloc-
ity (plug profile) is imposed at the inlet of the duct. The
mean streamwise velocity U

0
\4.6 cm/s corresponds to the

experiment, i.e. the boundary layer starts at the edge of the
concave plate. The secondary flow is triggered by a small wall
perturbator placed just at the beginning of the concave plate.
The perturbation is stationary at a fixed position so that the
mesh is refined in the region where the vortex will grow. The
resolution used in each cross-section plane is 51 nodes in the
z direction and 61 in the y direction, with a refined mesh
around the vortices. We take 31 planes in the longitudinal
direction corresponding to nearly one plane every 3° in the
concave part. The dye is modeled as a second non-reactive
specie with the same physical characteristics as water, but
with a binary diffusion coefficient D\3.6]10~6 cm2/s
corresponding to a Schmidt number Sc\3200. It is injected as
a 1 mm thick sheet across the span of the inlet, just above the
concave wall.

4.3
Numerical results
The spatial evolution of the mass-vortices along the concave
plate is illustrated first. Fig. 7 shows the concentration field for
eight different longitudinal positions from a\0° to a\90°.
The dye pattern evolves from a small bump at the beginning
of the channel, to a stem 20° downstream, and finally to
a ‘‘mushroom’’ like structure at the exit of the channel.

Figure 8 shows the iso-concentration lines (Fig. 8a) and the
iso-streamwise velocity lines (Fig. 8b) at the exit of the curved
section. This is equivalent qualitatively to what was observed
in the experiment (Fig. 3). The thickness of the momentum
boundary layer is much larger than the thickness of the mass
boundary layer. Again, this confirms that what one can see
by visualization in liquid is not necessarily the velocity
field.

Fig. 7. Concentration fields for eight different longitudinal positions
from a\0° to a\90°

Fig. 8. Iso-concentration lines a and iso-longitudinal-velocity lines
b picture for a\85°. The values of the concentration and the velocities
for this figure can be obtained from Figs. 11 and 12
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Fig. 9. Iso-concentration lines and transverse velocity field on
the same picture for a\85°. The centers of the rolls are near
the extremities of the ‘‘hat’’ of the mushroom. The values of the
concentration and the velocities for this figure can be obtained from
Figs. 11 and 12

Fig. 9 shows the concentration and the transverse velocity
fields on the same picture. This picture shows the real positions
of the centers of the rolls which are near the extremities of
the ‘‘hat’’ of the mushroom and not between the extremities
of the hat and the stem. It is also observed that the lines
of iso-transverse velocity, (v2]w2)1/2, cross the hat of the
mushroom, which is not obvious when observing a visualiz-
ation. Indeed, one of the most common misinterpretations of
such visualizations is to consider that the transverse velocity is
tangent to the hat of the mushroom. In reality, this velocity
crossing the hat is just the evidence that the vortices still grow
in size. In consequence the height of the ‘‘mass-mushroom’’ is
not an order-parameter for the instability.

This point is important since many authors have considered
the height of the mushroom observed by visualization as
a parameter proportional to the amplitude of the perturbation.
It is important to understand that this parameter is not
relevant. In the case of the Görtler instability, one of the
relevant parameters which represent the spatial evolution of
the instability is the root mean square of the longitudinal
perturbation u, with u such that U\U

0
]u, where U

0
is the

unperturbed streamwise velocity (Petitjeans and Wesfreid
1995, 1996). Figure 10 shows this parameter u

3.4
as a function

of the angle (0° at the entry of the curved section and 90° at the
exit). The amplitude of the instability grows until 75° and then
decreases because of the nonlinear saturation. On the same
graph is represented the height h of the mass-mushroom
defined as the position y where the concentration is maximum
on its head. The mass-mushroom continues to grow while the
amplitude of the instability decreases. Note that h can also
be defined as the height, y, at which the concentration drops
to 1%, but that does not change the result. This clearly
shows that not only the general form of the mass-pattern and

Fig. 10. Spatial evolution of the amplitude of the instability
represented by the root mean square of the longitudinal velocity
perturbation, and height of the mass-mushroom

Fig. 11. Velocities and concentration profiles as a function of the
spanwise component z at a distance y\0.45 cm from the concave wall
and for a\85°. The concentration is scaled between 0 and 1 where
C\1 represent the initial concentration of the injected dye

momentum-pattern differ, but also that their respective spatial
evolutions differ. Plotting v

3.4
or w

3.4
would have given the

same streamwise saturation position.
Figure 11 gives on the same graph the velocities U, V, W and

the concentration C as function of the spanwise component z at
a distance y*\0.45 cm from the concave wall. W+0 at this
position y* means that this position corresponds to the centers
of the rolls. The central maximum of dye concentration
corresponds to the stem of the mass-mushroom where the
radial velocity V is maximum. The two other maxima are at the
intersection with the ‘‘hat’’ of the mushroom. The Z location of
these two maxima correspond to the positions where the radial
velocity V changes sign, i.e. where the centers of the rolls are
located. The ‘‘valley’’ in the streamwise velocity, U, is induced
by the rolls which lift low speed fluid from the concave wall to
the external flow. The width of this ‘‘valley’’ is much wider than
any of the concentration peaks since vorticity has diffused
much more than concentration.

Figure 12 shows the velocities U, V, W, and the concentra-
tion C as a function of the distance y from the concave
wall along the stem of the mushroom. We can observe that
there are two concentration maxima; one at the upper part of
the mushroom, and the second at the lower part near the wall.
The concentration maximum near the wall is reminiscent of
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Fig. 12. Velocity and concentration profiles as a function of the
distance y from the concave wall along the stem of the mushroom and
for a\85°

a cellular flow, such as Rayleigh—Bénard convection-cells, that
have been seeded with very small particles. The particles
accumulate near the wall just below the ‘‘ascendant stem’’, i.e.
where the flow is from the bottom towards the top. It is not
clear that these two behaviors have the same origin, but it is
interesting to note the similarities. Indeed, particles accumu-
late at this position because of the combination of a stagnation
point, gravity, and molecular diffusion (Simon and Pomeau,
1991). In our case, the density difference is very small but not
zero (do/o\10~4), and gravity is not always aligned with the
stem of the mushroom due to the curvature of the wall.

The other concentration maximum is located in the head of
the mushroom, at the other stagnation point. In these two
regions the transverse velocity is very small, and dye has had
time to diffuse, i.e. to jump from one streamline to another.

The minimum concentration is at y*+0.45 cm which
corresponds to the position where the radial velocity V is
maximum, confirming what is observed in the experiment
(Figs. 5, 6). In addition, this position y* corresponds to the
height where the centers of the rolls are located (Fig. 11).

5
Conclusion
A phenomenological analysis of the difference between the
velocity field and the concentration field has been proposed in
the particular case of the Görtler instability from experiments
and numerical simulations. Mass and momentum transport
have indeed very different properties, particularly in liquids
where the Schmidt number is much larger than unity. This
implies different patterns sizes and shapes depending on what
we measure, velocity or concentration. Also, the centers of the
rolls have been located at the extremities of the hat of the
mass-mushroom and not between the hat and the stem as
would be deduced from a too simplistic analysis of the
concentration field.

An important aspect pointed out in this paper is the
non-relevance of the height of the mass-mushroom as an
indicator for the amplitude of the instability, since it has been
observed that the height still increases as the amplitude of the
instability decreases under the nonlinear saturation.

This study can be applied to other instabilities where similar
structures appear (Floryan and Saric 1982) and also to the case
of heat transfer when the temperature can be considered as

a passive scalar. This last case is of great interest since many
new heat-exchangers are based on the mixing properties
induced by longitudinal rolls (created by curvature of vortex
generators).

An extension of this work can be done by the analysis of
residence time curve (RTC) of mass or temperature pulses
introduced at the inlet and observed at the exit of the
experimental apparatus. Analysis of these RTC profiles can be
used to evaluate the effective molecular diffusion (dispersion)
and the degree of normal (gaussian) mixing. This information
can be correlated to the pattern of the tracer mushroom (Piva
et al. 1996; Castelain 1995).
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