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Spatial Evolution of Gortler Instability
in a Curved Duct of High Curvature

Philippe Petitjeans* and Jose-Eduardo Wesfreid1^
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The Gortler instability is investigated experimentally in a water channel of high curvature. Two different kinds
of experiments are presented. The first one corresponds to an experiment where the flow rate increases and where
we study the instability in a given longitudinal position along the concave wall. We find a law for the full nonlinear
behavior as a correlation for the velocity perturbation as a function of the Gortler number. In the second set of
experiments, we follow the spatial evolution of the instability along the concave wall for a given flow rate. We
observe the saturation due to the nonlinearities and to the diminution of the thickness of the boundary layer. We
show the importance of the initial conditions and of the wavelength in the evolution of the instability.

I. Introduction

T HE flow in curved ducts has been, and still is, investigated
largely because of its fundamental interest as well as its impor-

tance in technological realizations such as heat exchangers, airfoils,
turbine blades, or any part with curved surfaces. The boundary-layer
flow on a concave surface can be unstable. This instability is known
as the Gortler instability. It is the consequence of the imbalance
between the centrifugal forces and the radial pressure gradient. It
produces longitudinal rolls in counter-rotating pairs aligned in the
direction of the main flow.! ~5

On turbine blades for instance, the instability perturbs the film
cooling system. This system consists of injections of colder fluid on
the surface of the blade with small jets coming from the inside of the
blade. On the pressure side, which corresponds to the inner portion
of the blade where the surface is concave, the Gortler instability
can dramatically modify the heat exchange. Also, the rotation of the
blades, which adds Coriolis effects, can disturb the basic flow as
well as the instability development.6-7

Meanwhile the Gortler vortices are the natural prototype of lon-
gitudinal organized structures arising in flows. Indeed, in the field
of heat transfer, many improvements were obtained with airfoils,
pins, or other vortex generators, to induce artificially longitudinal
vortices in the flow. The strongly nonlinear velocity field induced
with theses vortex generators produces extended regions of down
wash flow towards the wall, enhancing the heat and/or mass transfer.

The Gortler instability belongs to the class of centrifugal instabil-
ities such as the Taylor-Couette instability between two concentric
cylinders in rotation or the Dean instability of a Poiseuille flow
within a curved channel.8'9 Simultaneously, it also belongs to the
class of instabilities in open systems. This double character gener-
ates all of the richness (as well as the complexity) of this system.

The control parameter of this instability is the Gortler number G.
Its expression is

G = Re(8/R)? = (U8/v)(8/R)i

where U is a characteristic velocity of the flow, 8 is the thickness
of the boundary layer, v is the kinematic velocity, and R is the
radius of curvature of the concave wall. This Gortler number can be
interpreted as the ratio between the inertial and centrifugal effects
to the viscous effects.
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Aspect of Centrifugal Instability
Centrifugal instabilities appear when the curvature of the stream-

lines could induce longitudinal rolls. The criterion that gives a neces-
sary condition for a centrifugal instability is the inviscid Rayleigh's
criterion 8: a flow in which the Rayleigh's discriminate is negative
is potentially unstable, where the Rayleigh's discriminate is written
as

= — — 2

r3 dr
In the case of a small curvature, when the characteristic length of
the flow d is very small compared with the radius of curvature, the
Rayleigh's discriminate can be written as

0(r)oc U —

A boundary-layer flow is stable on a convex wall and potentially
unstable on a concave one.

Aspect of Open Flow
The Gortler instability presents an important difference with the

Taylor-Couette instability and at a lower level with the Dean in-
stability. Indeed, in the Taylor-Couette problem the streamlines are
closed on themselves and the instability appears in a confined sys-
tem. Thus, a permanent feedback exists and the rolls are autoregen-
erated by themselves. This regeneration can explain the absolute
character of the Taylor-Couette instability. In addition, the gap be-
tween the two walls remains constant. For given rotation speeds of
the cylinders, the Taylor number

is equal to a constant value that does not change either in time or in
space. When the rolls are formed, they remain at a constant ampli-
tude in the flow, at least until a second threshold where, for exam-
ple, they can oscillate. This system is spatially homogeneous. The
Dean instability is not an instability in a physically closed system
in the sense where the flow does not shape a loop. However, we can
observe that the evolution of the thickness of the unstable region re-
mains constant in time as well as in space (an established Poiseuille
flow does not evolve along a flow). Thus, the Dean number

De= (Ud/v)(d/R)?

remains constant for a given flow in a given geometry. Nevertheless,
the amplitude of the rolls that appear after the inlet of the curved
section evolves along the flow in a different way to the Taylor-
Couette problem, as in a typical problem of spatial instability with
nonlinear saturation. The perturbations in this system are spatially
inhomogeneous, even if the basic flow is spatially homogeneous.
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1794 PETITJEANS AND WESFREID

Clearly, the Gortler instability is an open flow instability in the
sense that the flow is not closed on itself as in the Taylor-Couette
problem. But it is also, above all, a spatially inhomogeneous in-
stability both in terms of perturbations and the basic flow. Indeed,
the thickness of the boundary layer, corresponding to the unsta-
ble region, does not remain constant, but it evolves along the flow:
8 = 8(x). Consequently, the Gortler number, built with this charac-
teristic length, evolves also in the streamwise direction:

•US(x) = G,(x)

Hence, the destabilizing effects are not constant along the wall. In
the spatial theory of linear stability, this particularity is manifested
in an alternative way to write the Gortler number as

obtained from the explicit Blasius law on flat plate for 8(x).
Another important characteristic of an instability in an open flow

is the receptivity to initial perturbations or, in other words, the abso-
lute or convective aspect of the instability. It is generally agreed that
instabilities in open flow are convective most of the time and could
become absolute after a second threshold. The Gortler instability is
considered as a convective instability by most of the authors who
have worked on this subject.10"18 Park and Huerre12 deduce this
from their calculations in the case of a flow with wall suction and
a boundary layer of constant thickness. Chomaz13 and Chomaz and
Perrier14 show it from preliminary experiments where they study
the effects of initial perturbations. Ruban15 has studied the case of
large wavelengths with an asymptotic method in the limit of large
Reynolds number and large Gortler number. He shows that the flow
is absolutely unstable when it is perturbed by transversal periodic
perturbations. He has also studied the case of a single point initial
perturbation, and he finds that the instability is convective. Rozhko
et al.16 and Savenkov17 have also studied this problem and have
obtained the same conclusion. Choudhari et al.18 worked on the
problem of spatial evolution of the Gortler rolls in the case of large
wavelengths and concluded that the instability is convective.

Recent reviews have been written on the different studies on the
Gortler instability.3"5 Most of the studies on this subject were made
in the case where the curvature is small enough to use the assumption
of the Blasius velocity profile as the basic profile and to neglect the
effect of an eventual longitudinal pressure gradient.

We present experimental results obtained on a wall of high cur-
vature. In this situation, it is not possible to use the same assump-
tions of basic Blasius profile anymore. We show the effect of the
curvature on the basic velocity profile and the importance of the
longitudinal pressure gradient that induces an important deviation
of the evolution of the boundary layer compared with the classical
Blasius profile of a flow on a flat wall. We discuss the effect of
the nonparallelism of the basic flow on the spatial evolution of the
rolls.

In Sec. II, we describe the experiment setup and the measurement
methods we use. In Sec. HI, we recall the basic velocity profile of
the velocity field, in our case of a flow in a curved duct of high cur-
vature. In Sec. IV, we present experimental results of the evolution
of the instability in two important cases. In the first case, we mea-
sure the evolution of the instability at a fixed streamwise position x
in the curved channel when we increase the flow rate. In the second
case, we measure the spatial evolution of the rolls along the curved
channel for a constant flow rate. By repetition of the same experi-
ment, we show the effects of the uncontrolled initial perturbations
on the evolution of the wavelength and the amplitude of the rolls.
Then we show that both nonlinearities and decay of the thickness
of the basic velocity profile produce a saturation and a diminution
of the amplitude of the instability.

II. Experimental Apparatus and Procedure
We have conducted measurements in a low-velocity water chan-

nel specially built to study the Gortler instability.19 This setup is well
equipped for visualization with a system of laser-induced fluores-
cence using a light sheet and dye injection. Velocity measurements
were made with an automatic laser Doppler anemometry (LDA)
system. The setup is drawn in Fig. 1. The concave test section con-
sists of a curved duct with a width Lz = 10 cm. The radius of
curvature of the concave wall (outer) is R0 = 10 cm, and the radius
of the convex wall is /?, = 5.7 cm. The two centers of curvature
are slightly different (d = 0.7 cm in the horizontal direction) to

Water inlet
Dye and water tanks

Peristaltic pumps to maintain a
constant level in the tanks

Possibility to have an
open or closed flow

Discharge

Fig. 1 Low-velocity hydrodynamic channel. The flow is generated by gravity with a constant level water tank of capacity 384 liters, located 175 cm
above the channel (1). A succession of different sections makes the flow as laminar as possible: a diffuser (2), a nozzle (3), a diffuser (4), a settling
chamber (5), a two-dimensional contraction chamber (6), and a relaxation section (7) where it is possible to inject dye as a sheet or several jets. The
following section (8) is the curved section where we studied the Gortler instability. Then a straight section allowed us to observe the persistence of the
rolls after the curved part.
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PETITJEANS AND WESFREID 1795

compensate for the growth of the boundary layers. On each wall,
there is a deviation of the flow in the inlet of the curved section to
eliminate the boundary layers developing upstream.

We use the method of laser-induced fluorescence to visualize the
flow and the structures generated in the curved section. We can in-
ject dye upstream and generate a light sheet with an argon laser.
The dye we use is a 0.1 g/1 concentration solution of fluoresceine
(C2oHioNa2O5), so that the difference of density 8p/p = 10~4 is
negligible. As usual, this method allows observation of structures
with a vorticity orthogonal to the plan of the light sheet. Therefore,
a cross section of the flow shows forms of mushrooms (Fig. 2a). We
can measure the streamwise velocity field with an automatic LDA
system. This system consists of a fiber-optic probe that allows for
great simplicity in the placement of the point of measurement in the
flow. This anemometer measures only the streamwise velocity com-
ponent because it is the larger one, not only for the basic flow £7, but
also for the perturbation u compared with the two other components
(v and u;). This system is controlled by a computer that records the
data. Figure 2b shows the levels of the iso-streamwise velocity field
in the same cross section as the Fig. 2a. Note that the concentration
field has no reason to be the same as the velocity field. Indeed, the
form of the mushrooms obtained by velocimetry is different from
what we observe by visualization because of the difference between
the diffusion of vorticity v and the diffusion of mass D.20>21 The
ratio is the Schmidt number Sc — v/D. This number is generally
equal to 103 in liquids, meaning that the characteristic time of dif-
fusion of the mass is about 1000 times larger than the characteristic
time of diffusion of the vorticity. Or, in other words, the viscous
boundary-layer thickness 8V = ^/(Sc)8m « 305m, where 8m is the
mass boundary layer. Therefore, the visualizations in water, which
show the concentration field, give forms much thinner than forms
of the velocity field (in the case of gas, Sc « 1, and the profiles
are closer to each other). However, visualizations give important
information about the general structures of the flow, the eventual
oscillations, the wavelength, etc. From these measurements, we ob-
serve the strong influence of the nonlinearities in the perturbation
field. Indeed, we get a sinusoidal profile in the spanwise direction
only if the nonlinearities are very weak. In that case, the inflow re-
gion and the outflow region have the same size. But it is not the
case anymore in Figs. 2a and 2b. An important conclusion of this
observation of the mass transfer by visualization is the consequence
of the rolls on heat transfer!. A passive tracer as temperature (or

10cm

Fig. 2a Visualization of a cross section of the concave part (a = 60
deg) with a laser sheet and injection of dye upstream. The height of the
picture is half of the height of the channel (2.5 cm) near the concave
side, and the width is the total width (10 cm).

mass) is submitted to a higher gradient in a more extended place in
the inflow region than it is in the outflow region. Hence, the heat (or
mass) transfer is enhanced.

III. Basic Flow
As we explained, the concave section where we study the Gortler

rolls is of high curvature (R = 10 cm). We can expect the basic
flow to deviate from a Blasius profile. Indeed, we will see that both
geometry and longitudinal pressure gradient produce a different evo-
lution of the boundary layer.22 All of the authors who have studied
the Gortler instability have considered the unperturbed flow to be
a Blasius profile even for small curvature,23"25 and some of them
have included the effect of a longitudinal pressure gradient. We have
characterized this unperturbed flow as accurately as possible with
the help of a two-dimensional numerical simulation (to avoid three-
dimensional effects) to approach the two-dimensional basic flow.22

The velocity profile is not symmetric as expected and is faster near
the convex wall. This profile is the superposition of the potential
profile 1/r (where r is the distance to the center of curvature) with
the boundary layers on each wall. The boundary layer is thicker on
the concave wall because the flow is slower on this side. This differs
from a Blasius profile that tends to a constant value far from the
wall.22

Now it is important to redefine some parameters such as the in-
finity velocity UQQ and the displacement and momentum boundary-
layer thickness. The velocity UQQ, that corresponds to the potential
velocity, depends now on the distance to the center of curvature.
We will use here £/«, = U00(y), where y is the distance from the
concave wall (y = R — r). We have decided to use as characteristic
velocity the potential wall velocity24 Upw = U^y = 0) defined as
the velocity of the potential flow on the concave wall in the absence
of boundary layers. We also define the thickness of the boundary
layers as follows.22

Momentum thickness:

jo Uoo(y)
Displacement thickness:

5* =

r _
L

The upper limit of the integrals is chosen as d/2 (half of the channel)
to avoid the influence of the convex wall. Using these definitions,
we have represented in Fig. 3 an example of the spatial evolution of
the thickness of the boundary layer of the basic flow on the concave
wall. The evolution of the boundary-layer thickness differs from a
Blasius one that evolves as x/^/(Re). We have also calculated the
factor of form H — 8*/0. This factor is often and incorrectly used
to verify if a boundary-layer profile is a Blasius profile or not. If
it is, H = 8*/0 = (1.725/0.6645) = 2.59. Nevertheless, in our
experiment, the factor of form H varies from 2.2.to 2.6 (so not
very different than 2.59), but the profiles we get are not Blasius
profiles.2 Indeed, the thickness begins to increase until the bound-
ary layer reaches a certain position along the concave wall and then

o.o-i
10 20 30 40 50 60 70 80 90

Angle a (°)

Fig. 2b Longitudinal velocity U measured by laser Doppler velocime-
try in the same cross section as Fig. 3a. The light regions represent
regions of high velocity, whereas the dark regions are of low velocity.

Fig. 3 Evolution of the momentum thickness 0 of the boundary layer
and the Gortler number G# along the concave wall for the profiles shown
in Fig. 4.
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1796 PETITJEANS AND WESFREID

Fig. 4 Isobars and streamlines for the two-dimensional flow obtained
from the numerical simulation (Upw = 3.5 cm/s).

decreases. This evolution can be explained by the evolution of the
pressure in the concave test section. Figure 4 represents the stream-
lines and the pressure obtained through the numerical simulation.
There is a maximum of pressure on the concave wall near the center
of the wall (a « 45 deg) and lower pressure before and after. This
is explained by the geometry: the tendency of a flow impinging a
wall (here the region around center of the concave wall) produces
a growth of the pressure on this wall. Therefore, along the con-
cave wall, the longitudinal pressure gradient is positive until about
a ^ 45 deg and negative after this position. Consequently, in the
first part of the concave section, the flow is slowed down, inducing
a thickening of the boundary layer, and in the second part, the flow
is accelerated, decreasing the boundary-layer thickness. This evo-
lution of the boundary layer leads to an identical evolution of the
Gortler number GO (Fig. 3). Hence, the decreasing of the Gortler
number could be a second reason for the reduction of the amplitude
of the Gortler rolls (see Sec. IV). Indeed, after about ot « 45 deg,
the conditions are less favorable to the instability than they were in
the first part of the concave section.

IV. Experimental Results
A. Experimental Procedure

Recall that we have chosen the axis as follows: x is the longi-
tudinal axis on the concave wall (x = Ra), y is the radial one
directed from the concave wall to the center of curvature, and z is
the transversal one. The method we use to measure the evolution
of the instability is the following. For a given longitudinal posi-
tion x, we experimentally determine the streamwise velocity profile
along the spanwise axis z with LDA. We observe a modulation of
the streamwise velocity caused by the rolls and measure the wave-
length (Fig. 5). The maximum (respective minimum) of the profile
corresponds to the middle of the inflow (respective outflow) region.
At these two positions, zinfl0w and zoutflow, we measure the stream-
wise velocity profile along the radial axis y (Fig. 6). The difference
between these two profiles represents the perturbations of the ve-
locity (with a wavenumber nonzero). Indeed, the velocity is written
as follows:

U = cos(2jrz/A) + higher harmonic contributions

where UQ is the streamwise velocity component of the homogeneous
mean flow, u\ the perturbation at the first transversal period mode
associated with the wave number q = 2n/X, and X the wavelength
(Figs. 5 and 6). As soon as the velocity profile in the spanwise
direction z is close to a sinusoidal profile, we can expect that the other
terms HI, #3, . . . , are not as important in comparison to MI as shown
in the Fig. 5. In this figure, we calculate a Fourier decomposition
showing that M2/"i = 0-17 and w3 /wi = 0.02. Further work must
use this kind of decomposition to quantify exactly the role of the
higher nonlinear terms in the perturbation field.26

|U = U0 + ux cos(qZ) + u2cos(2qZ+(p2) +u3 cos(3qZ+q>3)

Spanwise position z (cm)

Fig. 5 Streamwise velocity U along the spanwise axis z, where a = 30
deg, y = 0.7 cm, Upw = 5.6 cm/s, l/o = 4.74 cm/s, u\ = 1.16 cm/s,
u2 = 0.20 cm/s, 113 = 0.03 cm/s, <f>2 = 2.37, y?3 = 5.19, Z = z - 2.69, and
q = 2.24.

y(cm)

Fig. 6 Experimental streamwise velocity profile for a = 30 deg and
Upw = 3.72 cm/s. The streamwise perturbation u\ is also shown.

The homogeneous mean flow is
the two-dimensional basic flow and

= Uh + MO, where Ub is
is the perturbation with a

wavenumber27 q = 0 usually called mean flow correction. Let us
discuss briefly this unusual formulation of the homogeneous mean
flow, including the zero wavenumber perturbation. In previous ex-
perimental works this possibility was not taken into account. Indeed,
theoretical study on the nonlinear regime of the Gortler instabil-
ity includes the existence of this mode. The mathematical origin
comes from the nonlinear generation of harmonics of the spatial
wavenumber. At the same level of the conditions of the existence of
2q = q + q, the solution 0 = q — q is possible too.27 This mean
flow correction was detected in the Rayleigh-Benard convection28

and theoretically analyzed by Siggia and Zippelius29 and Hall30 for
the Taylor-Couette problem. The temporal version of this problem
(the Hopf bifurcation) has been studied by Hanneman and Oertel31 in
wakes and recently in other confined flow by Pagneux and Maurel,32

who showed the existence of a stationary perturbation of zero fre-
quency (a> — CD) as a consequence of the instability. Recent studies
of instabilities in open flows33 show the importance of this homo-
geneous perturbation in the nonlinear saturation of the instabilities.
Unfortunately, we cannot use the numerical simulation to calculate
the basic flow for all of our experiments since it is not possible to in-
clude all of the initial perturbations (undetectable experimentally),
nor the effect of Ekman cells that appear on each lateral wall, and
modify the flow, especially in our relatively short cell. Therefore,
we cannot detect the mean flow correction UQ from trie experimen-
tal measurements but only £/{), where UQ = Ub + UQ is the total
homogeneous streamwise velocity.

To explore the evolution of the perturbations, there are two ex-
perimental possibilities. The first one is to change the flow rate, e.g.,
Upw, staying at the same position x (cf. Sec. IV.B). The second one
is to keep the same flow rate and to change the position x along the
flow and thus obtain the spatial evolution of the Gortler rolls along
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PETITJEANS AND WESFREID 1797

the flow (cf. Sec. IV. C). We characterize the perturbation u\ by its
maxima wimax or by its integrated value, the rms

this local study, we can estimate the evolution of the strength of the
instability in the nonlinear range. The best fit of the data shown in
Fig. 8 gives the following power law:

to better take into account the entire perturbation (Fig. 6).

B. Experiment Position Fixed, Flow Rate Variable
In this experiment, we keep the position fixed along the wall

x = 5 .2 cm from the leading edge, corresponding to an angle a — 30
deg, and to make the flow rate of the channel evolve between 780
and 1240 1/h, e.g., a potential wall velocity Upw between 2.1 and
6.7 cm/s. It does not evolve and remains equal to A = 2.4 cm (±0.2
cm). This quasi-invariance of the wavelength with the velocity of the
flow has already been observed by several authors. Ii23>34~36 In the
Gortler literature, many authors use the dimensionless wavelength
A = ([/A/i;)(A//?)1/2.Inourexperiment,Agoesfrom300tol200.
The evolution of the momentum thickness of the boundary layer and
of the Gortler number are represented in the Fig. 7. The thickness
of the boundary layer follows a law like l/^/(Upw), as in a Blasius
profile, until a velocity Upw ^3.3 cm/s. After that, the influence of
the longitudinal pressure gradient is felt, and the thickness remains
constant and then increases. Consequently, the Gortler number starts
to increase with a law in U^ and then increases more rapidly. The
longitudinal pressure gradient dp/dx on the wall is a linear function
of the mean velocity UpW9 with a slope of 3.6 x 10~8 s/cm2.

Figure 8 shows the evolution of the instability as a function of the
Gortler number. We have chosen to show the rms of the perturba-
tion wirms- We can observe that the amplitude of the rolls increases
with the velocity of the flow. The perturbation is around 8% of the
potential wall velocity and is still small compared with the veloc-
ity of the flow, even so far away from the apparent critical Gortler
number of this experiment (defined later). Recall that the value of
the threshold, very well defined for many instabilities, has no uni-
versal signification in the case of the Gortler instability. Indeed, this
instability is very sensitive to the initial perturbations (cf. Sec. IV).
Consequently, it is not possible to calculate a unique critical Gortler
number. There is no universal neutral curve in this problem37 since
each perturbation field in the entrance of the channel produces a
different value of the critical Gortler number. The experiment pre-
sented here is for a Gortler number G# between 9 and 21. From

0 1 2 3 4 5 6 7
Up,, (cm/s)

Fig. 7 Variation of the momentum thickness 9 of the boundary layer
and the Gortler number GO as function of the potential wall velocity
Upw for a = 30 deg.

(Ge-Gec)/Gflc

Fig. 8 Evolution of the rms of the streamwise perturbation u\rms vs the
Gortler number G0. The best correlation of this curve is (Mirms/^pw) ex
[(G0 — G0C }IG0C ](K4 with an apparent critical Gortler number G0C w 1.6.

Win /Ge-Ge

\ G9c

()A

with an apparent critical Gortler number G9c « 1.6. This is the first
time that a nonlinear correlation has been observed experimentally.
The Gortler number being large for this experiment, the evolution
of the rolls is strongly nonlinear, and it could be the reason why the
coefficient we have obtained in the correlation is different from what
we would have expected from a weakly nonlinear amplitude model
as the Landau-Stuart theory.8-38 This model predicts the following
values of the exponents in the law v = (G - Gc)ft: ft = \ for a
subcritical behavior, or ft = \ for a supercritical one. A possibility to
model this behavior could be to not keep the critical Gortler number
constant but to consider it as a function of the velocity Upw. This
can be justified by considering the longitudinal pressure gradient
dp/dx = f ( U p w ) . Under this assumption, Ragab and Nayfey39

show that the critical Gortler number depends on the evolution of
the longitudinal pressure gradient and so on the velocity of the flow,
Gec = G&c(Upw). Hall37 has calculated a critical Gortler number as
a function of the initial perturbations upstream that are influenced by
the modification of the velocity of the flow. Nevertheless, Lee and
Liu40 and Yu and Liu41 did not observe any significant difference
in their numerical simulations when they changed the state of the
initial perturbations. In our experiment, there is no way to determine
the evolution of the critical Gortler number since it is very difficult
to detect these initial perturbations. Future work (experimental and
numerical) needs to complete and validate (or not) this correlation.

C. Experiment Position Variable, Fixed Flow Rate
The experiment described earlier is only a local study of the in-

stability. Although it is very important to know the magnitude of
the perturbation field, it is more interesting to observe the spatial
evolution of the instability along the flow for a given flow rate. In
particular, we want to characterize the envelope in which the Gortler
rolls evolve. Indeed, other instabilities in open systems as Benard-
von-Karman wakes or mixing layers possess analogies with our
instability that we must consider.42 One of the main characteristics
of the Gortler instability is that the rolls are in the longitudinal di-
rection where the control parameter does not remain constant. Thus,
the concept of envelope of the rolls becomes important because it
describes the evolution of the instability along the wall. We will try
to see whether an interpretation of this instability in terms of global
behavior is possible, as it seems to be in other instabilities in open
flow.43

L Wavelength Variable
The first experiment (called Xvariable) has been obtained un-

der the following conditions. The flow rate of the channel was
Q = 603 l/h (±5%), corresponding to a potential wall velocity
Upw « 3.46 cm/s. The potential wall velocity along the concave wall
starts at 3.75 cm/s, decreases to 3.25 cm/s in the middle of the wall,
and then increases to 4.25 cm/s at the exit of the concave section. This
evolution is a result of the effects of the longitudinal pressure gradi-
ent. The spatial evolution of the wavelength is shown in Fig. 9 with
circles. We will see in this section and the following that this growth
is not related to a growth in instability. Figure 10 represents the spa-
tial evolution of the momentum thickness of the boundary layer and
the Gortler number. Both increase until an angle a « 40 deg and then
decrease. These evolutions are a result of the behavior of the longitu-
dinal pressure gradient that is changing sign around the middle of the
(channel ot « 40 deg). Recall that the decay of the Gortler number
means that the flow is locally less unstable, and that is another reason
of the diminution of the instability that we will observe in the next
figure. Indeed, Fig. 11 shows the evolution of the rms of the longitu-
dinal perturbation u\. First, we observe an exponential growth of the
perturbation along the wall until an angle ot « 40 deg. This growth
can be written w l rms ~ eftx where p is the spatial linear growth rate.
For this experiment, we find p >0m « 1, where 0m is the mean value of
the boundary-layer thickness (Om « 0.22). In addition, we observe
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Fig. 9 Evolution of the wavelength A along the concave wall for the
three experiments: *, for the experiment called Avariabie; A, for the
experiment Aquasiconstant; and o, for the experiment Aforced»
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Fig. 10 Evolution of the momentum thickness 0 of the boundary layer
and the Gortler number GO along the concave wall for the three different
experiments: *, for the experiment called Avariabie > A, for the experiment
Aquasiconstant» and o, for the experiment Aforced*
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Fig. 11 Evolution of the rms of the streamwise perturbation Mirms
along the concave wall for the experiment Avariabie» Until a w 40 deg,
"irms grows exponentially with a law Mirms « 7.25 W~2e@x with /3 w
0.23 and then saturates.

in an experiment. This means that we can control only the flow rate
with reasonable accuracy, but we do not have any control on the ini-
tial perturbations that always exist in an experiment. The second one
is under the same external conditions of flow, but with injections of
two small jets 5 cm before the inlet of the channel. The aim of these
two jets is to impose a constant wavelength A, = 2.5 cm correspond-
ing to the mean wavelength we have measured in the experiment
described in Sec. IV.C.l. Jets present the double interest of forcing
the instability and forcing the wavelength. Indeed, a jet induces two
counter-rotating rolls aligned in the streamwise direction44 and two
other smaller rolls as a result of the stretching of the vorticity of the
boundary layer created by the presence of the obstacle formed by
the jet (Pig. 12). Therefore, it is one of the best initial perturbation
to force Gortler rolls. The potential wall velocity is the same for all
three experiments, confirming that, at least for the mean flow, the
experiments are run under the same conditions. Figure 9 shows the
evolution of the wavelengths along the concave wall. We observe
three different situations. The experiment with the injection of two
jets has a wavelength equal to the distance between the jets. The
other experiment without jets, which was as close as possible to the
experiment described in Sec. IV.C. 1, had a wavelength that increases
from 2.6 to 3.5 cm. In what follows, we will call the experiment de-
scribed in Sec. IV.C. 1 experiment A.variabie, the experiment where the
wavelength does not evolve a lot experiment A.quasiconstant, and the
experiment with the two jets experiment Xforced. The differences be-
tween the experiment ^variable and the experiment A.quasiconstant are the
spatial distribution of the initial pertubations with approximately
the same amplitude. Here, we observe how important these initial
perturbations, which we cannot control in an experiment or in a real
application, can be. Figure 10 shows the spatial evolution of the mo-
mentum thickness of the boundary layer and the Gortler number. The
evolutions are qualitatively the same for the three experiments. The
quantitative difference for the experiment A,forced is a result of the jets
and the rolls they induce. The evolution of the amplitude of the rolls
is represented in Fig. 13. In the three cases, the amplitude of the
rolls increases and decreases downstream. But the position of the
maximum is not the same for all of the experiments. The maximum
of the longitudinal perturbation corresponds to an angle a = 64 deg
(±2 deg) for the experiment A.variabie, a = 46 deg (±2 deg) for the
experiment Xquasiconstant, and a, = 38 deg (±2 deg) for the experiment
^forced- Hence, the saturations are very different, depending on the

that the perturbation does not start at zero at the inlet of the concave
section (a = 0 deg). This can be explained by the nonzero pertur-
bation rate in our channel. Then, after a « 40 deg, the perturbation
slows down its growth until an angle a « 64 deg, and after this posi-
tion, it decreases. This saturation of the instability is, for one part, a
result of the nonlinear effects and, for another part, the local decay of
the Gortler number, and hence the decay of the motor for the instabil-
ity. This form of envelope of the instability is very similar to that ob-
tained by Saric5 and Benmaleck43 in the nonlinear calculations of the
Gortler instability. First, they calculate an exponential evolution of
the energy of the rolls and then a saturation caused by the nonlineari-
ties. In our case, the decay of the thickness of the boundary layer, and
hence the decay of the Gortler number, enhances the saturation.

2. Wavelength Constant or Quasiconstant
We have run two other experiments under the same external flow

conditions to study the repeatability of the evolution of the Gortler
instability with different perturbations and wavelengths. Indeed, this
instability, as well as almost all convective instabilities in open flow,
is very sensitive to the initial perturbations. The first one is under the
same conditions, as best as it is possible to get identical conditions

Fig. 12 Schema of a jet in a flow that produces two longitudinal
counter-rotating rolls and two small rolls on the wall that disappear
slowly.

.III|IIMIMII|IIIIIIMI|I1IIIIIII|IIIII!III|!I
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Angle a (°)

Fig. 13 Evolution of the rms of the streamwise perturbation wirms
along the concave wall for the three different experiments: *, for the
experiment called Avariabie; A, for the experiment Aquasic0nstant; and o,
for the experiment Aforced»
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experiments. This behavior of the saturation changing with the
wavelength has been observed by Day et al.45 in their calculations
of the spatial linear stability. They also observe that the higher the
wavelength, the farther downstream the position of the saturation
occurs. In other respects, the rms of the initial perturbation that en-
ters in the concave section is about the same for the experiment
^quasiconstam and the experiment Avariabie. On the other hand, it is very
different for the experiment Aforce(j, which is about 3.5 times bigger.
This is obviously a result of the jets that inject energy in the rolls.
Hence, it seems that the nonlinear saturations appear later when the
wavelength is free to growth to a big value. In other words, the non-
linearities are very dependent on the wavelength of the Gortler rolls
and their evolution, as well as on the initial conditions that play a
big part in their evolution.

Another point to observe is the serrated evolution of the experi-
ment Aquasiconstant. This can be the signature of a stationary secondary
instability. This seems to be a symmetric or varicose instability, with
a wavelength px ^ 2.8 cm.

V. Conclusion
This work is the first quantitative experimental study of the full

nonlinear behavior of the Gortler instability. The modern experimen-
tal methods used have allowed us to get a very important quantity
of data to scan the velocity field in all of the curved section. These
data could be compared with results obtained with new powerful
codes of direct simulation of the Navier-Stokes equations. On ac-
count of the curvature, which is much higher than almost all of the
other work, and of the longitudinal pressure gradient, the basic pro-
file is not a Blasius boundary-layer profile any more: the thickness
of the boundary layer starts to increase in the first halfway of the
concave section and then decreases. Consequently, we have shown
that this evolution has to be taken into account in the evolution of
the rolls, in particular, in the saturation of the instability. From the
experiment in a fixed position with a variable flow rate, we have
gotten a correlation of the strength of the instability. From the other
experiments where we have measured the spatial evolution of the
Gortler rolls, we have shown the importance of the initial perturba-
tion and the behavior of the wavelength in all of the development
of the instability. Our experiments show the limits of validity of the
linear description of the instability about the importance of the non-
linear description of the Gortler vortices.46 In that sense, the Gortler
instability becomes a good subject of study, not only as a centrifugal
instability, but also as a model of open and convective flow, where
the nonparallel effects are important. In this paper, we have shown
the importance of the mean flow correction even if we were not able
to extract this component. We know that this component plus the
other nonlinear components are responsible for the enhancement of
heat transfer. An important research direction in the future will be
the study of these nonlinear corrections in experiments and direct
numerical simulations.47
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