TD6: Crevettes et cavitation

Florentin Daniel, Mathilde Reyssat

- 1. Quelle doit-être la vitesse du jet d'eau dû au claquement de la pince pour qu'il y ait formation d'une bulle de cavitation? On peut utiliser la relation de Bernoulli : $\frac{1}{2}\rho u^2 + p = P_0$ pour un écoulement parfait irrotationnel, avec P_0 la pression dans l'eau immobile autour de la crevette qu'on supposera égale à la pression atmosphérique (ces crevettes habitent en eau peu profonde). Pour qu'il y ait cavitation il faut que la pression p devienne inférieure à la pression de vapeur saturante, donc $u \sim \sqrt{P_0/\rho} \sim 10 \text{ m} \cdot \text{s}^{-1}$.
- 2. A partir de la figure 2, déterminer le temps d'implosion de la bulle. En déduire le nombre de Reynolds caractérisant l'écoulement. Le temps d'implosion est $\tau \sim 0.3$ ms, le rayon de la bulle est $R_0 \sim 3$ mm, ce qui donne $Re = \rho R^2/(\eta \tau) = 40000$. On peut négliger les effets visqueux.
- 3. Pourquoi l'écoulement peut-il être considéré incompressible et irrotationnel? La vitesse typique de l'écoulement est $U \sim 10 \text{ m} \cdot \text{s}^{-1}$, bien inférieure à la vitesse du son (1000 m·s⁻¹), donc on peut négliger les effets de compressibilité. L'écoulement est généré par un gradient de pression et on néglige les effets visqueux, donc il est irrotationnel.
- 4. Dans ce régime, rappeler les équations qui décrivent le mouvement de l'eau. L'équation d'Euler

$$\rho \partial_t u + \rho(u \cdot \nabla) u = -\nabla p,\tag{1}$$

et la condition d'incompressibilité $\nabla \cdot u = 0$.

5. Trouver par un raisonnement en loi d'échelle le temps d'implosion de la bulle τ . L'implosion de la bulle est due à l'action des forces de pression, auxquelles s'oppose l'inertie de l'eau qui va remplacer la vapeur dans la bulle. Donc en loi d'échelle $R_0^2 P_0 \sim \rho R_0^3 R_0/\tau^2$, donc $\tau \sim R_0 \sqrt{\rho/P_0}$.

On étudie maintenant le problème de façon quantitative. On considère une bulle sphérique de rayon $R = R_0$ à t = 0. On fait l'hypothèse qu'elle commence à s'effondrer à vitesse nulle ($\dot{R}(t = 0) = 0$). La pression de vapeur dans la bulle P_a est petite devant la pression P_0 dans le liquide loin de la bulle. On note γ la tension de surface eau-air.

- 6. Déterminer le potentiel des vitesses ϕ et en déduire le champ de vitesse u(r,t) en fonction de R(t). Le potentiel des vitesses vérifié l'équation de Laplace $\Delta \phi = 0$. En symétrie sphérique, cela donne $\phi(r,t) = A(t)/r + B(t)$. La symétrie sphérique impose $\vec{u} = u(r,t)\vec{e}_r$, et donc $u(r,t) = -A(t)/r^2$. On a $u(R(t),t) = \dot{R}$, donc $u(r,t) = R^2 \dot{R}/r^2$.
- 7. En intégrant l'équation d'Euler, montrer que R(t) vérifie l'équation de Rayleigh-Plesset :

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 + \frac{2\gamma}{\rho R} = -\frac{P_0}{\rho}.$$
 (2)

On injecte dans l'équation d'Euler :

$$\rho \frac{d}{dt} \left(\frac{R^2 \dot{R}}{r^2} \right) + \rho \left(\frac{R^2 \dot{R}}{r^2} \right) \frac{d}{dr} \left(\frac{R^2 \dot{R}}{r^2} \right) = -\frac{dP}{dr}.$$
 (3)

En développant, on obtient

$$\frac{1}{r^2}(R^2\ddot{R} + 2R\dot{R}^2) - \frac{2R^4\dot{R}^2}{r^5} = -\frac{1}{\rho}\frac{\mathrm{d}P}{\mathrm{d}r}.$$
 (4)

^{*}florentin.daniel@phys.ens.fr

On peut intégrer entre r = R(t) et $r = +\infty$:

$$-\frac{P_0 - p(R, t)}{\rho} = R\ddot{R} + 2\dot{R}^2 - \frac{\dot{R}^2}{2}$$
 (5)

La loi de Laplace donne la différence de pression entre l'intérieur et l'extérieur de la bulle : $P_a = P(R,t) + \frac{2\gamma}{R}$. En négligeant P_a devant P_0 , on obtient l'équation demandée.

8. Montrer que le terme de tension de surface est négligeable dans les conditions considérées. En déduire que

$$\frac{\mathrm{d}(\dot{R}^2 R^3)}{\mathrm{d}t} = -\frac{2P_0}{3\rho} \frac{\mathrm{d}R^3}{\mathrm{d}t}.\tag{6}$$

On compare les ordres de grandeurs des termes $R\ddot{R}$ (10 m² · s⁻²) et $2\gamma/\rho R$ (0.01 m² · s⁻²). Ensuite, on multiplie les deux membres par $2R^2\dot{R}$ pour reconnaitre à gauche dR^3/dt , et à droite on se retrouve avec $2R^3\dot{R}\ddot{R} + 3R^2\dot{R}^3$, qui n'est autre que $d(\dot{R}^2R^3)/dt$.

9. Calculer le temps τ d'implosion de la bulle et vérifier la cohérence avec les données expérimentales. On donne

$$\int_0^1 \sqrt{\frac{x^3}{1-x^3}} \, \mathrm{d}x \approx 0.747. \tag{7}$$

On peut intégrer une fois :

$$\dot{R}^2 R^3 = -\frac{2P_0}{3\rho} (R^3 - R_0^3). \tag{8}$$

En séparant les variables et en posant $x = R/R_0$ on obtient le temps d'implosion

$$\tau = R_0 \sqrt{\frac{3\rho}{2P_0}} \int_0^1 \sqrt{\frac{x^3}{1 - x^3}} \, \mathrm{d}x \approx 0.915 \times R_0 \sqrt{\frac{\rho}{P_0}}.$$
 (9)

Numériquement on trouve 270 μ s ce qui est cohérent avec la valeur expérimentale.