
TP Bubble Raft - sur place

Completing this TP should allow you to:

- Distinguish between different types of defects that can appear in two dimensions.
- Develop understanding of the nature of dislocations.
- Understand the motion of dislocations under an applied stress.

What is expected from you:

- To make a video that summarizes your observations of different lattice defects, including
the response of the raft to the external stress.

The first theory that described the elastic fields of a material with distortions (”les distortions”)
was originally developed by Vito Volterra in his 1907 thesis [3]. In the years to follow one of the
biggest challenges in materials science was to explain plasticity of materials from microscopic point
of view. A simple back-of-the-envelope calculation of the shear stress at which neighboring planes
of atoms of a perfect crystaline material slip over each other, would predict that metals have shear
stresses of 3000− 24000 MPa, where actual measurements would give a range of 0.5− 10 MPa.

It was not until 1930s that an explanation was proposed. The term dislocation, meaning a defect
or irregularity on the atomic scale, was first introduced by G. I. Taylor in 1934 [2], and in the
same year E. Orowan, M. Polanyi and G. I. Taylor independently proposed that plastic deformation
could be explained in terms of the theory of dislocations. It was proposed that dislocations move if
the atoms from one of the surrounding planes break their bonds and reform them with the atoms at
the terminating edge. And a half plane of atoms is moved in response to shear stress by breaking and
reforming a line of bonds, one (or a few) at a time. The energy required to break a row of bonds is far
less than that required to break all the bonds on an entire plane of atoms at once. This simple model
suggested that that plasticity is possible at much lower stresses than in a perfect (defect-free) crystal.
(Today we know that in many materials, particularly ductile materials, dislocations are the carriers of
plastic deformation, and the energy required to move them is less than the energy required to fracture
the material itself). The model also suggested an explanation of why materials work-harden, i.e., when
a material has been plastically deformed, afterwards it requires greater stress to deform further.

It wasn’t until 1947 that the existence of dislocations was experimentally verified. In their model
system of mono-disperse air bubbles floating on a liquid surface, i.e., a bubble raft (see figure 1), W.
L. Bragg and J. F. Nye demonstrated how defects, i.e., different imperfections of a lattice including
the aforementioned dislocations, form, move and interact [1]. It took another ten years before electron
microscopy techniques were advanced enough to show dislocations moving through a material.

Figure 1: A top view of a bubble raft.

This TP

In this TP you will recreate the experiment of Bragg and Nye, i.e., you will create a bubble raft and
use it to visualise how defects interact with each other, how they move and how they can be destroyed.
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If the bubbles are small ( 1mm) and are mono-disperse, the raft is a very good two dimensional model
of a crystal - the regular arrangement of the bubbles is an analogue to the structure of a close packed
plane of atoms in e.g. aluminium. The defects in the arrangement of bubbles are closely analogous
to such features in real crystalline materials. You will focus on grain boundaries (see figure 2), on
point defects (see figure 3) and on lattice dislocations (see figures 3 and 4).

Figure 2: Grain boundaries in a bubble raft.
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Figure 3: 2D defects in the square lattice.

Dislocations are topological defects, which makes them special and key ingredients of plastic defor-
mation in crystalline materials. As already mentioned, their presence and dynamics crucially determine
the material hardness. In fact, various techniques of working metals, including ancient crafts such as
sword making, in significant part consist of achieving a certain organization of dislocations1.
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Figure 4: Dislocation propagation in the square lattice

Experimental setup

Material: You will use a plexiglas pool, a mixture of glycerin, water and surfactant, a small microflu-
idic device, syringe, syringe pump, plexiglas bars, small torch and a camera with a video option.

Fill the pool with the glycerol+water+surfactant mixture (unless it is already filled). Carefully
place the microfluidic device into the round container that is located in one corner of the pool. Place
the syringe into the pump holder and load it with air. Connect the microfluidic device with the syringe
(see figure 5). Mount the camera, ensure it is stable, centered and horizontal.

1NB: The main limitation of this bubble raft analogy is the two-dimensional nature of the raft. In reality bulk crystals
are three-dimensional and have an entire class of screw dislocations which cannot exist in a two-dimensional bubble raft;
all the dislocations we will see in the bubble raft are pure edge dislocations.
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syringe pump

Figure 5: Experimental setup.

Part one sur place:

1) Set up the pump - injection speed should be 0.8ml/min. This speed produces ∼millimeter bubbles.
It will take you up to an hour (i.e., 2-3 loadings of the big syringe) to fill around a half of the pool.
The bubbles should be relatively mono-disperse and forming a lattice. Above the microfluidic device a
buildup of bubbles can be formed. From time to time you can either blow on the bubbles to move them
or use the plexiglas bar to push them gently to the middle of the pool. If smaller or bigger bubbles
form you can use blowtorch to pop the bubbles (carefully, though, as you can easily pop bubbles you
would like to keep!)
As the raft is assembling, which may take up ∼1hr, prepare for measurements by reading the “Concepts
and Measurements” section below. As you think about the concepts, objects and behaviors described,
observe your assembling raft and try to imagine or identify them.

2) Once the bubble raft is ready you will start photographing and filming with the camera and study:
- Grain boundaries
- Vacancies
- Dislocations and their dynamics (glide motion)
- Recrystallization

The details can be found in “Concepts and Measurements” below. Make sure your photographs are of
good quality and that your movies are focused and both capture different static and dynamic behavior
as you will be making a movie that contains your observations.

3) Start a new recording on the camera. With this setup of the bubble raft you will study:
- Dislocation interactions
- Annihilation of two dislocations

Concepts and Measurements

1) Make photos of your raft, close ups but also full field. The bubbles in the raft, just like atoms in a
crystalline material, are mostly organized into a periodic arrangement, a lattice.

• Which lattice do you recognize in the raft?

• How many directions (axes) do you see along which the bubbles are most densely
packed?

• These are analogous to crystal axes. Which angle do the axes (ideally) form?

• Does this lattice arrangement appear within three-dimensional crystals?

Instead of a single perfect lattice throughout the raft, you should see patches. These patches are
analogous to crystal grains in polycrystals (see figure 2). Each patch has a lattice, but the axes are
misaligned between a patch and a neighboring patch. The angle by which the axes are misaligned is
the mismatch angle. Note that all axes on a given lattice are equivalent by symmetry.

• What is then the maximal angle of misalignment between grains?

The boundary line where the patches meet is a grain boundary. The grain boundary has two
key properties: the mismatch angle across it, and the boundary line itself. The boundary line is
approximately a straight line and forms a certain angle (the “boundary angle”) with respect to the
axes of the two grains.
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• Focus on one photo of the raft. Observe all patches and grain boundaries. Mark the grain
boundaries and estimate the average diameter of each patch and record the size distribution of
patches.

• Draw approximate straight lines for well-defined grain boundaries. Record the mismatch angle
across each grain boundary. Record its boundary angle.

• Is there any regularity in the mismatch angles? How about the boundary angles?

2) Each patch is defined by a nice lattice of bubbles, but it is still not perfect. There should be a few
point defects, like in figure 3.

• Pick images of the raft and mark examples of the following defects:

– Substitutional impurity (one bubble of different size than other, sitting on a lattice site).

– Vacancy (one bubble missing from a lattice site).

– Interstitial (one bubble pushed in between other bubbles that would form a perfect lattice
without it).

– Look for combined defects, such as Frenkel defects (an interstitial and a vacancy near to
each other).
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Figure 6: Constructing a burgers circuits. The Burgers vector ~b is marked with a blue arrow.

• Identify dislocations - at a glance they may look like an ordinary point defect. You will identify
them in two ways: a geometric way in a photo (like in figure 3), and a dynamical way (like in
figure 4).

– The dynamical identification of a dislocation is not rigorous, but it is simple way to find
candidates. Gently push on the raft with a plexiglas bar. Some defects will rapidly move
in a straight line along an axis when you do this, and these are (probably) dislocations.
As you move back and forth, the defects should also move in reverse. Locate one of these
defects near the centre of a grain, and perform the geometric identification described below.

– The geometric identification rigorously proves that a defect is a dislocation, based on a
topological property, the Burgers vector. To find this vector, which is zero for other
point defects but has a characteristic non-zero value for a given dislocation, you must
construct a Burgers circuit (see figure 6 with an example constructed for the square
lattice).
Print a photo of the system. Choose a bubble a few rows away from the defect that you
believe is a dislocation. Call this bubble A (see figure 6). Independently on a paper sketch
a piece of a perfect lattice and mark a site corresponding to A. Now perform a clockwise
circuit, jumping from one bubble to the next, starting and ending at bubble A; most
importantly you must enclose the defect in your circuit. For each step in the circuit, mark
the corresponding step on the perfect lattice. For example, to go back to A you might have
to go 3 bubbles horizontally to the left, 5 up, 4 steps right, etc., and for each jump you
must make the same axis and direction jump on the paper. However, the circuit that you
have drawn on the paper might not end back at bubble A. This failure to close the circuit
is the signature of a dislocation: if you have a point defect, such as a vacancy, there will
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be no closure failure. For a clockwise circuit, mark the vector on paper from the finish site
to the starting A site: this is the Burgers vector, and it must be a lattice vector, i.e.,
connecting two lattice sites. The circuit needs to be big enough so that you are jumping on
well-defined directions. Note that you can change the shape and size of the circuit but the
resulting vector will remain the same — the Burgers vector is a topological property
of a defect.

– If you found a dislocation, record the piece of the video of its moving, and the photo with
the marked Burgers circuit, and the corresponding circuit on paper.

– Now you should be able to identify the center of dislocation, and notice that it is located
at a point where a line of closely-packed bubbles ends. Look along lines of bubbles starting
from the center.

Is the extra line of bubbles uniquely defined?
Now notice that this part of the raft is divided into two halves by this center bubble: one
half has an extra line of bubbles compared to the other.
Can you confirm that the Burgers vector is oriented along the division line of
two halfs?

– Go back to the video of the given dislocation. The movement you have seen happens along
a line of bubbles.
Can you confirm that the movement line corresponds to the direction of the
Burgers vector, like in the figure 4?
The Burgers vector defines the way a slip happens in the crystal. It enables the crystal to
deform more easily under external force, which in typical metal crystals lowers the shear
modulus by several orders of magnitude. The key to an easy deformation is the movement
of the dislocation along its Burgers vector, which is called a glide motion. Imagine a piece
of perfect lattice - the glide of the two halves would require a simultaneous movement of
an infinite line of bubbles by their neighboring infinite line of bubbles.

– Repeat previous four steps to find at least two dislocations moving along two different axes.

– As you gently move the plexiglas bar back and forth, do you notice the same defects moving
back and forth? Record the lattice axes directions (relative to the box) along which they
move.

– Try to move dislocations further.
What happens when dislocations reach the edge of the raft, or a grain bound-
ary?
You might even see two dislocations meeting each other - what happens? Do dislocations
interact with point defects, such as vacancies, interstitials and substitutional point defects
in the raft? If so, how? Describe. Try to record any such interaction (not easy!).
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TP Bubble Raft - à la maison

You need to finish analyzing your data and make a movie that summarizes your
observations.

Additionally, you will use numerical simulations and some analysis code to:
- Learn how two pair correlation functions look like for a crystal
- Understand how lattice defects influence the pair correlations
- Attempt to qualify the crystal nature of your bubble raft
- Study recrystallization of a bubble raft

Python code

There are two python-based programs that you can download from the TP HMP website, BubbleR-
aft.ipynb and BubbleRaftJAX.ipynb or you can find on the computer designated for this TP (the
one you are using for the first part of the TP). If you have difficulty getting the files please let us know
and we will send them to you via email.

Setup

To complete this TP you need to have either python installed together with an installation of the
Jupyter Notebook, or you need to have a gmail account.
If you have a python installation on your computer it is easy to install a jupyter notebook. With
miniconda you can use the following code in terminal:

conda install -c conda-forge jupyterlab
conda install -c conda-forge notebook

If you have pip installed please use the following code in terminal:

pip install jupyterlab
pip install notebook

Once this is done, in terminal go to the folder where you saved the notebooks and all the image
files and simply type jupyter notebook. This command will launch in your web-browser the content
of the folder you are in, and from there you can just click on the notebook you want to run.

If you don’t have a python installation or if you simply don’t have a good computer, please make a
gmail account - it will take you 5 minutes. Once you have the account, you will have access to some-
thing called google colab, a web-based interface that allows you to run python jupyter notebooks
on google server without needing to install anything on your computer. Additionally, you will get a
google drive, space on google servers where you will need to copy the python notebooks for this TP
as well as some of images you made in the lab, that you will be analyzing further.

For Google Colab users

Open your google drive by typing this in your browser www.drive.google.com. Once you login, you
will first need to upload the notebooks and some of your images to the drive. Afterwards, navigate
to the folder where you did this, locate the jupyter notebook you want to run and just select Open
with Google Colaboratory, like in figure 7. This will open the notebook in colaboratory. You will
need to mount your google drive as explained below, so you can have access to the images you need
to use for the analysis.
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Figure 7: From google drive to colaboratory.

If you made your google account and have uploaded on your google drive the python notebooks, you
can either open a desired notebook in the colaboratory or just visit the following webpage: https://
colab.research.google.com/notebooks/intro.ipynb. You should see something like in the figure
8 below.

Figure 8: Google Colab intro page

The next step is to link the Colab with your google drive where all the notebooks and images are. You
can do that by clicking on the drive icon (circled in the left in the figure 9 below). This will create a
cell in the notebook that you need to run (click on the arrow that is circled in the right in the figure
9 below).

Figure 9: Mounting Google Drive

You will be shown an URL link that you need to follow. This will open a page asking you to allow
linking between your drive and the colab and will subsequently give you an authorization code you
need to paste in the cell marked with the second arrow in the figure 10.
Now that your drive is mounted, you can navigate to the folder where your notebooks and your data
is, like in figure 11.
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Figure 10: Final confirmation about linking your drive and colab.

Figure 11: Navigate to the desired folder.

What will you do

You will continue to work on the bubble raft. First you will focus on how one can characterize the
arrangement of bubbles in the raft, in particular the way it deviates from a perfect 2D crystal. For
this you will use correlation functions, which you will apply to your images.

Concept: Correlation functions

A natural and useful way to characterize a spatial arrangement of N particles is through the Pair
Correlation Function (PCF):

g(~r) =

N∑
i 6=j

δ (~r − ~rij) , (1)

where ~rij ≡ ~ri − ~rj is the relative vector of a particle pair, the δ is the Dirac delta function, so that
the g measures the distribution of distance vectors in the system. If the particle positions ~ri form
a perfect crystal, their relative positions also form a very precise set determined by the geometry of
lattice, so that the g(~r) will have sharp peaks at a discrete set of values of ~r. As the particles deviate
from the perfect lattice positions due to elastic deformations but even more due to defects such as
dislocations, grain boundaries, interstitials and others, the g(~r) becomes smoother with wide peaks.
As the crystal becomes more disordered and eventually melts into a liquid, the g becomes flat and
featureless for larger |~r|, i.e., the pair correlations are diminished: knowing position of one particle we
cannot predict where any distant particle should be, the regularity in positions is lost.

The pair correlation function is measured quite directly in essential experiments of condensed mat-
ter physics! Some key experiments for studying material structure are elastic scattering experiments,
in which some quantum particles (X-rays, neutrons, electrons) are shot at the material and then ob-
served at the same energy but scattered by a vector ~q. To illustrate the connection to g, one may
assume weak scattering without absorption, where particles in the system are identical and isotropic.
Then a particle at position ~ri creates a scattered plane-wave b exp (i~q · ~ri), and the total scattered
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wave is ψq = b
∑N

i exp (i~q · ~ri), so the scattered intensity measured in the experiment is:

Iq = ψ∗qψq = |b|2
N∑
i,j

exp (i~q · (~ri − ~rj)). (2)

One therefore defines the central quantity S(~q), the *static structure factor*, by:

S(~q) ≡ 1

N

N∑
i,j

ei~q·(~ri−~rj) = 1 +
1

N

∫
dV ei~q·~rg(~r), (3)

where the connection to the pair correlation function is shown by simple use of the Dirac delta function.
It turns out that the structure factor measured by scattering is given by the Fourier transform of the
pair correlation function (note, the full technical definitions of these quantities differ slightly from this
simplified description).

For simplicity, one correlation function we will focus on measures only the distances between
particles, i.e., ~rij is replaced by its length |~rij | in the definition of g:

gdist(r) =
N∑
i 6=j

δ (r − |~rij |) , (4)

see for further details https://en.wikipedia.org/wiki/Radial_distribution_function.
The gdist essentially measures whether a translation of a particle a certain distance away is

likely to land on another particle. A complementary correlation function instead measures whether a
rotation of a bond between particles by a certain angle lands on another bond. More precisely:

gangle(r) =

∣∣∣∣∣∣
NN pairs∑

a,b

δ
(
r − |~Ra − ~Rb|

)
e6i(θa−θb)

∣∣∣∣∣∣ , (5)

where ~Ra ≡ (~ri + ~rj)/2 is the center-of-mass of a nearest-neighbor pair of particles, the angle θa is
the one formed by their link ~rij with the global x-axis. In a perfect triangular lattice a particle has 6
nearest-neighbors, and the angles of these 6 links to some global axis are θ0 + n · 2π/6, n = 0, ..., 5, so
that all links contribute identically to the exponent, namely e6iθ0 . As the lattice becomes imperfect, the
correlation function gangle(r) measures the matching of the local rotation angles θ0 between particles
separated by a distance r.

The distinction between gdist(r) and gangle(r) is especially interesting in 2D, in which ordinary
crystals have peculiar properties: at large length scales r the former correlation function decays as
power-law because of disorder caused by occasional dislocation topological defects, while the latter
correlation function is constant (local six-fold axes are oriented the same way in entire system). The
proliferation of dislocation defects as temperature rises leads to *liquid-crystal* phases, in which the
gdist(r) decays exponentially with r, while gangle(r) as power-law. At even higher temperatures other
defects proliferate in the system and the crystal has melted into a liquid with all correlations decaying
exponentially quickly.

Note that the definitions and explanations above are also contained in the python
notebooks you will be using.

The BubbleRaft.ipynb notebook

You will start by loading images of your bubble raft: at least two images, one with many grains and
defects, and one with as few as possible. You will also generate an image of a perfect triangular lattice
to act as a reference perfect crystal. Using these images you will:

• Learn how two pair correlation functions look like for a crystal

• Understand how lattice defects influence the pair correlations

• Attempt to qualify the crystal nature of your bubble raft
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The BubbleRaftJAX.ipynb notebook

You will start by generating a system of particles, and letting it relax to the lowest energy state
using MD simulation. You will also relax the system after mixing up the particles (to ”simulate”
recrystallization). In these processes you will:

• Observe the most favorable lattice formed by particles in 2D

• Explore the presence of lattice defects, and their evolution during system relaxation

• Employ pair correlation functions to characterize the relaxed system
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